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Abstract: In the present work, a online data assimilation approach, based on the Kalman filter
algorithm, is proposed for the source term reconstruction in accidental events with dispersion of
radioactive agents in air. For this purpose a Gaussian plume model of dispersion in air is embedded
in the Kalman filter algorithm to estimate unknown scenario parameters, such as the coordinates and
the intensity of the source, on the basis of measurements collected by a mobile sensor. The approach
was tested against pseudo-experimental data produced with both the Gaussian plume model and the
Lagrangian puff model SCIPUFF. The results show the good capabilities of the proposed approach
in retrieving the values of the unknown parameters when (i) one or more release parameters are
poorly known and (ii) a sufficient number of experimental measurements describing the evolution
of the dispersion process can be collected in a short time by means of mobile sensors. Thanks to its
flexibility and computational efficiency, and due to the exploitation of the Kalman filter potentialities
through the use of a simplified model of dispersion in air, the proposed approach can constitute a
useful tool for the management of emergency scenarios.

Keywords: source term estimation; data assimilation; Kalman filter; Gaussian plume model;
SCIPUFF; mobile sensors

1. Introduction

When dealing with the analysis of accidental atmospheric releases of radionuclides, or more in
general, hazardous contaminants, predictive computational models constitute essential tools to provide
decision-makers with quantitative information for both emergency operations and post-accident
management [1]. Typical applications involve local- to global-scale scenarios, with time scales which
can range from a few hours to several months. The choice of the most appropriate modelling approach
depends on the complexity of the scenarios, in terms of computational effort, amount of required input
data and spatial and temporal scales involved.

Microscale scenarios (<1–2 km) are strongly affected by the interaction of atmospheric flows with
surface irregularities, such as buildings and obstacles in general. This can lead to large inaccuracies
in the predictions, if detailed geometry is not taken into account. Moreover, as numerical weather
prediction (NWP) tools do not have adequate resolution for microscale scenarios, some effort for
the determination of the wind field is often required as well. For these reasons, approaches based
on computational fluid dynamics (CFD) were adopted in recent years to deal with miscroscale
scenarios [2–4]. In spite of their good accuracy, the complexity of such tools and their computational
requirements are incompatible with large scales and real-time applications. Different approaches are
usually adopted for mesoscale and macroscale scenarios. In the Eulerian approach, transport equations
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are discretised and numerically approximated [5,6]. In the Lagrangian approach, a large number
of pseudo-particles of the released agent are tracked along their trajectories [7,8]. Such trajectories
are determined as the result of two contributions, i.e., deterministic advection by the wind field and
stochastic diffusion due to turbulence. In both Eulerian and Lagrangian approaches, the wind field is
usually obtained from standard NWP models. Despite their simplicity, Gaussian dispersion models [9]
are also widely employed and are among the most commonly used tools in regulatory air dispersion
modelling for fast screening purposes at different scales.

Regardless of the choice of the modelling approach and the spatial or temporal scales of the
scenario, a fundamental issue with the analysis of accidental events can be the lack of information
regarding the intensity and location of the source of release, i.e., the so-called source term. One may
think of a nuclear accident, where it is generally hard to estimate the amount of the release of radioactive
agents directly from the plant inventory, or a more generic radiological event in which even the
location of the source might be poorly known. In such situations, data coming from concentration
or activity measurements collected by on-site sensors might be exploited to obtain estimates of the
unknown quantities.

The general problem of estimating one or more parameters characterising a system from observed
data is commonly known as an inverse problem [10]. Inverse problems arise very often in the field of
atmospheric releases of contaminants, in which they usually take the name of source term estimation
(STE) problems. The aim of a STE problem is to estimate the main parameters which define the
source of the release, i.e., its location and intensity. The STE problem has been subject of intense
study and the potential exploitation of measurements collected by sensors has attracted great interest
in recent years [11]. In general, source term estimates are intended to be used as input for further
analyses, either on-site, to provide a fast local characterisation of the scenarios, or off-site, to feed more
sophisticated long-range models.

Most of STE approaches are based on the minimisation of an objective function, which gives
a measure of the discrepancy between observed data and predictions obtained with the adopted
model of dispersion in air. Methods have been proposed which employ simple analytical
dispersion models [12,13], or more complex modelling approaches, e.g., the advection-diffusion
equation [14,15], CFD [16] and other off-the-shelf tools like the SCIPUFF Lagrangian-puff model
[17,18]. Bayesian techniques, which are widely adopted, are based on a statistical approach in which
inherent uncertainties affecting measurements or the adopted model of dispersion in air are taken
into account together with prior information. This provides posterior statistics about the estimated
quantities from which confidence regions can be obtained. Most of the literature deals with steady-state,
single source problems. Some approaches have also been proposed for multiple sources [19] or
time-dependent scenarios [20]. Estimated quantities usually include source term parameters, such as
its location in a 2D or 3D domain and its intensity, with meteorological data given as input. In some
cases wind and turbulence parameters have been estimated as well, e.g., by Wade and Senocak [21]
and Senocak et al. [22].

The majority of the literature deals with static sensor networks where the sampling locations
are either constrained by available data sets or selected a priori. When mobile sensing devices
are considered, the additional problem of the choice of the sampling strategy must be addressed.
This enables the use of all the available information (dispersion models, current estimates,
previous observations) to steer the sampling procedure towards locations where more informative
observations can be collected. Common approaches to address this problem include the maximisation
of some kind of predicted information gain [23] or of some measure of the mutual information between
model output and measurements [24].

