

Article Supplementary Material

Current (2020) and Long-term (2035 and 2050) Sustainable Potentials of Wood Fuel in Switzerland

Matthias Erni^{1,*}, Vanessa Burg¹, Leo Bont¹, Oliver Thees¹, Marco Ferretti¹, Golo Stadelmann and Janine Schweier¹

- ¹ Federal Institute for Forest, Snow and Landscape Research (WSL), Research Group Sustainable Forestry, Zürcherstrasse 111, CH-8903 Birmensdorf
- * Correspondence: matthias.erni@wsl.ch, Tel.: +41-44-739-21-24

Received: 30.09.2020; Accepted: date; Published: date

Contents

S1: Wood fuel from forests	2
S2: Wood fuel from trees outside forests (landscapes)	6
S3: Wood fuel from residues	10
S4: Wood fuel from waste wood	11
S5: All woody biomass	11
S6: All biomass types	12

Abbreviations

Areal statistics
Continuous stock increase
Less energy-oriented wood market
Energy-oriented wood market
Ecologically sustainable potential
Harvesting productivity models
Large stock reduction
Management scenario simulation model
Moderate stock reduction
National Forest Inventory
Sustainable potential
Theoretical potential

S1: Wood fuel from forests

S1 Table 1: Theoretical potential of wood fuel from forests in Switzerland in the years 2020, 2035 and 2050, in total and for broadleaves and conifers separately.

Year Scenario	Comorio	Wood type		[PJ a ⁻¹]*		M [m ³ a ⁻¹]			
	wood type	Minimum	Expected	Maximum	Minimum	Expected	Maximum		
		Total	86.6	88.9	93.5	11.86	12.17	12.49	
	CSI	Conifers	40.1	41.2	42.3	6.51	6.68	6.86	
		Broadleaves	46.5	47.7	51.2	5.35	5.49	5.63	
		Total	99.1	102.1	107.7	13.72	14.15	14.57	
2020	MSR	Conifers	49.3	50.8	52.4	7.99	8.24	8.49	
	Broadleaves	49.8	51.3	55.3	5.73	5.91	6.08		
	LSR	Total	114.1	118.1	125.0	15.76	16.31	16.87	
		Conifers	55.8	57.8	59.7	9.05	9.37	9.68	
	Broadleaves	58.3	60.3	65.3	6.71	6.95	7.18		
		Total	91.1	100.4	112.3	12.52	13.79	15.06	
	CSI	Conifers	43.1	47.5	51.9	6.99	7.70	8.41	
	Broadleaves	48.0	52.9	60.4	5.53	6.09	6.65		
		Total	106.6	110.3	116.9	14.65	15.17	15.68	
2035	MSR	Conifers	50.7	52.4	54.2	8.21	8.50	8.79	
		Broadleaves	55.9	57.9	62.6	6.44	6.67	6.89	
		Total	120.6	124.8	132.1	16.67	17.26	17.84	
	LSR	Conifers	59.4	61.5	63.5	9.63	9.97	10.30	
		Broadleaves	61.2	63.3	68.5	7.05	7.29	7.54	
		Total	91.0	103.0	117.9	12.50	14.16	15.80	
	CSI	Conifers	43.2	48.9	54.6	7.00	7.93	8.90	
		Broadleaves	47.8	54.1	63.2	5.50	6.23	7.00	
		Total	88.5	93.5	100.7	12.30	12.96	13.70	
2050	MSR	Conifers	44.4	46.9	49.4	7.20	7.60	8.00	
		Broadleaves	44.1	46.6	51.3	5.10	5.36	5.60	
		Total	75.3	77.6	81.7	10.40	10.76	11.10	
	LSR	Conifers	37.7	38.8	39.9	6.10	6.29	6.50	
		Broadleaves	37.7	38.8	41.8	4.30	4.47	4.60	

*primary energy

S1 Table 2: Sustainable potential of wood fuel from forests in Switzerland in the years 2020, 2035 and 2050 in
Switzerland, in total and for broadleaves and conifers separately.

