
sustainability

Article

Heuristic-Based Journey Planner for Mobility as a
Service (MaaS)

Panagiotis Georgakis 1,*, Adel Almohammad 1, Efthimios Bothos 2 , Babis Magoutas 2 ,
Kostantina Arnaoutaki 2 and Gregoris Mentzas 2

1 School of Architecture and the Built Environment, University of Wolverhampton,
Wolverhampton WV10 0JP, UK; A.Almohammad@wlv.ac.uk

2 Institute of Computer and Communication Systems, National Technical University of Athens,
157 80 Athens, Greece; mpthim@mail.ntua.gr (E.B.); elbabmag@mail.ntua.gr (B.M.);
konsarna@mail.ntua.gr (K.A.); gmentzas@mail.ntua.gr (G.M.)

* Correspondence: p.georgakis@wlv.ac.uke-mail.com; Tel.: +44-190-232-2286

Received: 30 October 2020; Accepted: 27 November 2020; Published: 4 December 2020
����������
�������

Abstract: The continuing growth of urbanisation poses a real threat to the operation of transportation
services in large metropolitan areas around the world. As a response, several initiatives that promote
public transport and active travelling have emerged in the last few years. Mobility as a Service (MaaS)
is one such initiative with the main goal being the provision of a holistic urban mobility solution
through a single interface, the MaaS operator. The successful implementation of MaaS requires the
support of a technology platform for travellers to fully benefit from the offered transport services.
A central component of such a platform is a journey planner with the ability to provide trip options that
efficiently integrate the different modes included in a MaaS scheme. This paper presents a heuristic
that implements a scenario-based journey planner for users of MaaS. The proposed heuristic provides
routes composed of different modes including private cars, public transport, bike-sharing, car-sharing
and ride-hailing. The methodological approach for the generation of journeys is explained and its
implementation using a microservices architecture is presented. The implemented system was trialled
in two European cities and the analysis of user satisfaction results reveal good overall performance.

Keywords: mobility as a service (MaaS); dynamic journey planning; personalised routes
recommendation; scenario-based modelling

1. Introduction

The rise of urbanisation in the last few decades and forecasts [1] revealing that an increasing
number of people will choose to settle in urban areas in the coming decades pose a challenging problem
for future transportation systems. At the same time, the evolution of new mobility services and the
upcoming penetration of autonomous vehicles in traffic streams will require technological solutions to
support travellers with mobility related tasks such as journey planning, booking, ticketing and others.

Mobility as a Service (MaaS) is an emerging concept which integrates different modes and services
in subscription packages with the aim of covering an individual’s travel needs through a single
interface; the MaaS operator. The ultimate goal of the wide adoption of MaaS in urban environments
is the shift from a car-ownership to a car-usership paradigm [2], thus reducing the over-reliance
on private cars, which is the main contributor to the formulation of congested networks. Due to
the novel nature, as far as mobility concepts are concerned, research has been undertaken lately for
understanding better factors that may affect the deployment of MaaS. Such factors may be divided in
those related to (i) user acceptance, (ii) the need for innovative business models, (iii) an understanding
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of policy-making necessary to stimulate such schemes and (iv) advances in technological solutions to
support the provision of the required integrated services.

User adoption of MaaS is pivotal for its existence and merely its offering may not be sufficient to
effect behavioural change [3]. Interestingly, this may be attributed to user uncertainty as to what this
new mobility concept entails [4]. Other ambiguities that may hinder user acceptance are the narrow
range of demographics of potential adopters which limit the overall user base [5], the socioeconomic
qualities of users who will be willing to pay for such a service [6], a clear understanding of the
real cost benefits in using MaaS [7], the motivations for behavioural change necessary to lead in
the abandonment of current travel practices [8], as well as aspects related to the acceptance of the
technological solutions required for the realisation of MaaS [9]. In terms of business modelling, a review
of definitions of the MaaS ecosystems is presented in [10], while the dynamics between different actors
of such ecosystems and their respective suitability in acting as principal operators are investigated
in [11]. Furthermore, of interest are MaaS schemes where large corporations subsidise the provided
mobility services to their employees for work related travels [12]. As is the case of other initiatives of
the same nature, policies that remove constraints need to be in place for MaaS to become a mainstream
travelling alternative. Such barriers may be attributed to highly regulated transportation services
that impede innovation [13], or lack of data sharing and standardisation of interfaces to enable the
required systems integration [14]. Technology is expected to play an important role when the maturity
of MaaS schemes reaches a level where multiple MaaS operators and mobility service provides need
to collaborate in a single city. Data fusion [15], journey planning and ticketing applications [16] and
integrated multimodal information platforms [17] are some of the technologies that need to be realised
as enablers of MaaS. The above-named technologies and systems are present in most conceptual and
prototype MaaS architectures proposed in the literature [10].

This paper is positioned in the technological domain of MaaS and presents the implementation
of a journey planner that can support MaaS schemes. Our solution was developed as part of the
MaaS4EU [18] H2020 European project and it was evaluated in pilot demonstrations in the cities of
Manchester (UK) and Budapest (Hungary), during which users revealed their opinions in relation to
its functionality. The remaining sections of the paper are structured as follows. Section 2 includes a
review of journal planning and routing approaches found in the literature, while Section 3 presents the
methodological approach for journey planning of the proposed solution, together with the underpinning
models. The implementation approach with the use of microservices is illustrated in Section 4 and the
results of the journey planner’s user evaluation are presented in Section 5. Finally, some conclusions
and recommendations for further research are discussed in Section 6.