In the present work, an approach based on Kalman filter embedding of a Gaussian plume model
is proposed for the online estimation of the location and intensity of a single source of release in a
3D domain, by resorting to the employment of mobile sensors. According to the proposed approach,
measurement data collected by a sensor can be processed recursively, allowing the online updating of
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the estimated quantities. Such an online data collection and update approach also enables a less strict
sampling strategy, where the sensor path is not established a priori but can be controlled by the source
estimation algorithm. This strategy can be of interest for emergency scenarios, where data are made
available as soon as they are collected and fast estimation techniques are essential. Knowledge about the
source term (and any other uncertain parameter) can be therefore improved each time new observations
made available by sensors are assimilated by the algorithm. Kalman filtering is particularly suited for
any time evolution model for which an analytical formulation—or at least a time-stepping operator—is
given. A similar approach was proposed by Drews et al. [25], who considered a static sensor network
to estimate the intensity of a single-source release from a known location. Even though in the present
work a simple fast-running Gaussian dispersion model has been employed, the approach is indeed
quite general and can be employed with more sophisticated atmospheric dispersion models as well.
A case study, describing the dispersion at the microscale of a non-reactive agent released by a steady
state single point source, was selected to test the methodology. Some release parameters were
treated as unknown and subject to estimation. Two series of tests are presented: in the first one,
pseudo-experimental dispersion data were produced with the Gaussian plume model, to check the
correct implementation of the methodology and the consistency of estimation results. In the second
series, the SCIPUFF Lagrangian puff model was used to produce pseudo-experimental dispersion data.

The paper is organised as follows: in Section 2 the adopted methods and modelling strategies
are presented. More specifically, Section 2.1 reports brief descriptions of the employed atmospheric
dispersion models, namely, the Gaussian plume model and the SCIPUFF Lagrangian puff model.
Section 2.2 gives basic descriptions of the Kalman filter algorithm and the related techniques,
upon which the proposed data assimilation approach is based. In Section 2.3 the proposed source
term estimation algorithm is presented. The case study selected for the verification of the proposed
approach is then described in Section 2.4. In Section 3 the results of the tests on the case study are
reported and discussed. Conclusions are presented in Section 4, together with possible suggestions for
further work.

2. Materials and Methods

2.1. Atmospheric Dispersion Modelling

2.1.1. The Gaussian Plume Model

Gaussian plume models comprise a family of simplified models which are based on an analytical
solution of the atmospheric advection-dispersion problem. For a detailed discussion on Gaussian
models from basic formulations to more sophisticated implementations, the reader may refer to [26].
Fundamental equations are usually derived under the following assumptions:

(i) The source of contaminant can be considered as localised in a single point (point
source approach).

(ii) The release rate from the source is continuous and constant in time.
(iii) The wind speed and direction are both constant in time and uniform in space.
(iv) Atmospheric turbulence is constant in time and uniform in space.

Following the convention by which the (x, y, z) coordinates respectively indicate the downwind,
crosswind and vertical axes directions, the basic formulation reads:

c (x, y, z) = cx ϕy ϕzD (1)

where c is the concentration at a given point (g m−3). The origin of the (x, y, z) coordinate system
is placed at ground level in correspondence with the source location. The term cx represents the
downwind dilution:
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cx =
S
u

(2)

where S and u are the source release rate (g s−1) and the wind speed at release height (m s−1),
respectively. The terms ϕy and ϕz represent the crosswind and vertical dilution:

ϕy =
1√

2πσy
exp

(
− y2

2σ2
y

)
(3)

ϕz =
1√

2πσz

{
exp

[
− (z− zs)

2

2σ2
z

]
+ exp

[
− (z + zs)

2

2σ2
z

]}
(4)

where zs is the source release height (m), while σy and σz are the dispersion parameters in the y and z
directions (m).

The σy and σz parameters are used to model the broadening of the Gaussian plume due to
atmospheric turbulence, as it drifts away from the source point. It follows that appropriate empirical
correlations must be used to assess σy and σz as functions of x and weather conditions. Among available
parametrisations of various complexity, the ones based on atmospheric stability classes are still widely
adopted due to their simplicity. The most commonly used classification of atmospheric stability is the
one developed by Pasquill [27] and Gifford [28]. The original empirical correlations are commonly
used in the formulation proposed by Briggs [29]:

σy =
ayx(

1 + byx
)cy (5)

σz =
azx

(1 + bzx)cz (6)

where ay, by, cy, az, bz, cz are empirical constants depending on the Pasquill–Gifford stability class.
The decay term D is commonly used as a simple correction factor to model exponential decay,

or more in general, first-order chemical reactions [30]:

D = exp
(
−λx

u

)
(7)

where λ is the decay rate (s−1). When radioactive agents are considered, the decay term D is simply
neglected if the decay rate of the radionuclide is sufficiently small according to (7).

2.1.2. The SCIPUFF Model

SCIPUFF (second-order closure integrated PUFF) is a Lagrangian transport and diffusion model
for atmospheric dispersion applications [31]. The technique employed to solve the transport equations
is the Gaussian puff method in which a collection of 3D puffs is used to represent an arbitrary
time-dependent release. The turbulence parametrisation used in SCIPUFF is based on a second-order
turbulence closure theory, providing a direct connection between measurable velocity statistics and
the predicted dispersion rates. The Lagrangian approach allows an accurate treatment of a wide range
of length scales. This range may extend from the microscale to the macroscale, namely, from a few
tenths of a metre up to continental or global scales. The meteorological input required by SCIPUFF
ranges from simple input parameters, like single wind vectors, to observational data such as single
wind measurements or multiple profiles. Observations can include turbulence measurements and
boundary layer parameters such as mixing-layer height or Pasquill–Gifford stability class. Alternatively,
3D gridded wind and meteorological fields generated by a prognostic weather model may be used
as input.
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SCIPUFF has been extended to include dense gas physics, aqueous-phase chemistry and aerosol
thermodynamics. This reactive version of the SCIPUFF model is referred to as SCICHEM [32,33].
The most recent available release of SCICHEM (3.2) was adopted for the present work.