Time	Sconaria	Wood turns		[PJ a ⁻¹]*			M [m ³ a ⁻¹]	
Time	Scenario	Wood type	Minimum	Expected	Maximum	Minimum	Expected	Maximum
		Total	13.9	20.8	24.9	1.83	2.72	3.28
	CSI	Conifers	4.7	6.8	8.8	0.76	1.10	1.43
		Broadleaves	9.2	14.0	16.1	1.06	1.61	1.85
		Total	19.9	30.3	36.7	2.62	3.99	4.88
2020	MSR	Conifers	7.1	10.7	13.9	1.16	1.73	2.25
		Broadleaves	12.7	19.6	22.8	1.46	2.26	2.63
		Total	25.7	39.5	47.3	3.38	5.19	6.28
	LSR	Conifers	9.1	13.7	17.7	1.47	2.23	2.86
		Broadleaves	16.6	25.7	29.6	1.92	2.96	3.41
		Total	13.7	21.1	31.7	1.80	2.75	4.18
	CSI	Conifers	4.6	6.9	11.2	0.74	1.12	1.81
		Broadleaves	9.2	14.2	20.6	1.06	1.64	2.37
		Total	20.4	31.7	38.7	2.67	4.15	5.11
2035	MSR	Conifers	6.7	10.5	13.9	1.11	1.70	2.25
		Broadleaves	13.5	21.3	24.8	1.56	2.45	2.86
		Total	23.6	36.2	44.7	3.13	4.79	5.97
	LSR	Conifers	8.8	13.2	17.4	1.42	2.14	2.82
		Broadleaves	14.8	23.0	27.3	1.71	2.65	3.15
		Total	12.4	18.5	27.4	1.63	2.41	3.62
	CSI	Conifers	4.2	6.1	9.9	0.68	0.99	1.60
		Broadleaves	8.2	12.3	17.5	0.94	1.42	2.02
		Total	13.0	20.1	26.5	1.72	2.66	3.54
2050	MSR	Conifers	4.9	7.2	10.5	0.79	1.17	1.70
		Broadleaves	8.09	12.9	16.0	0.93	1.49	1.85
		Total	9.1	14.5	20.0	1.34	1.95	2.71
	LSR	Conifers	4.1	5.8	8.6	0.67	0.93	1.40
		Broadleaves	5.8	8.8	11.4	0.67	1.01	1.31

*primary energy

S1 Table 3: Ecologically sustainable potential (ESP, no costs considered) of wood fuel from forests in Switzerland
in the years 2020, 2035 and 2050 in total and for broadleaves and conifers separately.

Time	Scenario	Wood type		[PJ a ⁻¹]*			M [m ³ a ⁻¹]	
Time	Scenario	Wood type	Minimum	Expected	Maximum	Minimum	Expected	Maximum
		Total	23.0	33.3	33.0	3.03	4.39	4.38
	CSI	Conifers	8.2	11.7	12.3	1.33	1.90	1.99
		Broadleaves	14.8	21.6	20.8	1.70	2.49	2.39
		Total	33.7	44.2	49.3	4.50	5.89	6.60
2020	MSR	Conifers	13.0	17.0	19.7	2.11	2.75	3.20
		Broadleaves	20.7	27.2	29.5	2.38	3.14	3.40
		Total	41.6	55.6	61.6	5.55	7.41	8.25
	LSR	Conifers	16.0	21.2	24.4	2.59	3.44	3.96
		Broadleaves	25.7	34.4	37.1	2.96	3.97	4.28
		Total	22.7	33.9	41.9	2.99	4.45	5.54
	CSI	Conifers	7.8	11.6	15.1	1.27	1.88	2.46
		Broadleaves	14.9	22.2	26.8	1.72	2.56	3.09
		Total	35.1	46.4	51.9	4.64	6.13	6.89
2035	MSR	Conifers	12.6	16.6	19.5	2.04	2.69	3.16
		Broadleaves	22.5	29.8	32.4	2.59	3.44	3.73
		Total	41.1	54.1	60.2	5.47	7.21	8.08
	LSR	Conifers	15.8	20.8	24.2	2.55	3.37	3.92
		Broadleaves	25.3	33.3	36.1	2.92	3.83	4.16
		Total	21.7	29.0	37.2	2.86	3.81	4.93
	CSI	Conifers	7.7	10.0	13.9	1.25	1.62	2.25
		Broadleaves	14.0	19.0	23.3	1.61	2.19	2.68
		Total	25.2	32.6	38.1	3.36	4.33	5.13
2050	MSR	Conifers	9.9	12.3	15.7	1.60	1.99	2.54
		Broadleaves	15.3	20.3	22.5	1.76	2.34	2.59
		Total	22.7	27.3	32.3	3.05	3.65	4.37
	LSR	Conifers	9.4	10.8	14.0	1.52	1.75	2.27
		Broadleaves	13.3	16.5	18.2	1.53	1.90	2.10