2. Literature Review

Route planning applications have evolved considerably during the last two decades, primarily
due to the extensive use of mobile devices from users of all ages. Nowadays, baseline information
about routes include paths to follow, distances and travel times, prices, points of interest, number
of transfers and connections with different means of transport [19,20]. Research into algorithms and
models for efficient routing dates back to the late 1950s with the inception of the shortest-path algorithm
by Dijkstra [21]. Since then, a number of improvements in the computational properties and efficiency
of the algorithm have been proposed, including the A* heuristic which limits the search space [22] and
the introduction of contraction hierarchies which simplify the graph structure for faster attainment of
solutions [23]. These graph-based algorithms have been extended to accommodate the temporal nature
of services operating using timetables. Time-dependent algorithms can be grouped into time-expanded
in which departure times of services are modelled as distinct nodes [24], and time-dependent where
timetable entries are treated as events (representing nodes) for the construction of graphs that are
valid for predetermined time horizons [25]. In the last decade, non-graph techniques have posed as
promising alternatives in planning journeys for public transport services. These techniques depend
upon the finite number of stops that govern public transport services and the concept of a trip as a
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sequence of stops to generate routes [26,27]. Moreover, a hybrid approach of graph- and trip-based
transit routing has been presented in [28]. Thorough surveys for different routing algorithms and
techniques can be found in [29–31].

With the evolution of Intelligent Transport Systems (ITS), new opportunities materialised in
enhancing journey planners with real-time information. Examples include the integration of real-time
transit information [32], dynamic integration of user generated data [33] and real-time [34] and
forecasted [35] traffic information as part of the route generation functionality.

In a MaaS implementation, different modes and mobility services may be used for reaching a
destination. Some of them may be fixed in terms of paths and points of access (for example public
transport and station-based bike sharing), while others may be dynamic (for example free-floating
car-sharing and ride-sharing) and in the near future automated [36]. In addition, constraints such as
the geographical boundaries of a particular service, the spatiotemporal limits for different services
or the availability of services based on the remaining quotas on a user’s subscription package need
to be taken into consideration. For example, a free-floating car-sharing service may have specific
boundaries within which vehicles must be parked and a bike sharing service may allow the utilisation
of a bike for up to 30 min for a single trip. Adding extra layers of complexity to the generation
of travel options, these limits of services may have multifaceted properties. In the above stated
example, the car-sharing service may be available within a central business district, but also allow the
picking-up and dropping-off of vehicles at the airport that links with that district but is not adjacent to
it. Therefore, MaaS needs to be supported by a multimodal journey planning solution that can handle
the above-stated requirements. A number of researchers have reported advances to conventional
routing techniques for handling multimodal journeys. An ensemble of techniques including Simulate
Annealing (SA), fuzzy logic and Analytical Hierarchy Process (AHP) has been employed for multimodal
planning in [37], while [38] describes a heuristic-based approach for multimodal journey planning.
A genetic algorithm with chromosomes that represent routes and aims to optimise multimodal journeys
has been reported in [39], while [40,41] proposed multi-modal routing methods to compute intermodal
routes including car, bicycle, public transportation, car-sharing, bike-sharing and walking, such that all
these modes of transport can be used within a single route. Most of the existing research efforts use
multi-level, or super graphs for addressing the problem and although they may perform well when a
limited number of semi-dynamic modes is considered, their effectiveness in true MaaS provisions is
uncertain. In particular, the following challenges need addressing [38,42]:

- Graph-based algorithms involve a computationally expensive pre-processing stage which cannot
take into account real-time information unless it can be reasonably implemented on the fly.
Therefore, many dynamic (floating car-sharing) and on-demand (ride-hailing with different ETAs
based on location) services included in MaaS cannot be easily integrated.

- Existing approaches lack flexibility in applying soft or hard constraints dynamically. As MaaS
requires the generation of routes that can be realised based on the user’s subscription plan or
the characteristics of a particular service, this is an important requirement. Soft constraints
may be related to user preferences and as these increase, so does the computational intensity of
embedding them into cost functions for a graph.

- The integration of new requirements may necessitate significant alternations to an algorithm’s
operation. For example, a requirement that was identified as part of the MaaS4EU project was
the redirection of a user through a ticket collection location prior to boarding a public transport
service. Although this can be encoded as a waypoint in existing techniques, it is unknown how
the modes assigned to the journey’s segments before and after the waypoint may be applicable to
this requirement.

The above stated limitations of current practices led to the development of our journey planning
solution. Using a heuristic-based approach, journey options are constructed in a structured and
progressive manner to incorporate data and apply constraints dynamically.
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3. Methodology

3.1. Journey Planning Approach

This section presents our proposed journey planning approach, which is composed of discreet
phases dedicated to data collection, information processing and journey optimisation methods.
The overall approach is depicted in Figure 1, with further elaboration on each step of the approach
given below.
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(a) Request unimodal routes: The planning approach commences with the generation of unimodal
routes using open source and proprietary third-party routing applications. Routes for private vehicles,
public transport, cycling and walking are generated using five APIs, namely; Google Directions
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API [43], Bing Maps Routes API [44], HERE Routing [45], Open Source Routing Machine (OSRM) [46]
and Open Trip Planning (OTP) [47]. The implicit benefits for this method are the utilisation of
established and widely used solutions, the integration of real-time information as part of route creation
and the continuous updating of the supply information (i.e., network structure, public transport
timetables, etc.). All unimodal routes generated at this stage of the process are considered by the route
recommender described later in the paper. By default, a route involving the use of a private vehicle
is always returned unless the user (i.e., no driving license), or routing (i.e., driving deselected as an
option) preferences prohibit it.

(b) Aggregate unimodal routes: As each API uses different data structures for the representation
of the route, this stage involves the transformation of the different API responses to a harmonised data
format for further processing. In our system, each route is made up of legs, with each representing
movement with a particular mode of transport (Figure 2). Non-fixed routes (i.e., driving, walking,
cycling, etc.) are further decomposed in steps for more granular representation of the paths. Fixed routes
with stops (i.e., public transport) incorporate information about the stops included in the services.
In addition to legs constituting movement between locations, action legs included in the routes
symbolise activities that users undertake during a modal shift. Examples include dropping off a shared
car at a particular location, collection of a ticket before boarding a public transport vehicle and others.

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 27 

utilisation of established and widely used solutions, the integration of real-time information as part 
of route creation and the continuous updating of the supply information (i.e., network structure, 
public transport timetables, etc.). All unimodal routes generated at this stage of the process are 
considered by the route recommender described later in the paper. By default, a route involving the 
use of a private vehicle is always returned unless the user (i.e., no driving license), or routing (i.e., 
driving deselected as an option) preferences prohibit it. 