2.2. The Kalman Filter Algorithm

2.2.1. The Original Formulation

The Kalman filter (KF) is a widely employed data assimilation algorithm, originally developed
as a recursive predictor-corrector state estimator [34]. It is based on a state space representation of
the mathematical model under analysis, in which the state variables of the system are included in a
state vector Xt = [x1, x2, . . . , xn]

T
t , while its observable quantities are included in an observable vector

Yt = [y1, y2, . . . , ym]
T
t . The subscript t typically denotes a time instant, but more generally it may

simply represent a sequential iteration index. The system is thus described by the following equations:

Xt = ft (Xt−1) + wt (8)

Yt = ht (Xt) + vt (9)

where ft (·) and ht (·) represent two generic, nonlinear, possibly time-dependent, deterministic
operators: the state Equation (8) provides the time evolution of the system, while the observation
Equation (9) links the state of the system to the observable quantities. The terms wt and vt are
respectively the so-called process noise and measurement noise. They consist of two mutually
uncorrelated stochastic vector variables and represent all uncertainties and non-deterministic effects
affecting the model. The system model thus comprises a deterministic and a stochastic part, such that
the state becomes a stochastic variable itself subjected to a certain probability distribution.

The original formulation of the KF is based on the following assumptions:

(i) the stochastic vector variables wt and vt follow multivariate Gaussian probability distributions,
each characterised by zero mean and covariance matrices Cp

t and Cm
t , respectively (i.e., E [wt] =

E [vt] = 0, E
[
wtwT

t
]
= Cp

t , E
[
vtvT

t
]
= Cm

t );
(ii) the stochastic vectors variables wt and vt are not cross-correlated, i.e., E

[
wtwT

s
]
= E

[
vtvT

s
]
= 0,

for s 6= t;
(iii) the operators ft (·) and ht (·) are linear.

Such assumptions ensure that the stochastic variables involved in the algorithm are Gaussian and
that the KF provides a least-squares best estimate of the state Xt, in terms of its expected value X̂t and
covariance matrix Ĉt. While conditions (i) and (ii) are quite straightforward (at least in lack of better
knowledge), condition (iii) is not easily satisfied, especially when model parameters are included
in the state vector. In such cases the expressions ft (·) and ht (·) require modifications which make
them nonlinear.

Under the hypothesis of model linearity, (8) and (9) may be written as follows:

Xt = FtXt−1 + wt (10)

Yt = HtXt + vt (11)

where Ft and Ht are linear, still possibly time-dependent operators.
To introduce the KF equations, it is assumed, at a given instant t, to possess the following pieces

of information:

(i) the estimate of the system state at the previous instant t− 1 is characterised by an expected
value X̂t−1 and a covariance matrix Ĉt−1;
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(ii) one or more measurements have been performed on the system at time t, yielding the
measurement vector Yt.

Then, the KF equations consist in a prediction step in which the state is propagated forward in
time on the basis of the model:

X̂t|t−1 = FtX̂t−1 (12)

Ĉt|t−1 = FtĈt−1FT
t + Cp

t (13)

and a correction (or update) step in which measurements are assimilated and used to adjust
the prediction:

X̂t = X̂t|t−1 + Kt

(
Yt − HtX̂t|t−1

)
(14)

Ĉt = Ĉt|t−1 − KtHtĈt|t−1 (15)

where the optimal Kalman gain Kt is defined as:

Kt = Ĉt|t−1HT
t

(
HtĈt|t−1HT

t + Cm
t

)−1
(16)

The matrix Kt is regarded as a gain, as it determines the degree to which the discrepancy between
measurements and model prediction is amplified to correct the prediction itself. The value assumed
by the gain matrix at each iteration is determined by the combination of the uncertainties associated
with the state after prediction and to the measurements. It follows from (14) and (16) that, when the
uncertainty associated with the measurements is ideally made very large or very small, the updated
estimate X̂t respectively tends to X̂t−1 and H−1

t Yt. Analogous statements hold also for the covariance
matrix Ĉt.

Given that (12) to (16) allow one to propagate recursively the estimate of the state from instant
t− 1 to t by assimilating the data collected at time t, the KF algorithm needs to be initialised at t = 0.
Initial conditions X̂0 and Ĉ0 for the state of the system must therefore be provided. They can result
from previous analyses, from expert opinions or from any other source of information. When no
reliable information is given, rough or tentative initial estimates can be used by specifying relatively
large initial covariance, as the KF will forget about initial estimates after few iterations.

2.2.2. The Extended Kalman Filter Algorithm

As most practical applications involve nonlinear model equations, the assumptions described in
the previous section do not hold and (12) to (16) can not be used to propagate the state of the system.
If nonlinearities in the model are not too strong, one common solution to the nonlinear estimation
problem consists of deriving linearised versions of the operators ft (·) and ht (·). This leads to the
so-called extended Kalman filter (EKF) equations [35] for the prediction step:

X̂t|t−1 = ft
(
X̂t−1

)
(17)

Ĉt|t−1 = FtĈt−1FT
t + Cp

t (18)

the correction step:

X̂t = X̂t|t−1 + Kt

[
Yt − ht

(
X̂t|t−1

)]
(19)

Ĉt = Ĉt|t−1 − KtHtĈt|t−1 (20)
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and the Kalman gain:

Kt = Ĉt|t−1HT
t

(
HtĈt|t−1HT

t + Cm
t

)−1
(21)

The linear operators Ft and Ht are here defined as the following Jacobian matrices:

(Ft)ij =
∂ ( ft)i
∂ (Xt)j

∣∣∣∣∣
X̂t−1

(22)

(Ht)ij =
∂ (ht)i
∂ (Xt)j

∣∣∣∣∣
X̂t|t−1

(23)

When nonlinearities are too strong, the EKF may yield poor estimation results. For nonlinear
models the EKF is not in general an optimal estimator and poor initial estimates may cause
the algorithm to diverge. As alternatives to the standard EKF, more advanced approaches are
available, e.g., the iterated EKF [35], in which the equations are solved by iteratively modifying the
linearisation point. This limits the error introduced by linearisation at the expense of increased
computational burden. Another example is the unscented Kalman filter (UKF) [36], in which,
rather than approximating the model equations with some linearised versions, the probability density
functions of the involved quantities are directly approximated by choosing a small set of sampling
points and then nonlinearly propagated. Besides yielding better estimation results in many applications,
the UKF can be particularly useful in all cases where the Jacobians are not available or their computation
proves to be too complex or demanding. The present works employs the EKF algorithm to deal with
the nonlinearities of the Gaussian dispersion model. Jacobian matrices are evaluated numerically.