*primary energy

Sustainability **2020**, 12, x FOR PEER REVIEW

S1 Table 4 : Neglecting costs, the additional potential in [%] of wood fuel from forests in Switzerland in 2020,
2035 and 2050 in Switzerland, in total and for broadleaves and conifers separately. Difference between the
ecologically sustainable potential (ESP, no costs considered) and the SP (considering costs as a restriction) of the
CSI for all of the different forest management strategies (CSI, MSR, LSR).

Time	Comorio		Additional Potential ir	[%] compared to the	corresponding CSI
Time	Scenario	Wood type	Minimum	Expected	Maximum
		Total	64.8	60.4	32.7
	CSI	Conifers	74.3	72.2	39.5
		Broadleaves	60.0	54.6	29.0
		Total	142.0	112.6	97.9
2020	MSR	Conifers	176.4	149.6	124.1
		Broadleaves	124.4	94.7	83.5
		Total	198.8	167.5	147.5
	LSR	Conifers	238.9	212.0	177.6
		Broadleaves	178.4	146.0	131.0
		Total	65.7	60.5	32.1
	CSI	Conifers	71.2	68.7	35.8
		Broadleaves	63.0	56.5	30.2
		Total	155.8	120.1	63.4
2035	MSR	Conifers	176.0	140.8	74.5
		Broadleaves	145.8	110.1	57.5
		Total	199.4	156.4	89.8
	LSR	Conifers	245.0	202.1	116.7
		Broadleaves	176.7	134.3	75.3
		Total	75.3	57.1	35.6
	CSI	Conifers	82.9	63.3	40.8
		Broadleaves	71.3	54.1	32.6
		Total	103.2	76.4	39.2
2050	MSR	Conifers	133.7	100.8	58.8
		Broadleaves	87.4	64.3	28.1
		Total	83.0	48.0	17.7
	LSR	Conifers	122.5	77.0	42.0
		Broadleaves	62.5	33.6	3.9

S1 Table 5: Energy use [20] and derived material use of the harvested wood.

					In [%]			
Wood compartments	Conif	ers	Broadleaves					
wood compartments	energ	у	mater	rials	energy		materia	ıls
	EO-	EO+	EO-	EO+	EO-	EO+	EO-	EO+
Bark and brushwood	1	100		0	1	00		0
Forest residual wood	100	100	0	0	100	100	0	0
Branch merchantable	100	100	0	0	100	100	0	0
Round wood 1 (thin)	50	70	50	30	100	100	0	0
Round wood 2	10	25	90	75	45	85	55	15
Round wood 3	15	30	85	70	40	80	60	20
Round wood 4	20	40	80	60	40	80	60	20
Round wood 5	20	40	80	60	50	80	50	20
Round wood 6 (thick)	20	50	80	50	50	80	50	20

*EO- less energy-oriented wood market; EO+ energy-oriented wood market

S2: Wood fuel from trees outside forests (landscapes)

S2 Table 6: Theoretical and sustainable potential of wood from trees outside forests in Switzerland 2020, 2035 and 2050.