(b) Aggregate unimodal routes: As each API uses different data structures for the representation 
of the route, this stage involves the transformation of the different API responses to a harmonised 
data format for further processing. In our system, each route is made up of legs, with each 
representing movement with a particular mode of transport (Figure 2). Non-fixed routes (i.e., driving, 
walking, cycling, etc.) are further decomposed in steps for more granular representation of the paths. 
Fixed routes with stops (i.e., public transport) incorporate information about the stops included in 
the services. In addition to legs constituting movement between locations, action legs included in the 
routes symbolise activities that users undertake during a modal shift. Examples include dropping off 
a shared car at a particular location, collection of a ticket before boarding a public transport vehicle 
and others. 

 

Figure 2. Harmonised route structure. 

(c) Process unimodal routes: Before the collected unimodal routes are utilised as part of the 
journey planning, processing to (i) remove duplicates and (ii) rank public transport routes takes place. 
The former filters out duplicate routes that may have resulted from the use of the different external 
APIs. This is a common outcome especially for public transport routes, where a small number of 
alternatives is available for a particular urban trip. The latter involves the ranking of public transport 
routes based on different criteria. This is done primarily for performance improvement purposes, as 
public transport routes form the backbone of several multimodal routes generated by our solution. 
The ranking is based on the TOPSIS (technique for order performance by similarity to ideal solution) 
technique, which has been applied in different transport studies to address routing related decision-
making problems [48,49]. The selected technique operates by comparing alternatives against an ideal 
solution and offers advantages such as logic that imitates decision making of humans and low 
computational complexity [50], which are pertinent to our approach. For the case of public transport 
route ranking, the criteria used are travel time, number of changes, arrival time, waiting time and 
total walking distance during the trip with weights 0.25, 0.2, 0.2, 0.15 and 0.2, respectively. The 
aforementioned list of criteria is not exhaustive, and the selected weights represent a baseline 
configuration for the purposes of our initial prototype. It must be noted that cost has not been 
considered as one of the criteria used for the ranking. The main reason is that in the overwhelming 
majority of cases (including the ones investigated in the MaaS4EU project for which the solution was 
developed) MaaS subscriptions include unlimited use of public transport. However, the adoption of 
TOPSIS allows for the easy incorporation of new criteria and customisation of weights using research 
findings or user preferences. For example, it has been reported that users perceive accessibility to 
public transport differently according to their sociodemographic characteristics and mode of 
transport [51]. Such a finding may be used to define sets of weights for different user groups and 
travel modes. Furthermore, user preferences may play a pivotal role in the determination of weights 
and scoring of criteria. In fact, in our system the scoring of the walking distance parameter is based 
on its deviation from a preferred walking distance stated by each user. 

Figure 2. Harmonised route structure.

(c) Process unimodal routes: Before the collected unimodal routes are utilised as part of the
journey planning, processing to (i) remove duplicates and (ii) rank public transport routes takes place.
The former filters out duplicate routes that may have resulted from the use of the different external APIs.
This is a common outcome especially for public transport routes, where a small number of alternatives
is available for a particular urban trip. The latter involves the ranking of public transport routes based
on different criteria. This is done primarily for performance improvement purposes, as public transport
routes form the backbone of several multimodal routes generated by our solution. The ranking is
based on the TOPSIS (technique for order performance by similarity to ideal solution) technique,
which has been applied in different transport studies to address routing related decision-making
problems [48,49]. The selected technique operates by comparing alternatives against an ideal solution
and offers advantages such as logic that imitates decision making of humans and low computational
complexity [50], which are pertinent to our approach. For the case of public transport route ranking,
the criteria used are travel time, number of changes, arrival time, waiting time and total walking
distance during the trip with weights 0.25, 0.2, 0.2, 0.15 and 0.2, respectively. The aforementioned list of
criteria is not exhaustive, and the selected weights represent a baseline configuration for the purposes
of our initial prototype. It must be noted that cost has not been considered as one of the criteria used
for the ranking. The main reason is that in the overwhelming majority of cases (including the ones
investigated in the MaaS4EU project for which the solution was developed) MaaS subscriptions include
unlimited use of public transport. However, the adoption of TOPSIS allows for the easy incorporation
of new criteria and customisation of weights using research findings or user preferences. For example,
it has been reported that users perceive accessibility to public transport differently according to their
sociodemographic characteristics and mode of transport [51]. Such a finding may be used to define
sets of weights for different user groups and travel modes. Furthermore, user preferences may play a
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pivotal role in the determination of weights and scoring of criteria. In fact, in our system the scoring of
the walking distance parameter is based on its deviation from a preferred walking distance stated by
each user.

(d) Collect MSP data: During this step data from Mobility Service Providers (MSPs) participating
in the MaaS schemes established for the MaaS4EU project are collected. Our prototyped solution
integrates MSPs’ data using the following APIs:

1. Bike sharing (MOL Bubi [52]): a data endpoint that provides information for bike sharing stations
including location, available and booked bikes, free racks, station name, etc.

2. Car sharing (GreenGo [53]): data related to available vehicles of an electric car sharing fleet
including vehicle location, range, license plate number, make, model, etc.

3. Ride hailing (City Taxi [54], Uber [55]): an API that retrieves the estimated time of arrival of a
vehicle at a specific location.

4. Ride sharing (Motar [56]): an API that provides available rides between an origin and destination
city/location with information about the cost of the trip, travel/departure/arrival times, availability
of spaces in the vehicle, as well as qualitative information about the driver such as user scoring.

5. Parking spaces: a database interface that allows the collection of information regarding parking
spaces that can be used as part of Park and Ride (P&R) trips.

Due to the dynamic nature of the above stated services and for reliable journey planning,
this information must be collected for every new trip request.