2.3. Architecture of the Proposed Source Term Estimation Algorithm

A conceptual scheme of the here proposed source term estimation algorithm is depicted in Figure 1.
The proposed online data assimilation approach for the source term estimation is based on the Kalman
filter in which a Gaussian plume dispersion model is embedded. Model predictions are compared
with measurements to perform the online update of estimated quantities. The algorithm can also make
use of the most recent estimates of the unknown parameters to control mobile sensors placement.
A simulation loop provides measurement predictions, the current estimates of the parameters and
the current position of the sensor, while a control loop drives the sensor based on current parameters
estimates. Information on the sensor noise level is used to weigh the contribution of experimental
observations during the update of the estimates. The approach focuses on single-source steady-state
scenarios that fulfil the hypotheses under which the Gaussian plume model is derived.

2.3.1. Parametrisation of Atmospheric Stability

Regarding the parametrisation of atmospheric stability, σy and σz are computed as functions of
the downwind distance x and of a stability class parameter γ, here defined as a proxy of the so-called
atmospheric stability class. The parameter γ is used to evaluate the empirical coefficients appearing
in (5) and (6) by piece-wise linear interpolation of the values from Briggs [29]. The coefficients of the
six original stability classes from Pasquill [27] and Gifford [28] are hence interpolated to provide a
continuous parametrisation using a single parameter γ (Table 1).



Sustainability 2020, 12, 10003 8 of 19

Table 1. Pasquill–Gifford–Turner (PGT) coefficients from Briggs [29]. The γ parameter is defined as a
continuous equivalent for the original stability classes to provide continuous interpolation curves for
the coefficients.

PGT Class γ ay by cy az bz cz

A 1 0.22 0.0001 −0.5 0.200 0 0
B 2 0.16 0.0001 −0.5 0.120 0 0
C 3 0.11 0.0001 −0.5 0.080 0.0002 −0.5
D 4 0.08 0.0001 −0.5 0.060 0.0015 −0.5
E 5 0.06 0.0001 −0.5 0.030 0.0003 −1
F 6 0.04 0.0001 −0.5 0.016 0.0003 −1

KALMAN FILTER
ALGORITHM

SENSOR
POSITION

CURRENT
PARAMETER

ESTIMATE

PREDICTED
MEASUREMENT

NEW PARAMETER ESTIMATE
NEW SENSOR POSITION

GAUSSIAN PLUME

MODEL

sensor
control

parameter
update

MEASUREMENT
WITH NOISE

comparison

Figure 1. Conceptual scheme of the online source estimation algorithm. The data assimilation scheme
based on Kalman filtering merges predicted measurements with measurements collected by sensors,
providing updated estimates of model parameters and a new sensor position.

2.3.2. Embedding in the Kalman Filter Algorithm

The Kalman state vector is built as:

Xt = [µ1, . . . , µr]
T
t (24)

where µ1, . . . , µr are the unknown parameters of the Gaussian model which are to be estimated.
The maximum size of the state vector is r = 7, which corresponds to all the parameters being regarded
as unknown, i.e., the source location coordinates and release rate, the wind velocity and direction
and the stability class parameter:

Xt = [xs, ys, zs, S, u, θ, γ]Tt (25)
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The actual composition of the state can be modified from one case to another, depending on which
parameters are known.

The state estimate X̂t is updated, starting from an initial guess, using the EKF equations as
described in Section 2.2.2. The time evolution operator in (8) is the identity, since the process is
assumed to be (statistically) steady-state:

ft (Xt) = Xt (26)

Ft = I (27)

where I is the identity matrix. The observation Equation (9) is derived from the Gaussian
model equations:

ht (Xt) =
[
c1(Xt), . . . , cqt(Xt)

]T (28)

where qt is the number of observations made independently at time t. The function ht therefore
depends on time, as the positions (and possibly also the number) of the observations can vary from
one iteration to another. The Jacobian matrix Ht is easily obtained at each iteration by numerical
differentiation of (28).

2.3.3. Sampling Strategy

The positions of the observations are updated at each iteration taking into account the current
estimate of the source location. The employed sampling strategy keeps the sensor roughly at a fixed
downwind distance from the estimated source location, i.e., on the plume centreline and at the source
release height:

r0
m =

[
x0

m, 0, ẑs

]T
(29)

where the coordinates are expressed with respect to the Gaussian model reference system. Since the
concentration decays rapidly when moving from (x, y, z) = (x, 0, zs) in the y and z directions,
the broadening of the plume is exploited to avoid measurements in regions where the concentration is
low compared to the measurement noise. At each iteration r0

m is determined together with additional
measurement positions. With respect to r0

m, two additional measurements are made in each direction
(downwind, crosswind, vertical):

r1,2
m = r0

m ± δxm [1, 0, 0]T (30)

r3,4
m = r0

m ± δym [0, 1, 0]T (31)

r5,6
m = r0

m ± δzm [0, 0, 1]T (32)

where δxm, δym and δzm are constant values. The number of observations at each iteration, in this case,
is therefore q = 7. This is done to ensure better measurement statistics and to acquire information in
all directions.

2.4. Case Study

A micro-scale dispersion scenario characterised by a constant and point-source release is
considered. The size of of the considered domain is 500 × 500 × 25 m. The source coordinates
(xs, yz, zs) are expressed in a generic reference system and the source intensity S is given in arbitrary
units, as reported in Table 2. The wind speed u is set to 5 m s−1 (constant and uniform), while for
atmospheric stability, three different scenarios are selected which correspond to the second, third and
fourth (i.e., B,C,D) stability classes from the Pasquill–Gifford classification. The corresponding
dispersion coefficients are typical of moderately unstable, slightly unstable and neutral atmospheric
conditions respectively [29]. SCIPUFF observational data assimilation features are exploited to
prescribe atmospheric stability according to the Pasquill–Gifford scheme. It is further assumed
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that radioactive decay is negligible with respect to the time scales under consideration. Albeit based on
a different kind of parametrisation with respect to the one adopted in this work, the SCIPUFF model
can use Pasquill–Gifford classes to specify turbulent diffusion. Non-integer values are accepted by the
program and treated by interpolation as well.