Year	Year		potential	Sustainable	Sustainable potential		
		[PJ a ⁻¹]*1	M [m ³ a ⁻¹]	[PJ a ⁻¹]*1	M [m ³ a ⁻¹]		
	Minimum	7.5	0.80	3.8	0.40		
2020	Expected	9.4	1.00	4.8	0.50		
	Maximum	11.3	1.20	5.8	0.60		
	Minimum	7.0	0.74	3.6	0.38		
2035	Expected	11.7	1.24	6.0	0.63		
	Maximum	16.4	1.74	8.4	0.88		
	Minimum	4.6	0.49	2.4	0.25		
2050	Expected	11.6	1.23	5.9	0.62		
	Maximum	18.5	1.97	9.5	0.99		

*1 primary energy

S2 Table 7: Wood from trees outside forests. Stocked categories from the areal statistics [66] and assigned increments considering different coverage levels (optimal growth conditions: 100% and with growth according to realistic coverage levels) (for more details cf. [51])

to realistic coverage levels) (for more deta Stocked categories		Optimal growth; 100%	Source	Growth according to	Source/ Assumption*		
Group	Nr. AS	Specific information on the area	coverage level [t ha ⁻¹ a ⁻¹] dry matter		realistic coverage level [t ha ⁻¹ a ⁻¹] dry matter	1	
	2	Surroundings of industrial and commercial buildings	-	-	0.6	Kaltschmitt et al 2009	
	4	Surroundings of one- and two-family houses	-	-	0.6		
	6	Surroundings of terraced houses	-	-	0.6		
Building areas	8	Surroundings of blocks of flats	-	-	0.6		
guiblin	10	Surroundings of public buildings	-	-	0.6		
д	12	Surroundings of agricultural building	-	-	0.6		
	14	Surroundings of unspecified building	-	-	0.6		
	17	Roads and paths	-	-	0.6		
	31	Public parks	-	-	1.75		
	32	Sports facilities	-	-	0.6		
	33	Golf courses	-	-	0.6		
	34	Camping areas	-	-	1.75		
	35	Garden allotments	-	-	0.6		
	36	Cementeries	-	-	2.25		
	16	Green motorway	8.3	A.Müller	4.15	FOEN 2009;	
reas		environs		(SBB), A. Bürgi (WSL) in FOEN 2009		coverage level 50% (FSO 2006)	
Transportation areas	18	Green road environs	8.3	A.Müller (SBB), A. Bürgi (WSL) in FOEN 2009	4.15		
Irar	21	Green railway environs	8.3	A.Müller (SBB), A. Bürgi (WSL) in FOEN 2009	4.15		
ral areas, rush	37	Intensive orchards	_	-	3.5	Kaltschmitt et a 2009; coverage level: 100% (BFS, 2006)	
Agricultural areas, tree and brush vegetation	38	Field fruit trees	-	-	0.6	Based on the assumptions of Kaltschmitt et a	

Stocked of	categor	ies	Optimal growth; 100%	Source	Growth according to	Source/ Assumption*	
Group	Nr. AS	Specific information on the area	coverage level [t ha ⁻¹ a ⁻¹] dry matter		realistic coverage level [t ha ⁻¹ a ⁻¹] dry matter		
						2009 ochards were assumed to have coverage levels of 25% for spread-out and 100% for well- ordered orchards (FSO, 2006).	
	39	Vineyards	-	-	1.5	Kaltschmitt et al., 2009	
	44	Brush meadows and farm pastures	8.3	Abegg et al. 2020, conversion factor: 0.6 m ³ t ⁻¹ FOEN 2009	4.15	Abegg et al. 2020, conversion factor: 0.6 m ³ t ¹ FOEN 2009, coverage level: 50% (FSO, 2006)	
ion	47	Brush alpine pastures	6	FOEN 2009	3	Coverage level: 50% (FSO 2006)	
as, tree and brush vegetation	59	Clusters of trees (on agricultural areas)	8.3	Abegg et al. 2020, conversion factor: 0.6 m ³ t ⁻¹ FOEN 2009	0.8	Coverage level: 10% (FSO 2006).	
Agricultural areas, tree and	60	Clusters of trees (on unproductive areas)	8.3	Abegg et al. 2020, conversion factor: 0.6 m ³ t ¹ FOEN 2009	0.8	Coverage level: 10% (FSO 2006).	
	64	Scrub vegetation	5		3	Own assumption according to hedges due to lack of data.	
Hedge s	58	Groves, hedges	5	FOEN 2009	3	Coverage level: 60% FSO 2006	
	62	Rivers	9	FOEN 2009 for embankments	3	FOEN 2009 used 9t of dry matter	
Shore zone	63	Flood protection structures	9	FOEN 2009 for embankments	3	for embankments Along rivers and flood protection structures we expect rather small stockings as they are only	