(e) Perform geospatial profiling: Geospatial profiling takes place for discovering options that
allow the integration of modes and the realisation of the trip scenarios explained later in the paper.
This phase involves the reduction of the geographical search space using the origin and destination
points of the journey and the identification of interchange points within that space. Such points
may correspond to public transport stops, bike-sharing stations, parking spots or locations of parked
vehicles belonging to a car-sharing operator.

(f) Generate isochrones: This step of our approach deals with the generation of isochrones to
estimate the travel times and distances between the points identified as part of geospatial profiling.
We utilise two existing APIs: OSRM’s Table service (for walking and cycling) and Mapquest’s Route
Matrix service (for driving) to derive the required information. Both APIs accept a list of points and
return a matrix with rows representing origins, columns representing destinations and cell values
representing travel time and distances between the locations. As a minimum the following isochrones
are being generated for each request:

• walking distances from/to public transport stops and the closest bike-sharing station, car-sharing
vehicle and parking station

• driving distances from origin/to destination for each public transport stop
• walking distances from origin/to destination for each bike-sharing station
• walking distances from origin/to destination for each car-sharing vehicle

The above data are required for the realisation of the baseline set of scenarios explained later in
the section.

(g) Run scenarios: The underlying heuristic technique is implemented in the form of scenarios that
describe different route compositions. Each scenario involves the integration of services in a predefined
way and incorporates decision making analysis for selecting alternative options throughout a journey.
A heuristic of the same nature has been adopted for route choice modelling in [57], where the problem
of choosing routes is decoupled into different levels of detail based on a hierarchical decomposition of
urban spaces. Likewise, the proposed heuristic divides the journey planning into distinct tasks with
emphasis on optimising the routes in segments rather as a whole. Table 1. lists the scenarios and their
respective use cases included in the prototype version of the MaaS4EU journey planner, together with
conditions and properties for their realisation.
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Table 1. Description of MaaS travelling scenarios.

Scenario (Modes Order as in the Route) Use Case Conditions and Properties

(1) Bike-sharing from origin to destination Short distance urban trips with
active travelling

Bike stations within walking
distance from origin/destination,
cycling leg distance matching user
preferences, cycling leg travel time
within service limit duration set by
the provider.

(2a) Bike-sharing to public transport 1

(2b) Public transport to bike sharing

Trips where the destination
scenario 2a/origin2b are far away
from a bike station and active
travelling is favourable

Bike station within walking
distance from the
origin2a/destination2b, cycling leg
distance matching user
preferences, cycling leg travel time
within service limit duration set by
the provider.

(3) Car-sharing from origin to destination Medium distance urban trips
without active travelling

Origin and destination within the
boundaries of the operating area
of the service. A vehicle must be
present within walking distance
from the origin

(3a) Car-sharing to public transport
(3b) Public transport to car-sharing

Medium to long distance urban
trips with origin3b/destination3a

outside the operating area of the
car-sharing service. Facilitation of
first/last mile inner city travelling
with car sharing.

Origin3a/destination3b within the
boundaries of the operating area
of the service. A vehicle must be
present within walking distance
from the origin3a

(4) Ride-hailing from origin to destination Medium to long distance urban
trips

Ride-hailing distance to exceed the
minimum distance set by the
service provider

(5a) Ride-hailing to public transport
(5b) Public transport to ride hailing

Medium to long distance urban
trips that limit the use of ride
hailing. Facilitate first5b/last5a

mile inner city travelling with
public transport.

Ride-hailing distance to exceed the
minimum distance set by the
service provider

Note: In additional to the above scenarios, customary routes (for example public transport, private car, Park and
Ride (P&R) etc.) are included.

An explanation on how a route is generated using scenarios is presented in the next section of
the paper.

(h) Rank and filter routes: The execution of the scenarios generates a number of multimodal
routes, which together with the unimodal ones create a set of multiple trip options. A filtering function
removes routes that are incompatible to the user’s profile, or subscription package, while a ranking
function considers different route utilities to order the generated routes. The route utilities consider
optimal use of the MaaS plan the user has subscribed to, as well as the impact on the environment
and related long-term effects of potential user choices. Moreover, specific goals and preferences of the
MaaS operator, such as the promotion of a particular transport mode over another are also considered
in the process of arranging the available routes. Fundamentally, this is a route recommendation
functionality that nudges travellers so that a change in their behaviour can be achieved in the longer
term. More details on the route recommendation aspects are provided in Section 3.3.

(i) Complete recommended routes: The list of recommended routes generated in the previous step
is evaluated and incomplete data are populated. As the generation of isochrones provides high-level
information about travel times and distances for specific segments of the route, detailed paths need to
be defined. This is achieved by the use of external routing applications as in step (a).

(k) Identify temporal invalid routes: Ranked multimodal routes that involve public transport
have resulted by the substitution of a part of a public transport sub-route by legs assigned to other
modes. As a result, a stop that was an intermediate one in a bus leg may have become the departing
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stop for that leg. Therefore, the original departure time from the boarding stop must be evaluated to
ensure that it is still valid. The following rules apply as part of the evaluation:

IF Rst +
∑n

i=1
Ltt

n > Ldt
n+1 OR Rst +

∑n

i=1
Ltt

n < Ldt
n+1 + wt THEN R is invalid (1)

where: R is the route being evaluated
Rst is the start time of the route (Epoch time)∑n

i=1 Ltt
n is the total travel time of all legs preceding a public transport leg in R

Ldt
n+1 is the departure time of a public transport leg in the R

wt is a waiting time limit (equal to 5 min)
(l) Rectify invalid routes: Invalid routes identified in the previous phase are rectified by updating

the timetabling information of the public transport legs. This is achieved by the utilisation of the HERE
Public Transit API [58], General Transit Feed Specification (GTFS) public transport timetables that are
being retrieved on a regular basis from public sources [59] and real-time data feeds that report possible
disruptions to services.