Table 2. Dispersion model parameters adopted for the case study.

Parameter Units Value

Release x-coordinate xs m 100
Release y-coordinate ys m 250
Release z-coordinate zs m 10
Release intensity S a.u. s−1 1
Wind speed u m s−1 5
Wind angle θ ° 0
Stability class parameter γ - [2–4]

The proposed estimation algorithm was verified by running two series of tests wherein
pseudo-experimental data were produced by means of dispersion models. The proposed approach was
first tested using pseudo-experimental data produced with the Gaussian plume model (Section 3.1),
and then with pseudo-experimental data generated by means of the SCIPUFF Lagrangian puff model
(Section 3.2). The values adopted for the sampling parameters are listed in Table 3. The quantity σm

defines the standard deviation of the measurement noise. It is used to build the measurement noise
covariance matrix:

Cm
t = σ2

m I (33)

where I is the identity matrix of size q. It is therefore assumed for simplicity a constant fixed
measurement noise for all observations, with no correlation between observations taken at different
positions within the same algorithm iteration. The same standard deviation σm is used to
sample random additive noise from a zero-mean normal distribution, which is added to each
simulated measurement.

The wind speed u and angle θ are assumed known. The state vector is therefore built as:

Xt = [xs, ys, zs, S, γ]Tt (34)

The Kalman filter needs the definition of the process noise covariance matrix Cp
t . There are no

general rules for its choice. In this work, a diagonal matrix is used:

Cp
t =


σ2

p,1 . . . 0
...

. . .
...

0 . . . σ2
p,r

 (35)

with r = 5, where for the present tests

σp = (0.5, 0.25, 0.1, 0.1, 0.1) (36)

The choice of such values is somewhat arbitrary. Listed values where chosen to provide
satisfactory dynamical properties for the state estimates. They can be varied in a certain range
with no significant consequences on the convergence properties of the algorithm, but larger values can
lead to instability and divergence of the state estimate. On the other hand, smaller values lead to very
slow convergence. It is worth remarking that, even though Cp

t has a direct impact on Kalman filter
equations—in particular on the definition of the Kalman gain in (21)—many applications are found in
which process noise is not needed to drive the data assimilation process. In this case, however, model
equations are such that state-to-output sensitivity is not large enough and process noise is needed.
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Setting its covariance to zero would result in no state update and the estimation algorithm would get
stuck immediately.

Table 3. Measurement sampling parameters adopted for the tests.

Parameter Units Value

Measurement noise (std. deviation) σm a.u. m−3 10−6

Measurement location r0
m m 90

Position of additional meas. in x-direction δxm m 5
Position of additional meas. in y-direction δym m 5
Position of additional meas. in z-direction δzm m 1

3. Results

The proposed approach has been first tested using pseudo-experimental data generated by the
Gaussian plume model (Section 3.1), then with data generated by means of the SCIPUFF model
(Section 3.2). The source estimation algorithm is initialised with the same data in both the series of
tests. Four different cases have been considered corresponding to different initial guesses of the release
source coordinates x̂s and ŷs. For each of such cases, two possible values of the release source height
ẑs are considered. To simplify the analysis, a single initial guess of the release source intensity Ŝ and
of the atmospheric stability class parameter γ̂ is considered for all tests. Initial conditions for the
quantities to be estimated are reported in Table 4. The values reported for x̂s0, ŷs0 and ẑs0 refer to the
initial “errors” with respect to the true values of Table 2, while Ŝ0 and γ̂0 are expressed in absolute
terms. Chosen values for x̂s0 and ŷs0 only represent positive initial errors, but the symmetry of the
case study scenario makes the choice of the sign equivalent. Moreover, little confidence is given to the
initial estimates, so that the algorithm is not dependent on the initial guesses for the state covariance
matrix. The values adopted for the initial state covariance matrix Ĉ0 are therefore omitted.

Table 4. Initial conditions for the state estimate X̂t for the tests. The values for x̂s0, ŷs0 and ẑs0 are
intended as errors with respect to true values, while Ŝ0 and γ̂0 are expressed in absolute terms.

State Units Case 1 Case 2 Case 3 Case 4

x̂s0 m +50 +50 +75 +75
ŷs0 m +25 +50 +25 +50
ẑs0 m [−5,+5]
Ŝ0 a.u. m−3 100
γ̂0 - 6

3.1. Verification against Pseudo-Experimental Data Generated with the Gaussian Plume Model

The evolution of state estimates along algorithm iterations for the 3 selected case-study values of
the atmospheric stability class parameter γ (Table 2) are shown in Figures 2–4 respectively. In almost
all simulated cases, the algorithm shows its capability to retrieve the “true” parameter values in
a reasonable amount of iterations (less than 50). Using the prior information on the measurement
noise, the Kalman filter approach is able to adapt to the magnitude of the measured concentrations.
Closer iterations are therefore made when noise is more significant, to collect more information. As the
stability class parameter γ shifts towards 2 (class B), a generally slower convergence is observed.
This is understandable since more unstable atmospheric conditions lead to smoother concentration
profiles, with less information to be extracted from concentration gradients at each iteration. As a
result, more measurements are needed for the algorithm to converge. This is particularly evident in
Figure 2, where the estimate of the height of the source, ẑs, has not reached convergence yet after
50 algorithm iterations. It is also noted that the linear dependence of the observation equation on the
source intensity S is exploited by the model, as the estimate Ŝ is readily decreased by several orders of
magnitude after very few iterations. Even though the initial guess was overestimated by two orders of
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magnitude, the algorithm at the end is able to converge to the “true” value. The slower convergence
of the parameter estimates in case 2 and case 4 is clearly visible, especially in Figure 4. Apart from
convergence rates, the overall dynamics of the estimates is similar for all cases with the same value of
γ, but seems to depend in some way on the atmospheric stability conditions. Even though the final
convergence is not hindered, this behaviour could suggest a non-optimal choice of the process noise
covariance matrix Cp

t for the specific cases and that an automatic scenario-dependent choice of such
parameters could improve algorithm dynamics.