Canton/Altitude AG		>1800	1401-1800	1001-1400	601-1000	<600
AG					10.1	10.5
AI				7.3	16.1	
AR				12.8	17.3	
BE		4.4	6.3	8.4	11.8	12.9
BLBS					7.3	8.2
FR			15.6	14.8	12	12.1
GE						7.9
GL			7	7.7	9.8	
GR		3.9	6.6	7.5	6.1	3.3
JU				10.6	8.1	11.3
LU			7.9	10.4	16.0	15.5
NE	Crearuth			9.8	10.0	9.2
NW	Growth [m3ha ⁻¹ a ⁻¹]		9	8.0	13.6	
OW			6.3	6.8	5.3	15.8
SG			4.3	10.7	12.6	10.2
SH					11.3	13.2
SO				7.2	7.5	1(
SZ			4.9	9.8	10.2	13.6
TG					14.6	14.0
TI		3.6	5.3	5.0	4.8	5.8
UR			7.4	7.7	7.8	14.3
VD			6.7	8.5	10.2	10.8
VS		4.0	6.5	6.3	5.3	3.8
ZG			0.0	10.9	11.8	16.3
ZH				16.1	11.2	10.9
AG					0.96	1.00
AI				0.45	1.00	
AR				0.74	1.00	
BE		0.34	0.49	0.65	0.91	1.00
BLBS					0.89	1.00
FR			1.00	0.95	0.77	0.73
GE						1.00
GL			0.71	0.79	1.00	
GR		0.52	0.88	1.00	0.81	0.44
JU				0.94	0.72	1.00
LU	Net growth		0.49	0.65	1.00	0.9
NE	factor			0.98	1.00	0.92
NW			0.66	0.59	1.00	
OW			0.4	0.43	0.34	1.0
SG			0.34	0.85	1.00	0.8
SH			0.01	0.00	0.86	1.00
SO				0.72	0.75	1.00
SZ			0.36	0.72	0.75	1.00
TG			0.00	0.72	1.00	1.00
TI		0.62	0.91	0.86	0.83	1.00
UR		0.02	0.51	0.54	0.85	1.00

S2 Table 8: Growth per altitude and canton (upper part; based on [63]) and the corresponding net growth factors (lower part).

Canton/Altitude	>1800	1401-1800	1001-1400	601-1000	<600
VD		0.62	0.79	0.94	1.00
VS	0.62	1.00	0.97	0.82	0.58
ZG		0	0.67	0.72	1.00
ZH			1	0.70	0.68

S3: Wood fuel from residues

S3 Table 9: Theoretical and sustainable potential of wood residues for energy 2020, 2035 and 2050 in Switzerland.

Year		Theoretical	potential	Sustainable	istainable potential		
		[PJ a ⁻¹]*1	M [m ³ a ⁻¹]	[PJ a ⁻¹]*1	M [m ³ a ⁻¹]		
	Minimum	60.2	8.5	5.8	0.8		
2020	Expected	62.1	8.8	7.4	1.0		
	Maximum	64.0	9.1	9.1	1.3		
	Minimum	64.3	8.8	4.2	0.6		
2035	Expected	66.6	9.4	6.1	0.9		
	Maximum	68.8	9.7	7.7	1.1		
2050	Minimum	53.9	7.6	2.4	0.3		
	Expected	56.9	8.1	4.2	0.6		
	Maximum	59.9	8.5	5.9	0.8		

*1primary energy

S3 Table 10: Sustainable forest wood harvesting potential in Switzerland (moderate stock reduction, MSR). The reserve areas, harvest losses and costs are deducted. The wood used for materials has not yet been deducted because wood residues are produced during the processing of wood.