(m) Filter invalid routes: Although filtering of partial or completed routes takes place throughout
the processing pipeline (especially in steps g and k), a final filtering procedure removes options that
may lack functionality or efficiency when analysed holistically. Let us consider the following example
of a route where the origin and destination are in very close proximity (i.e., less than 1000 m of walking
distance). An option of a journey using bike-sharing may reach this route generation stage as it may
meet all soft and hard constraints applied in previous processing steps. However, this option may
include a 400 m walk to reach the bike station closest to the origin (which may bring the user further
away from the destination), a 600 m cycling leg to reach the bike station closest to the destination and
another 400 m walking leg to reach the destination from there. As it can be understood, the efficiency
of this option is significantly lower compared to a single walking leg from origin to destination.
A list of rules (applicable to different scenarios) has been embedded in our solution to filter out such
dysfunctional options.

(n) Publish routes: Finally the rectified recommended routes are published to the users through
the interface that was used for the request. This may be the to the MaaS4EU journey planning web
application (Figure 3), the MaaS4EU mobile app (Figure 4).
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3.2. Scenario-Based Heuristic

Our system produces multimodal routes using predefined scenarios which combine different
modes and services to generate a valid route from an origin to a destination. Each scenario operates
in a similar way and includes functionality for; loading the data necessary for implementing the
scenario, applying hard constraints for eliminating invalid trip options, applying soft constraints for
incorporating user preferences, ranking different alternative route segments (legs) using the TOPSIS
technique and constructing routes using the highest ranked alternatives. To delve deeper into the
underlying principles of the multimodal route generation, an example of a heuristic that generates
routes composed of public transport and bike-sharing legs (in that order) is illustrated in Table 2.

Table 2. Public Transport/Bike Sharing Scenario-based heuristic.

1 READ user profile FROM cache
2 READ unimodal routes FROM cache
3 READ bike sharing data FROM cache
4 READ public transport stops data FRON cache
5 IF closest bike station to destination distance < user preferred walking distance THEN
6 validBikes← findBikesCloseToStops (publicTransportStops, bikeSharing)
7 walkingDistances← findWalkingDistances (publicTransportStops, validBikes)
8 cyclingDistances← findCyclingDistances (validBikeStations)
9 bikeSharingLegs← defineBikeSharingLegs (validBikeStations, cyclingDistances)
10 validBikeSharingLegs← Empty Array
11 FOR EACH bikeSharingLeg IN bikeSharingLegs

12
IF (cycling distance of leg < user preferred cycling distance) AND
(walking distance between public transport stop and pick-up bike
location < user preferred walking distance)

13 THEN
14 add bikeSharingLeg to validBikeSharingLegs
15 partialBikeSharingRoutes← Empty Array
16 FOR EACH bikeSharingLeg IN validBikeSharingLegs
17 partialPublicTransportRoute← findPartialPTRoute(unimodalRoutes, bikeSharingLeg)
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Table 2. Cont.

18 partialBikeSharingRoutes← appendLegs(partialPublicTransportRoute, bikeSharingLeg)
19 mcdaOptions← loadOptions(criteria, weights, criteriaTypes)
20 criteriaScoresOfAlternatives← Empty Array
21 FOR EACH partialBikeSharingRoute IN partialBikeSharingRoutes
22 criteriaScoresOfAlternative← scoreRoute(partialBikeSharingRoute)
23 add criteriaScoresOfAlternative to criteriaScoresOfAlternatives
24 add criteriaScoresOfAlternatives to mcdaOptions
25 rankedPartialBikeSharingRoutes← runMCDA(mcdaOptions)
26 incompleteScenarioRoutes← Empty Array
27 FOR EACH rankedPartialBikeSharingRoute IN rankedPartialBikeSharingRoutes
28 incompleteScenarioRoute← constructRoute(rankedPartialBikeSharingRoute)
29 add incompleteScenarioRoute to incompleteScenarioRoutes
30 RETURN incompleteScenarioRoutes

RETURN Empty Array

• Lines 1–4, load all the data necessary for the realisation of the scenario. Such data may include
unimodal routes, user profiles, mobility services availability, etc., and have been retrieved before
the running of the scenario. Following this, the locations of public transport stops and bike
stations that can be utilised as part of the scenario are identified (Figure 5a).

• Line 5, applies a hard-constraint based on the profile of the user, which stipulates that the walking
distance from the origin to the closest bike station should be within limits set in the user’s profile.
If the constraint is not met, the scenario execution is aborted without returning any routes.

• Lines 6–8, utilise existing or generate new isochrones based on the locations of the public transport
stops and bike stations to potentially be included in the routes. Walking distances between each
public transport stop and its closest bike station (Figure 5b) and cycling distances and times
between all bike stations (Figure 5c) are derived.

• Line 9, defines all the possible bike-sharing legs in a simplified form and with information related
to the origins, destinations, distances and travel times.

• Lines 10–14, derive the valid bike-sharing legs based on constraints set by user preferences.
These include the walking distance from the alighting public transport stop to the bike station
and the cycling distance of the leg (Figure 5d).

• Lines 15–19, construct partial routes composed of public transport and bike sharing legs.
This involves substitution of parts of the original public transport route with a bike-sharing leg.
All the information required for the application of TOPSIS Multi-Attribute Decision-Making
(MADM) is included in the partial route.

• Lines 20–26, rank the constructed partial routes using a set of criteria with scores and weights
based on empirical investigations with experts participating in the MaaS4EU project. This was
achieved by a preliminary evaluation round using the web application shown in Figure 3. Experts
were asked in their professional capacity to rate the level of acceptability of each route (Figure 6)
and rank the presented routes in the order of preference (Figure 7). For this particular scenario,
the details for the application of TOPSIS can be seen in Table 3.

• Lines 27–30, the top-ranked sub-routes are populated with additional legs for constructing the
completed route. Such legs may be ‘action’ ones for picking-up and dropping-off the bike and
walking legs for (a) the transition from public transport to bike-sharing and (b) from the last bike
sharing station to the destination.
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Table 3. TOPSIS application for public transport—bike sharing scenario.

