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Abstract: Using stock return data for the Japanese equity market, for the period from July 1983 to June
2018, we analyze the effect of major nuclear disasters worldwide on Japanese discount rates. For that
purpose, we compare the performance of the capital asset pricing model (CAPM) conditional on the
event of nuclear disasters with that of the classic CAPM and the Fama–French three- and five-factor
models. In order to control for nuclear disasters, we use an instrument that allows us to parameterize
the linear stochastic discount factor of the conditional CAPM and transform the classic CAPM into
a three-factor model. In this regard, the use of nuclear disasters as an explanatory variable for the
cross-sectional behavior of stock returns is a novel contribution of this research. Our results suggest
that nuclear disasters account for a large fraction of the variation of stock returns, allowing the CAPM
to perform similarly to the Fama–French three- and five-factor models. Furthermore, our results show
that, in general, nuclear disasters are positively related to the expected returns of a large number of
assets under study. Our results have important implications for the task of estimating the cost of
equity and constitute a step forward in understanding the relationship between equity risk premiums
and nuclear disasters.

Keywords: nuclear hazard; rare disasters; corporate value; environmental sustainability; stock
returns; CAPM; Fama–French model; conditioning information; discount rate; cost of equity

1. Introduction

In the last decades, numerous studies have been conducted on environmental protection in a
holistic context, with increasing analysis of its implications for the economy and financial markets.
Some of these studies analyze the protection of the environment and the sustainable exploitation of
natural resources from the perspective of different actors, examining how these aspects can benefit
countries and companies. The study [1] analyzes the relationship between disaster risks and the
production of renewable energy (REN) in the US, concluding that both elements are strongly related.
Specifically, the authors show that disaster risk and REN interact with each other, leading to cyclical
and countercyclical effects, where rare disasters greatly help to forecast REN production. On the other
hand, ref. [2] analyzes the relationship between the quality of internal control, enterprise environmental
protection investment and financial performance, using data for listed companies in China’s A-share
heavy pollution industry, from 2009 to 2018. The authors emphasize the importance of the quality
of internal control, as it has a significant positive impact on environmental protection investment
and financial performance. These results provide an important basis for governments to develop
environmental protection policies and promote internal control in companies, encouraging the use of
third-party organizations to evaluate the effectiveness of internal control. Additionally, the authors
highlight the positive effect of corporate environmental protection on corporate value.
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Importantly, ref. [3] provides empirical evidence for the effects of disaster risk on the government
bond market. In this regard, the authors show that, while disaster risk has a strong influence on return
volatility, its effect on returns is negligible. Although the authors focus primarily on the 10-year US
government bond market, their results suggest that these patterns persist in the United Kingdom and
South Africa bond markets. In this regard, in this present paper, we broaden the scope of the analysis
to study the effects of nuclear disasters on the Japanese equity market and, more particularly, the cost
of equity of Japanese firms.

Nevertheless, nuclear disasters have important consequences in very diverse areas, ranging from
energy policy to environmental care. This fact, together with the destructive effects of some recent
nuclear disasters—especially the Fukushima disaster, in March 2011—has made the discussion for or
against nuclear energy gain renewed importance. In this regard, ref. [4] shows that nuclear disaster
recovery concerns strongly influence public perceptions of risk, where long-term policies that adopt a
cohesive approach are crucial for a return to normality. Indeed, the Fukushima disaster has led several
countries to establish plans to shut down nuclear power plants in the near future, with the consequent
problem of replacing this energy source. On this basis, a large number of studies have analyzed the
impact of these policies from a strategic, technical and political point of view. The study [5] uses a
system dynamics-based approach to argue that early nuclear phase-out would not lead to the extensive
deployment of renewable energy sources and rational energy use. Instead, it would mainly foster the
use of fossil fuels, thus contributing to undesirable effects in terms of the safety of supply, dependence
on foreign suppliers, price volatility and increased use of non-renewable and CO2-emitting fossil fuels.

From an economic perspective, financial markets are severely affected by nuclear disasters.
In general, rare disasters lead capital providers to demand higher returns as a compensation for risk,
which translates into higher equity premiums and, consequently, higher costs of capital for firms [6–8].
Furthermore, rare disasters often share a systematic nature that makes it difficult to eliminate them
via portfolio diversification. In this regard, the literature on rare disasters has greatly contributed to
improving our understanding of the relationship between disaster risk and risk premiums, giving
rise to different models that explicitly relate both magnitudes. Using an approach largely inspired by
the research conducted by [9], part of the rare disaster literature assumes independent and identically
distributed (i.i.d.) consumption growth, which translates into risk premiums that are constant over
time [6,7]. On the other hand, more recent rare disaster models are consistent with the time-varying
nature of discount rates and the predictability pattern of stock returns [8]. Nevertheless, the fact
that a large number of variables used by disaster models are difficult to measure hinders their use in
practical applications.