Year		I	M [m ³ a ⁻¹]	
Teal		Broadleaves	Conifers	Total
	Minimum	1.97	2.78	4.75
2020	Expected	2.47	3.42	5.89
	Maximum	2.98	4.17	7.15
	Minimum	1.75	2.25	4.00
2035	Expected	2.46	3.11	5.57
	Maximum	3.02	3.84	6.86
2050	Minimum	1.00	1.53	2.53
	Expected	1.62	2.38	3.99
	Maximum	2.18	3.19	5.38

S4: Wood fuel from waste wood

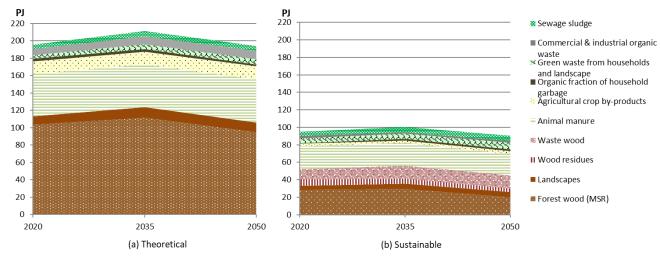
S4 Table 11: Theoretical and sustainable potential of waste wood for energy use in Switzerland in the years 2020, 2035 and 2050.

Year		Theoretical potential		Sustainable pote	ential
Teal		[PJ a ⁻¹]*1	M [t a ⁻¹]	[PJ a ⁻¹]*1	M [t a-1]
2020	Minimum	12.9	0.90	10.6	0.74
	Expected	14.3	1.00	11.7	0.82
	Maximum	15.8	1.10	12.9	0.90
	Minimum	14.8	1.03	12.1	0.85
2035	Expected	16.5	1.15	13.5	0.94
	Maximum	20.3	1.41	17.0	1.18
	Minimum	15.3	1.07	12.6	0.88
2050	Expected	17.1	1.19	14.0	0.97
	Maximum	20.9	1.46	17.5	1.22

*1primary energy

S5: All woody biomass

S5 Table 12: Theoretical potential^{*1} of all woody biomass for energy use in Switzerland in the years, 2020, 2035 and 2050.


Vaar	Christian	[PJ a ⁻¹]*2							
Year	Strategy —	Minimum	Expected	Maximum					
	CSI	167.2	174.7	184.6					
2020	MSR	179.7	187.9	198.8					
	LSR	194.7	203.9	216.1					
	CSI	177.2	195.2	217.8					
2035	MSR	192.7	205.1	222.4					
	LSR	206.7	219.6	237.6					
	CSI	164.8	188.6	217.2					
2050	MSR	162.3	179.1	200.0					
	LSR	149.1	163.2	181.0					

^{*1}Wood residues and waste wood have their origins in forest wood and wood from landscape maintenance. In order to calculate the total theoretical potential of the woody biomass, the theoretical potential of wood residues and waste wood are therefore not added to the theoretical potential of wood fuel.

S5 Table 13: Sustainable potential of all woody biomass for energy use in Switzerland, 2020, 2035 and 2050.

Year	Stratogy -	[PJ a ⁻¹]							
Ieal	Strategy -	Minimum	Expected	Maximum					
	CSI	34.1	44.7	59.5					
2020	MSR	40.1	54.2	64.5					
	LSR	45.9	63.4	75.1					
	CSI	33.6	46.7	64.8					
2035	MSR	42.7	57.3	71.8					
	LSR	43.5	61.8	77.8					
	CSI	29.8	42.6	60.3					
2050	MSR	30.4	44.2	59.4					
	LSR	26.5	38.6	52.9					

S6: All biomass types

S6 Figure1: Theoretical and sustainable potential fuel potentials of all biomass types for 2020, 2035 and 2050. For woody biomass the scenario "expected" was applied and for wood fuel from forests the management strategy moderate stock reduction (MSR) with a less energy oriented wood market (EO-) was applied. The values for the non-woody biomass types were estimated [30] for the first time-step (values for 2014 were used for 2020) and for [39] for the future (2035, 2050).

*Wood residues and waste wood have their origins in the forest wood and wood from landscape maintenance. In order to calculate the total theoretical potential of the woody biomass, the theoretical potential of wood residues and waste wood are therefore not added to the theoretical potential of wood fuel.