Ranking Criteria Weights Description Scoring

Cycling Distance
[min] 1 0.3

The degree of similarity of the
distance of the bike sharing leg
with the user’s preferred
cycling distance

|uc − cd|
where:
uc is the user’s preferred cycling
distance,
cd is the distance of the bike
sharing leg

Cycling/overall route
distance ratio

[min]
0.3

The appropriateness of the
ratio of the cycling distance
over to the overall distance of
the route. An optimal value of
0.5 has been used. This is to
avoid routes that have a very
short public transport segment
compared to that of
bike sharing

∣∣∣∣or − cd
rd

∣∣∣∣
where:
or is the optimal ration,
cd is the total cycling distance in
the route,
rd is the distance of the bike
sharing leg

Public transport modal
changes

[min]
0.15

The number of public
transport modes used to reach
the bike pick-up location

l∑
n=1

{
1 i f n is PT leg

0 otherwise
where:
l is the number of legs that
precede the bike sharing segment
of the route

Public transport modal
speed
[max]

0.25

The average speed (in
qualitative manner 2) of the
public transport modes used
prior to the bike sharing leg

∑l
n=1

 nu i f n is PT leg
0 otherwise∑l

n=1

 1 i f n is PT leg
0 otherwise

where:
l is the number of legs that
precede the bike sharing segment
of the route,
u is the qualitative speed of
the mode

1 The type of the criterion, [min] if the lower the score the better, [max] otherwise. 2 Bus = 1, train = 3, metro = 2,
underground = 3, tram = 2.
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3.3. Route Recommender

The aim of the route recommender is to support users in the everyday use of MaaS and more
specifically their transportation decisions by providing a personalized list of routes. Given a list of
alternatives for travelling from A to B, the route recommendation service logically structures the
available choices through choice architecture design elements. The choice architecture approach
provides default options and filters and ranks the route options according to user goals and preferences.
As stated in the previous section, the service considers optimal use of the MaaS plan the user has
subscribed to, the impact on the environment and related long-term effects of potential user choices,
as well as specific goals and preferences of the MaaS operator. The service offers an intelligent decision
system, which is tailored for route choice applications and can assist urban travellers and commuters
to select transportation options that are comfortable, yet satisfying the MaaS operator’s goals and
leading to an optimal use of the MaaS plans.

Filtering Rules: The aim of the filtering rules is to remove route options incompatible to the
preferences or characteristics of the user. A set of rules has been implemented and each available route
is compared against those rules based on its characteristics. In case the system identifies characteristics
that are not relevant for the user, the route is removed from the available set. Examples are:

• For users without a driving license, routes with modes that require driving are excluded.
• Routes with long bicycle distances (as defined by the user) are excluded.
• Routes with long walking distances (as defined by the user) are excluded.
• Routes with services for which a user does not have any allowances left (i.e., minutes left for car

sharing service).

Context Inference: In order to be able to acquire a broad and inclusive understanding of the
concept of context in travel choices, we performed an analysis of related studies [60,61]. Our aim was
to collect situational and contextual factors that are relevant for travel behaviour and travel decisions.

The aforementioned analysis resulted in a broad and inclusive understanding of the concept of
context in travel choices, based on which we have selected a number of situational and contextual
factors which are relevant for a MaaS route recommendation service. The variables are binary,
which means that they are activated when the conditions that define them are present and depend
on the characteristics of the alternative routes for the current trip, the user’s profile and recorded
behaviour, and the state of the weather. More specifically, there are four groups of variables as follows:

• Based on the users’ past behaviour, which are calculated using as input past choices the user has
made in the period following the subscription to a MaaS plan and the inferred behaviour as it is
logged through the usage of the subscribed MaaS plan. These context variables include: increased
car-sharing usage trend; increased bike-sharing usage trend; increased taxi usage trend; increased
ride-sharing usage trend.

• Based on trip characteristics, which can be calculated using as input the available routes.
These context variables are activated on a per route basis and include the walking distance
and the bike distance.

• Based on combination of users’ past behaviour and trip characteristics, which can be calculated
using as input both past choices the user has made in the period following the subscription to a
MaaS plan as well as the available routes.

• Based on environmental information. In this case, we make use of information about the
environment in which the route recommendation takes place. We define the variable “Nice
Weather” which refers to the current status of the weather and is set to True when the temperature
level exceeds a certain configurable threshold, and the precipitation level is below another
configurable threshold.
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• Based on a combination of environmental information and trip characteristics. We make use of
information about both the business environment in which the route recommendation takes place
and the available routes.

Route Utility Calculation and Ranking: The aim of the Route Utility calculation function is to
process the available routes and estimate a personalised utility per route for the specific user in the
current context. The utility is used for ranking the routes and presenting them such that routes which
adhere to user preferences as well as the current context and contribute to the optimal use of the MaaS
plan the user has subscribed to, are ranked higher. The goal is to highlight the routes that lead to the
optimal use of the MaaS plan, while respecting user preferences, considering the current context and
increasing their chances of being selected. Eventually, the utility calculation function supports user
decisions towards a personalised and context aware MaaS experience.

The Route Utility calculation function comprises of several sub-functions (Figure 8). In more
details the sub-functions provide different views of how the routes should be ordered and presented to
the users, which are eventually consolidated in a single ranked list of routes that are communicated to
users through the MaaS app. The sub-functions fall under two main views of how the routes should be
ordered, the personal and the system view.
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The personal user view that considers user preferences and their potential variations in different
contexts based on past user interactions with the MaaS4EU application. The personal utility of
each route for a given user is calculated as the cosine similarity between the user vector and the
corresponding route vector. The length of the vector equals the number of the distinct transport modes
supported by the journey planner. A user is represented as a set of feature-value pairs with features
representing his/her relative past usage of the various modes of transport at that particular time of day.
Each day is divided in intervals (i.e., morning, noon, afternoon, night hours in weekdays/weekends),
so that past user behaviour for the specific interval that the route request is made for can be considered.
In case no such past data from previous interactions with the MaaS app are available yet, the user
vector is populated by considering user stated preferences about the usage of the various modes s/he
has provided during the user registration process. Similarly, for the representation of each route vector,
the feature-value pairs represent the relative presence of the various transport modes within the route.
The relative presence of each transport mode is calculated as the norm of a sub-vector consisting of the
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relative duration and distance of that mode in the route. The values of all the features are normalized
so that they sum to 1. The similarity between a user vector (A) and a route vector (B) is calculated as:

Similarity(A, B) = cosθ =

∑n
i=1 Ai ∗ Bi√∑n

i=1(Ai)
2 ∗

√∑n
i=1(Bi)

2
(2)

where
ai and bi are the features of the vectors corresponding to the various transport modes, while
n is the number of transport modes supported.
The similarity ranges from 1 meaning exactly the same to 0 indicating independence,

and in-between values indicating intermediate similarity. The routes are ranked on a descending
similarity order in that list, so that the most similar routes according to the user preferences are
ranked first.