In Figure 5 are shown the trajectories in the x-y plane of both the mobile sensor position and the
source estimate along iterations. For brevity, only results for the case with γ = 4 are reported. Due to
the simple feedback strategy employed, the sensor path coincides with the source estimate path shifted
by x0

m in the x direction. Contour plots at z = zs are added as well to characterise the concentration
field due to the “true” parameter values. Contour values for concentrations of 0.1, 1 and 10 times the
measurement noise σm are shown. The 4 test cases were chosen, as reported in Table 4, to span a wide
region and to make the mobile sensor explore regions where the measurement noise is comparable in
magnitude to the exact concentration values.
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Figure 2. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the Gaussian
plume model with stability class parameter γ = 2 (PGT class B). Initial estimated source height
ẑs0 = 5 m (left) and ẑs0 = 15 m (right).
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Figure 3. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the Gaussian
plume model with stability class parameter γ = 3 (PGT class C). Initial estimated source height
ẑs0 = 5 m (left) and ẑs0 = 15 m (right).
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Figure 4. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the Gaussian
plume model with stability class parameter γ = 4 (PGT class D). Initial estimated source height
ẑs0 = 5 m (left) and ẑs0 = 15 m (right).
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Figure 5. Trajectories of the source location estimate and of the sensor in the x-y plane for the cases
relative to Figure 4. The left and right plots refer to the initial guesses ẑs0 = 5 m and ẑs0 = 15 m,
respectively. The black lines are contours of the concentration field (at the “true” source height
zs = 10 m) expressed in a.u. m−3. Three contour values are shown, corresponding to 0.1, 1 and 10
times the measurement noise standard deviation σm.

3.2. Verification against Pseudo-Experimental Data Generated with the SCIPUFF Model

To test the capability of the proposed source term estimation algorithm based on the Gaussian
plume dispersion model, pseudo experimental data have been produced by means of the SCIPUFF
Lagrangian puff model, with the purpose of employing a more realistic set of dispersion data obtained
with a dispersion model different from the one embedded in the Kalman filter algorithm. Since the
SCIPUFF model allows for the specification of meteorological field data from an arbitrary amount of
input point measurements, a single measurement point is specified from which the model computes
uniform and constant meteorological fields. In particular, the same wind speed and atmospheric
stability class as in the previous cases (Table 2) are used. The PGT class which SCIPUFF accepts
as input is a close relative of the parameter γ here used, but, since the model uses a different and
possibly more complex parametrisation of atmospheric instability, perfect agreement between the
models cannot be expected. Concentration data is computed and exported off-line from SCIPUFF on a
3D grid of 500× 500× 25 m with uniform spacing of 1 m (≈ 6.5 · 106 points). Data is then read online
by the algorithm and linearly interpolated to provide a continuous 3D concentration field from which
pseudo-experimental observations data are extracted. The concentration contour plots of the SCIPUFF
simulation data for PGT class equal to 3 at 4 different heights are reported in Figure 6.

Figures 7–9 show the source estimation results obtained using pseudo-experimental data from the
SCIPUFF model, with PGT class respectively equal to 2, 3 and 4. Most of the observations on algorithm
convergence made for the Gaussian plume cases are valid also in these cases. The proposed inversion
methodology gives satisfactory results also when applied to pseudo-experimental data produced by a
different dispersion model. The algorithm is able to identify, at least approximately, the source location
and its intensity in all cases. This is particularly convenient since the atmospheric stability conditions
are considered to be unknown and the Gaussian plume model and SCIPUFF model use different
atmospheric stability parametrisations.

However, some discrepancies between the estimated quantities and the “true” scenario parameters
are found. The estimated source height ẑs and stability class parameter γ̂ are only approximately
correct in most cases. The inaccuracies in retrieving the source height zs might be attributed to the poor
approximation introduced by piece-wise linearly interpolated vertical concentration profiles obtained
from SCIPUFF data. The uniform 1 m resolution of exported SCIPUFF data might be insufficient to
properly describe vertical profiles, especially close to the source where concentration gradients are
steeper. Estimation of xs with PGT class equal to B (Figure 7) shows the least satisfactory results, with an
estimation bias of 10–15 m (consistent for all initial conditions). As pointed out earlier, no perfect
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match between the Gaussian and SCIPUFF dispersion models can be expected, with consequences
on estimated values. The estimation algorithm relies on measurements collected quite far from the
estimated source, so that some dependence on the local match between the models (and therefore on
the distance from the estimated source) is expected.

Figure 6. SCIPUFF pseudo-experimental concentration contours (PGT class B). From left to right and
from top to bottom: z = 0 m, z = 5 m, z = zs = 10 m and z = 15 m.
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Figure 7. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the SCIPUFF
Lagrangian puff model with PGT class equal to B (γ = 2). Initial estimated source height ẑs0 = 5 m
(left) and ẑs0 = 15 m (right).
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Figure 8. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the SCIPUFF
Lagrangian puff model with PGT class equal to C (γ = 3). Initial estimated source height ẑs0 = 5 m
(left) and ẑs0 = 15 m (right).
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Figure 9. Evolution of the state estimate X̂t. Pseudo-experimental data produced by the SCIPUFF
Lagrangian puff model with PGT class equal to D (γ = 4). Initial estimated source height ẑs0 = 5 m
(left) and ẑs0 = 15 m (right).
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4. Conclusions