S6 Table 14: Comparison of wood that has already been used and the woody and non-woody (wetbiomass) energy potentials in Switzerland [PJ; primary energy] today (2020) and in the future (2035, 2050) [PJ; primary energy].

Category		Already used		Theor (20	retical 20)		iinable 020)	Theor (20			iinable 035)	Theor (20	etical 50)		inable)50)
		useu		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
			CSI*6	86.6	99.5	13.9	24.9	91.1	112.3	13.7	31.7	91.0	117.9	12.4	27.4
	Forests	16.7 *3	MSR*6	99.1	107.7	19.9	36.7	106.6	116.9	20.4	38.7	88.5	100.7	13.0	26.5
			LSR ^{*6}	114.1	125.0	25.7	47.3	120.6	132.1	23.6	44.7	75.5	81.7	9.1	20.0
Woody	Landscapes	2.3 *2		7.5	11.3	3.8	5.8	7.0	16.4	3.6	8.4	4.6	18.5	2.4	9.5
,	Wood residues ^{*4}	7.8 *2		[60.2]	[64.0]	5.8	9.1	[64.3]	[68.8]	4.2	7.7	[53.9]	[59.9]	2.4	5.9
	Waste wood ^{*4}	9.2 * ²		[12.9]	[15.8]	10.6	12.9	[14.8]	[20.3]	12.1	17	[15.3]	[20.9]	12.6	17.5
			CSI*6	94.1	110.8	34.1	52.7	98.1	128.7	33.6	64.8	95.6	136.4	29.8	60.3
All wood	y biomass	36.0	MSR*6	106.6	119.0	40.1	64.5	113.6	133.3	40.3	71.8	93.1	119.2	30.4	59.4
			LSR ^{*6}	121.6	136.3	45.9	75.1	127.6	148.5	43.5	77.8	80.1	100.2	26.5	52.9
Animal manure		2.6 *2		48.8 ^{*2}		20	26.9 ^{*2} 49.2 ^{*1}		26.2 ^{*1}		49.4 ^{*1}		25.0 *1		
	Agricultural crop by	0.0 *2		14.9 * ²		2	2.6 * ² 15.0 *		5.0 ^{*1}	2.7 ^{*1}		15.0 *1		2.7 ^{*1}	
	products														
	Organic fraction of household	6.0 *2		6.0) *2	3	5.9 *2	2.	.7 *1	1.	6 *1	2.3	[*1	2.	.1 *1
Non- woody	garbage Green waste from households and	2.2 *2		4.3 ^{*2}		5	5.8 *2 5.6 *1		6.1 *1		6.3 ^{*1}		7.8 ^{*1}		
	landscape Commercial and industrial organic waste	2.0 *2		13.	13.6 *²		2.7 *2 9.3 *1		.3 *1	1.8 *1		9.3 *1		1.8 *1	
	Sewage sludge	3.4 *2		4.9 ^{*2}		4	.9 *2	5.	.8 *1	5.	8 *1	6.0) *1	6.	.0 *1
All non-w	voody biomass	16.2		92	2.5		46.8	87	7.6	44	2	88	.1	4	5.4
			CSI*6	186.6	203.3	80.9	99.5	185.7	216.3	77.8	109.0	183.7	224.5	75.2	105.7
All bioma	ISS	52.2	MSR ^{*6}	199.1	211.5	86.9	111.3	201.2	220.9	84.5	116.0	181.2	207.3	75.8	104.8
			LSR ^{*6}	214.1	228.8	92.7	121.9	215.2	236.1	87.7	122.0	168.2	188.3	71.9	98.3

*1 Non-woody biomass from [39]

*2 [30]

*3 [20]

^{*4}Wood residues and waste wood have their origins in the forest wood and wood from landscape maintenance. In order to calculate the total theoretical potential of the woody biomass, the theoretical potential of wood residues and waste wood are therefore not added to the theoretical potential of wood fuel.

^{*5} Using the already used amount a starting point and the SPs as the upper limit.

*6 Applied management scenario in forests (CSI: Continuous stock increase; MSR: moderate stock reduction; LSR: Large stock reduction).