The system and context view, which refers to a computational process that leads to the identification
of the current context of the user and a user model that infers preferences through the analysis of
past behaviour including user trips and selections of routes in a MaaS app. The ranking of the routes
according to the optimal MaaS plan usage utility is done by rearranging the list generated through
the personal utility. More specifically, the position of the routes that are mainly performed with a
transport mode with an increased usage trend in the MaaS plan (the respective context variables are
“Increased car sharing usage trend”; “Increased bike sharing usage trend”, etc.) is rearranged, so that
the respective routes are placed at the bottom of the ranked list with the aim to facilitate optimal
usage of the purchased MaaS plan. Similarly, in the ranked list created by considering the mode
promotion utility, the routes that are mainly performed with a transportation mode (e.g., bike sharing,
public transport, etc.) or a mobility service provider (e.g., a specific bike sharing provider) that the
MaaS operator wants to promote, are placed at the top of the ranked list. Finally, the environmental
friendliness utility is calculated by estimating the CO2 emissions of each route based on a simple linear
model that has been tested in real life conditions [62]. The model takes as input the distance covered
with a specific means of transportation and a set of emission coefficients per transportation mode as
follows: Subway—40 g/km; train—60 g/km; Bus—50 g/km; Car—100 g/km. Note that past research has
shown that exact and accurate emission values do not provide additional value when considered by
end-users [63] which means that an estimate of emissions’ related information is enough for our case.
The routes are ranked on an ascending order in terms of emissions, so that the most environmentally
friendly routes are ranked first. In all cases, ties are broken by considering the travel time.

The different ranked route lists are consolidated using the Borda count algorithm and the sum of
ranks generated by individual ranking functions to obtain the fused rank [64]. Borda count ranks the
routes based on their positions in the basic rankings. If any route has a high ranking in basic rankings
it is counted as a high ranking in the final ranking list. The scores of ranking routes in the final ranking
list can be calculated as:

SR =



Si1
.
.

Si j
.
.

Skn


(3)

F(Si) =
k∑

i=1

Si (4)

where
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SR is a matrix that contains k ranked lists of n alternatives routes (Skn) in its columns (one for each
defined utility function) and

F(Si) is the final score of route i based on its positions in the k ranked lists of routes.

4. Implementation

Our proposed system has been implemented using a microservices architecture that allows the
decoupling of its functionalities in self-contained software modules (i.e., services). We have utilised
the Moleculer [65] micro services framework for Node.js. Such implementation allows the seamless
integration of new data sources and APIs, deployment of the solution in computer clusters for improved
performance and operational resilience, as well as the introduction of additional routing scenarios
with minimal effort. Furthermore, research has shown that microservices-based implementations are
suited for MaaS approaches as they allow, amongst other, uncomplicated user customisation [66].
A diagrammatic representation of our implemented system along with the interactions (in numerical
order) between services that take place during a journey planning task is depicted in Figure 9, while a
brief description for the different groups of services is provided below.
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Gateway/Messaging: services that allow the integration of the journey planner to external systems.
In particular, a web-based interface uses a POST Rest API to retrieve routes, while a RabbitMQ
messaging service has been developed for interfacing with the MaaS4EU mobile application.
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Routing MaaS: This group is composed of the services that orchestrate the functionality of our
solution. A root service accepts all requests and invokes location-specific services depending on
the properties (location of origin and destination) of the routing request. The prototype version of
the journey planner supports the generation of multimodal MaaS routes for the cities of Budapest
and Manchester.

Routing APIs: These services facilitate the collection of multimodal routes and other data such
as isochrones from third party providers. An aggregation service within this group harmonises the
diverse proprietary data formats to the structured one being used internally in our system.

MSPs: Services responsible for the collection of data from MSPs are incorporated in this group.
Depending on the location of the request, several APIs are called for collecting the necessary data.
Data harmonisation functionality transforms mobility-specific data (for example, data for car-sharing
vehicles) to a common format for seamless integration to the planner. Thus, new mobility schemes can
be easily added with the development of a customised service that will act as an interface.

Workers: This group incorporates several services used for data generation and processing of the
scenario-based multimodal routes. Examples include the generation of isochrones, the completion of
routes by embedding details for specific legs, the temporal refinement of routes, etc.

Scenarios: Services in this group implement the scenarios that generate the routes by integrating
the different modes and mobility services included in the users’ MaaS packages. Each scenario is
implemented as a single service and embeds a number of methods for the realisation of the heuristics,
an example of which is showcased in Section 3.2.

Geospatial: This group includes services that perform geospatial operations for: (i) reducing the
geographical search space, (ii) defining the operational areas of the different mobility services and
(iii) realising generic functionality for geospatial values (for example finding the nearest point to a
polyline representing the boundaries of a mobility service, evaluating if a location is within a region
and other).

Algorithms: A single service that implements the TOPSIS multi-attribute decision-making
technique. It utilises the TOPSIS [67] open source nodeJS module.

Optimisers: This pool of services implements the ranking and filtering functionality of the
proposed solution. This is achieved by the integration of user profile and package subscription
data and is deployed in different stages of the methodological approach described in the previous
section. This allows the incremental maintaining of the best candidate options from each stage of the
processing pipeline.

Mongo: Services in the group implement queries for retrieving and storing data to the platform’s
central database, which is a nonSQL MongoDB instantiation.

In the core of our implemented system sits an in-memory database for which the Redis [68] open
source data structure store has been used. This is being used as a memory cache for storing the data
generated at each processing stage. Thus, allowing services to retrieve the necessary input without
complex argument passing mechanisms.