An online source term estimation algorithm based on a Kalman filtering algorithm, within which
is embedded a Gaussian plume model, is proposed. The unknown parameters of the Gaussian model
constitute the state variables of the Kalman filter, while the Gaussian model equations are used
to link the state variables to the observations which are fed to the algorithm. A mobile sensor is
supposed to collect noisy measurements in a 3D scenario. In addition to more flexibility in the data
sampling strategy, the use of mobile sensors enables a “feedback” mechanism to inform the sensor
with updated information about the current source estimate. The proposed approach has been tested
with simulated data coming from both the Gaussian plume model and the SCIPUFF Lagrangian puff
model. It provides reliable estimates of the unknown state variables, including the source location and
intensity, and the atmospheric stability class. Several cases have been tested, with different scenario
parameters and initial estimates. In almost all cases the algorithm was able to retrieve satisfactory
estimates of the parameter values after a few tens of algorithm iterations. Tests with Gaussian plume
data showed almost perfect matches between “true” and estimated quantities, but tests with SCIPUFF
data were affected by some inaccuracies that can be attributed to two main aspects. The first is
the local discrepancy between the model employed to produce pseudo-experimental dispersion
data and the model embedded in the estimation algorithm. The second is the spatial resolution of
pseudo-experimental data fed to the algorithm, especially in the vertical direction. The overall accuracy
was nevertheless good, as the x and y coordinates of the source location and the intensity were almost
always correctly estimated. The estimated values of the stability class parameter are consistent with
the PGT class adopted in SCIPUFF simulations. The approach was therefore demonstrated to be
computationally efficient, and even though the quality of the estimates depends on the quality of the
input data, it appears as a promising tool for the management of emergency radiological scenarios.

The approach is indeed very simplified and many assumptions were made. Further development
and testing are therefore needed to prove its applicability in a real scenario. To extend the approach to
non-uniform and possibly time-dependent scenarios, the adoption of more advanced tools, such as
reduced order models (ROMs) and surrogate modelling techniques in general, could represent a
viable option to embed complex and/or large models while preserving computational efficiency.
Validation with experimental datasets, or at least cross-verification with other dispersion models,
is foreseen to assess the limits of the approach with realistic data affected by noise.
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1. Leelőssy, Á.; Lagzi, I.; Kovács, A.; Mészáros, R. A review of numerical models to predict the atmospheric
dispersion of radionuclides. J. Environ. Radioact. 2018, 182, 20–33, [CrossRef] [PubMed]

2. Tominaga, Y.; Stathopoulos, T. CFD simulations of near-field pollutant dispersion with different plume
buoyancies. Build. Environ. 2018, 131, 128–139, [CrossRef]

3. Lateb, M.; Meroney, R.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M. On the use of numerical
modelling for near-field pollutant dispersion in urban environments-A review. Environ. Pollut. 2016,
208, 271–283, [CrossRef] [PubMed]

4. de Sampaio, P.A.; Junior, M.A.; Lapa, C.M. A CFD approach to the atmospheric dispersion of radionuclides
in the vicinity of NPPs. Nucl. Eng. Des. 2008, 238, 250–273, [CrossRef]

5. Huh, C.A.; Lin, C.Y.; Hsu, S.C. Regional dispersal of Fukushima-derived fission nuclides by east-asian
monsoon: a synthesis and review. Aerosol Air Qual. Res. 2013, 13, 537–544, [CrossRef]

http://dx.doi.org/10.1016/j.jenvrad.2017.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29179047
http://dx.doi.org/10.1016/j.buildenv.2018.01.008
http://dx.doi.org/10.1016/j.envpol.2015.07.039
http://www.ncbi.nlm.nih.gov/pubmed/26282585
http://dx.doi.org/10.1016/j.nucengdes.2007.05.009
http://dx.doi.org/10.4209/aaqr.2012.08.0223


Sustainability 2020, 12, 10003 18 of 19

6. Mikkelsen, T.; Thykier-Nielsen, S.; Astrup, P.; Santabárbara, J.; Sørensen, J.; Rasmussen, A.; Robertson, L.;
Ullerstig, A.; Deme, S.; et al. MET-RODOS: A Comprehensive Atmospheric Dispersion Module.
Radiat. Prot. Dosim. 1997, 73, 45–55, [CrossRef]

7. An, H.Y.; Kang, Y.H.; Song, S.K.; Kim, Y.K. Comparison of CALPUFF and HYSPLIT models for atmospheric
dispersion simulations of radioactive materials. J. Korean Soc. Atmos. Environ. 2015, 31, 573–584, [CrossRef]

8. Connan, O.; Smith, K.; Organo, C.; Solier, L.; Maro, D.; Hébert, D. Comparison of RIMPUFF, HYSPLIT, ADMS
atmospheric dispersion model outputs, using emergency response procedures, with 85Kr measurements
made in the vicinity of nuclear reprocessing plant. J. Environ. Radioact. 2013, 124, 266–277, [CrossRef]

9. Stockie, J. The mathematics of atmospheric dispersion modeling. SIAM Rev. 2011, 53, 349–372, [CrossRef]
10. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and

Applied Mathematics: Philadelphia, PA, USA, 2005.
11. Hutchinson, M.; Oh, H.; Chen, W. A review of source term estimation methods for atmospheric dispersion

events using static or mobile sensors. Inf. Fusion 2017, 36, 130–148. [CrossRef]
12. Ristic, B.; Gunatilaka, A.; Gailis, R. Achievable accuracy in Gaussian plume parameter estimation using a

network of binary sensors. Inf. Fusion 2015, 25, 42–48, [CrossRef]
13. Borysiewicz, M.; Wawrzynczak, A.; Kopka, P. Bayesian-Based Methods for the Estimation of the Unknown

Model’s Parameters in the Case of the Localization of the Atmospheric Contamination Source. Found. Comput.
Decis. Sci. 2012, 37, 253–270, [CrossRef]

14. Singh, S.K.; Rani, R. A least-squares inversion technique for identification of a point release: Application to
Fusion Field Trials 2007. Atmos. Environ. 2014, 92, 104–117, [CrossRef]

15. Keats, A.; Yee, E.; Lien, F.S. Bayesian inference for source determination with applications to a complex
urban environment. Atmos. Environ. 2007, 41, 465–479, [CrossRef]

16. Kumar, P.; Feiz, A.A.; Singh, S.K.; Ngae, P.; Turbelin, G. Reconstruction of an atmospheric tracer source in an
urban-like environment. J. Geophys. Res. Atmos. 2015, 120, 12589–12604, [CrossRef]

17. Sykes, R.I.; Parker, S.F.; Henn, D.S.; Gabruk, R.S. SCIPUFF-A generalized dispersion model. In Air Pollution
Modeling and Its Application XI; Gryning, S.E., Schiermeier, F.A., Eds.; Springer: Boston, MA, USA, 1996;
pp. 425–432.

18. Allen, C.T.; Haupt, S.E.; Young, G.S. Source Characterization with a Genetic Algorithm–Coupled
Dispersion–Backward Model Incorporating SCIPUFF. J. Appl. Meteorol. Climatol. 2007, 46, 273–287,
[CrossRef]

19. Annunzio, A.J.; Young, G.S.; Haupt, S.E. A Multi-Entity Field Approximation to determine the source
location of multiple atmospheric contaminant releases. Atmos. Environ. 2012, 62, 593–604, [CrossRef]

20. Zheng, X.; Chen, Z. Back-calculation of the strength and location of hazardous materials releases using the
pattern search method. J. Hazard. Mater. 2010, 183, 474–481, [CrossRef]

21. Wade, D.; Senocak, I. Stochastic reconstruction of multiple source atmospheric contaminant dispersion
events. Atmos. Environ. 2013, 74, 45–51, [CrossRef]

22. Senocak, I.; Hengartner, N.W.; Short, M.B.; Daniel, W.B. Stochastic event reconstruction of atmospheric
contaminant dispersion using Bayesian inference. Atmos. Environ. 2008, 42, 7718–7727, [CrossRef]

23. Ristic, B.; Skvortsov, A.; Walker, A. Autonomous search for a diffusive source in an unknown structured
environment. Entropy 2014, 16, 789–813, [CrossRef]

24. Madankan, R.; Singla, P.; Singh, T. Optimal information collection for source parameter estimation of
atmospheric release phenomenon. In Proceedings of the 2014 American Control Conference, Portland, OR,
USA, 4–6 June 2014; pp. 604–609, [CrossRef]

25. Drews, M.; Lauritzen, B.; Madsen, H.; Smith, J.Q. Kalman filtration of radiation monitoring data from
atmospheric dispersion of radioactive materials. Radiat. Prot. Dosim. 2004, 111, 257–269, [CrossRef]
[PubMed]

26. De Visscher, A. Air Dispersion Modeling: Foundations and Applications; John Wiley & Sons: Hoboken, NJ,
USA, 2014.

27. Pasquill, F. The Estimation of the Dispersion of Windborne Material. Meteorol. Manag. 1961, 90, 33–49.
28. Gifford, F.A. Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion. Nucl. Saf.

1961, 2, 47–51.
29. Briggs, G.A. Diffusion Estimation for Small Emissions; Preliminary Report; Technical Report;

NOAA Atmospheric Turbulence and Diffusion Laboratory: Oak Ridge, TN, USA, 1973; [CrossRef]

http://dx.doi.org/10.1093/oxfordjournals.rpd.a032162
http://dx.doi.org/10.5572/KOSAE.2015.31.6.573
http://dx.doi.org/10.1016/j.jenvrad.2013.06.004
http://dx.doi.org/10.1137/10080991X
http://dx.doi.org/10.1016/j.inffus.2016.11.010
http://dx.doi.org/10.1016/j.inffus.2014.10.007
http://dx.doi.org/10.2478/v10209-011-0014-9
http://dx.doi.org/10.1016/j.atmosenv.2014.04.012
http://dx.doi.org/10.1016/j.atmosenv.2006.08.044
http://dx.doi.org/10.1002/2015JD024110
http://dx.doi.org/10.1175/JAM2459.1
http://dx.doi.org/10.1016/j.atmosenv.2012.08.032
http://dx.doi.org/10.1016/j.jhazmat.2010.07.048
http://dx.doi.org/10.1016/j.atmosenv.2013.02.051
http://dx.doi.org/10.1016/j.atmosenv.2008.05.024
http://dx.doi.org/10.3390/e16020789
http://dx.doi.org/10.1109/ACC.2014.6858911
http://dx.doi.org/10.1093/rpd/nch339
http://www.ncbi.nlm.nih.gov/pubmed/15266085
http://dx.doi.org/10.2172/5118833


Sustainability 2020, 12, 10003 19 of 19

30. Zannetti, P. Air Pollution Modeling: Theories, Computational Methods and Available Software; Springer US:
New York City, NY, USA, 1990.

31. Sykes, R.I.; Lewellen, W.S.; Parker, S.F. A Gaussian plume model of atmospheric dispersion based on
second-order closure. J. Clim. Appl. Meteorol. 1986, 25, 322–331; [CrossRef]

32. Karamchandani, P.; Santos, L.; Sykes, I.; Zhang, Y.; Tonne, C.; Seigneur, C. Development and evaluation of a
state-of-the-science reactive plume model. Environ. Sci. Technol. 2000, 34, 870–880, [CrossRef]

33. Chowdhury, B.; Karamchandani, P.K.; Sykes, R.I.; Henn, D.S.; Knipping, E. Reactive puff model SCICHEM:
Model enhancements and performance studies. Atmos. Environ. 2015, 117, 242–258, [CrossRef]

34. Kalman, R. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45,
[CrossRef]

35. Gibbs, B. Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook; John Wiley & Sons:
Hoboken, NJ, USA, 2011.

36. Julier, S.; Uhlmann, J. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/1520-0450(1986)025<0322:AGPMOA>2.0.CO;2
http://dx.doi.org/10.1021/es990611v
http://dx.doi.org/10.1016/j.atmosenv.2015.07.012
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/JPROC.2003.823141
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Atmospheric Dispersion Modelling
	The Gaussian Plume Model
	The SCIPUFF Model

	The Kalman Filter Algorithm
	The Original Formulation
	The Extended Kalman Filter Algorithm

	Architecture of the Proposed Source Term Estimation Algorithm
	Parametrisation of Atmospheric Stability
	Embedding in the Kalman Filter Algorithm
	Sampling Strategy

	Case Study

	Results
	Verification against Pseudo-Experimental Data Generated with the Gaussian Plume Model
	Verification against Pseudo-Experimental Data Generated with the SCIPUFF Model

	Conclusions
	References