To assess the execution times of our approach, metrics for the different stages of the approach
were collected. Figure 10, shows a boxplot with execution times of 40 journey planning requests and
for the different stages of the route generation process. As it can be observed, average times range
from 350 to 560 milliseconds with an overall average response time being 3.1 s. This is comparable to
commercially available applications with similar route planning functionality such as TripGo.
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5. User Acceptance Evaluation

The developed journey planner was trialled in the cities of Budapest and Manchester. The former
had a more mature MaaS implementation composed of five mobility services including public transport,
bike-sharing, car-sharing, ride-hailing (on-demand taxi service) and car-pooling, while the latter piloted
a MaaS solution with public transport and ride-hailing (Uber). The pilot demonstrations were facilitated
in two rounds, the first taking place in February 2020 and the second between August and October
2020. Three mechanisms were adopted for evaluating the journey planning results generated by our
system. These were:

(i). A star rating (from 1–5) evaluation for the group of recommended routes for a particular routing
request (Figure 11)

(ii). A star rating (from 1–5) for a single route, which was available to the user after selecting one of
the recommended routes (Figure 12)

(iii). A notification service which presented questions with Likert-scale response options for evaluating
different properties of the presented routes (for example, fit-for-purpose based on user needs,
quality of the route ranking and others, Figure 13).
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It must be noted that all evaluation inputs were optional and therefore not all pilot participants’
opinions were recorded. The demographic characteristics of the users that participated in the evaluation
can be seen in Figure 14.

In summary 92 users provided at least one evaluation input and the average age of the participants
was ~38. The majority of participants were male (~76%), in full-time employment (~79%) and with
high school or lower education level (~43%).
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5.1. Star Rating Evaluation

The results from this facet of the evaluation relate to the rating that individual users assigned to
the group of routes that was presented to them following a journey planning request and the rating
that users provided when a single route was selected from the group. As a particular user may have
provided multiple ratings, the average scores from each participant were used for each case. A range of
rankings from 1 to 5 was used representing the number of stars selected at each evaluation. A frequency
distribution of the average ratings is displayed in Figure 15 ([a] for grouped routes, [b] for individual
routes). The majority of the ratings were above 3 with an overall average of 3.2 out of 5.

Further analysis of routes with evaluation scores of less than 3 revealed some interesting findings.
Of those ratings, 39% were for routes that involved the use of private car, or public transport only
(unimodal) from origin to destination. Our prototype version of the journey planner was designed
to always return at least one of each of those types of routes, to allow users to compare multimodal
MaaS routes with conventional unimodal routes that may be familiar with. Furthermore, 30% of the
low scored options included long walking and cycling legs. Inclusion of such routes in the planner’s
results was dependent upon the users’ stated preferences regarding distances that they were willing to
walk or cycle. Therefore, the low evaluation scores could be attributed to a possible mismatch between
stated and revealed travel preferences. With the exclusion of the above explained ratings the overall
overage user evaluation reaches ~4.2 out of 5.
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5.2. Notifications-Based Evaluation

This evaluation mechanism involved the presentation of notifications to the users’ screen at
random intervals. The following questions were used, with each user given the opportunity to
answer each question only once based on a Likert-scale (5: Strongly agree, 4: Agree, 3: Neither agree,
nor disagree, 2: Disagree, 1: Strongly disagree):

Q1 The routes that are being presented to me cover my needs.
Q2 The routes that are being presented to me contain a good mix of all available modes in my

MaaS4EU plan.
Q3 The order of the routes that are being presented to me matches my travel preferences.
Q4 The route ranking affected my travel decisions.

The results of the evaluation are shown in Figure 16.
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As it can be seen the majority of the answers were for the Agree, or Strongly Agree option and the
following averages were recorded; Q1: 4.07, Q2: 3.9, Q3: 4.08, Q4: 3.34.

6. Conclusions

This paper presents a prototype journey planner that can support the generation of trips composed
of a variety of modes and mobility services that are typically included in a MaaS offering. The proposed
planner is underpinned by a processing pipeline that collects data from external service providers,
integrates the collected data through a scenario-based heuristic and optimises the constructed routes
through a series of ranking and filtering techniques. A number of benefits can be claimed such as no
pre-processing requirements, inclusion of real-time information through the use of established applications,
easy expandability with the formulation of new scenarios, seamless integration of new service providers
and multifaceted customisation with integration of criteria as part of the optimisation process. In contrast,
as it is a heuristic-based approach, true optimal outputs by the combination of criteria in a single
optimisation algorithm are not achievable. However, it has been reported that the use of multiple criteria
in route generation in a computationally efficient manner is an unattainable goal [27] and that approximate
solutions can be reliable enough [31]. In our study, users evaluated the functionality of the proposed
solution with overall promising results. Future research directions can involve:

• The dynamic generation of scenarios on-the-fly and based on service availability, trip purpose,
user profile and other parameters. Such scenarios may include multiple services and may be
constructed by the integration of existing base scenarios. For example, the combination of
driving-public transport (P&R) and public transport-bike sharing scenarios may result in a route
that integrates driving, public transport and bike sharing.

• The formulation of additional heuristics to limit the need for multiple ranking/filtering rounds
that may require calls to external APIs, thus negatively affecting computational times. This may
involve reuse of past routes with similar characteristics (i.e., origin, destination, time of day,
etc.) and utilisation of predictive analytics for approximating the condition of services based on
historical data.

• The dynamic calibration of the utility functions and optimisation attributes based on user feedback.
This can be achieved by applying machine learning algorithms which can be trained based on the
stated preferences of users regarding different routes.

• The integration of the proposed solution in simulation models for assessing the impact of MaaS
in urban areas based on what-if scenarios [69]. Such scenarios may describe different fleet
compositions, variable locations for vehicle/bike stations, various penetration rates of services
and other.

• Finally, it is believed that a more disaggregated evaluation of users’ perceptions will lead to a
better understanding of their expectations regarding a planning solution for MaaS.
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