To overcome these limitations and analyze the effect of nuclear disasters on discount rates from
a practical perspective, in this paper, we study the performance of the capital asset pricing model
(hereafter, CAPM) [10–12] when we control the coefficients of the model for the occurrence of nuclear
catastrophes. For that purpose, we follow the approach suggested by [13,14] to transform conditional
linear asset pricing models into their unconditional versions, preserving the conditioning information
used by investors. This approach allows us to capture shifts in the investment opportunity set that result
from nuclear disasters without reducing the tractability of the model. At this point, it should be noted
that, although the CAPM is the model most widely used in practice to determine the cost of equity—and
consequently, the value of firms [15] (p. 152)—it has traditionally performed poorly in empirical
research [16–19]. Part of the asset pricing literature attributes this poor performance to the fact that
most empirical tests of the CAPM ignore the conditioning information used by investors [13,14,20,21].
Accordingly, in this paper, we assume that stock prices are determined by the first-order condition of a
representative investor who makes consumption and portfolio decisions using an information set that
includes nuclear disasters, in addition to the return of the wealth portfolio. This means that we assume
that the CAPM conditional on the event of nuclear disasters can capture the cross-sectional variation of
stock returns, in what we call hereinafter the conditional CAPM. In this framework, according to [6–8],
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rare disasters should generally translate into higher equity premiums and, consequently, higher costs
of equity.

We test the conditional CAPM on the Japanese equity market, for the period from July 1983 to
June 2018. The relatively large number of nuclear disasters experienced by Japan in recent decades
leads us to believe that their effect should be particularly important in the case of that country. Indeed,
our results show that the conditional CAPM performs very satisfactorily in pricing different sets of
portfolios that are typically mispriced by the classic CAPM, more specifically, 25 size-book-to-market
equity portfolios (hereafter, size-BE/ME portfolios), 25 size-price-earnings ratio portfolios (hereafter,
size-PE portfolios) and 50 industry portfolios.

Our paper contributes to previous research in the following ways. First, our results suggest that
nuclear disasters can greatly help the conditional CAPM to significantly improve its performance relative
to its unconditional counterpart, expanding the literature on the role of conditioning information
in the cross-sectional behavior of stock returns. Furthermore, our research helps to relate the
environmental consequences that result from nuclear disasters with the cost of equity and financial
valuation techniques.

Second, our results show that the CAPM conditional on the event of nuclear disasters performs
very similarly to the Fama–French three- and five-factor models in the Japanese stock market. This fact
suggests that nuclear disasters behave as a state variable of special hedging concern for investors,
in the language of the intertemporal-asset pricing model (ICAPM) [22]. Moreover, these results are
consistent with the statement that Fama–French factors can be assimilated to mimicking portfolios of
fundamental risk factors that comprise nuclear hazard, among other sources of risk.

Third, the strong positive relationship between nuclear disasters and expected returns for a large
number of the assets under consideration can constitute a first step in understanding the impact
of sustainable energy policies on the cost of equity and, consequently, the value of firms. Indeed,
our results suggest that, in most cases, the greater the exposure to nuclear disasters, the higher the
expected return and the cost of equity and, consequently, the lower the value of firms. Accordingly,
sustainable energy policies that replace nuclear power with clean energy can greatly contribute to
reducing the cost of capital and enhancing the creation of corporate value.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework of
the research. Section 3 describes the models under study. Section 4 discusses the results. Finally,
Section 5 concludes.

2. Theoretical Background

Research on the cross-sectional properties of stock returns has one of its main exponents in
the CAPM, in which the investor’s first-order condition implies that the return of the wealth
portfolio—frequently proxied by the market portfolio in empirical research—is the only variable
required to explain stock returns when investors’ preferences are determined by some specific utility
function within a large range of possibilities, such as quadratic utility, exponential utility or log
utility [15] (pp. 152–161). In this framework, the CAPM concludes that expected returns are linearly
related to undiversifiable risk, as measured by beta coefficients. However, the fact that the wealth
portfolio—or its proxies—is not unconditionally mean-variance efficient; the forecastable nature of
stock returns; and, especially, the emergence of a large number of market anomalies have traditionally
challenged the validity of the CAPM [23] (pp. 66–77). These issues have not only increased the gap
between expected returns and betas from 1960, but have even led to inverse patterns between these
two variables [24].

Accordingly, the classic literature on market anomalies focuses especially on those relationships
that the CAPM cannot explain, such as the relationship of expected returns with the firm size [25],
the book-to-market equity ratio [26], the price-to-earnings ratio [27] or the past short-term returns [28].
More recent research analyzes other variables, such as the idiosyncratic volatility [29], the asset
growth [30], the net stock issuance [31] or the gross profitability [32]. Ref. [33] highlights the importance
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of market anomalies for the real economy. In fact, although [34–36] study the influence of market
prices on real investment, the research conducted by [33] is some of the first to quantitatively estimate
the real value losses associated with market anomalies (i.e., alphas).

Nevertheless, it should be noted that if stock returns are unforecastable, the CAPM does not
require any variable other than the return of the wealth portfolio to explain expected returns. However,
time-varying moments in asset returns cause large differences to arise between the ex-ante and ex-post
mean variance frontier, which largely explains the poor performance of the CAPM in empirical research.
Importantly, Cochrane [15] (p. 143) refers to Hansen and Richard’s critique [37], or the fact that a
conditional asset pricing model does not imply an unconditional asset pricing model, to emphasize the
crucial role of conditioning information in asset pricing.

The above issues are addressed by the asset pricing literature from different perspectives. Thus,
while the ICAPM [22] introduces different state variables in addition to the return of the wealth
portfolio to capture shifts in the investment opportunity set of investors, the Arbitrage Pricing Theory
(APT) [38,39] develops a statistical characterization of asset prices, where asset returns are assumed to
share a factor structure, and errors that result from the time-series regressions of returns on factors are
uncorrelated across assets. Although these approaches differ substantially in their economic content,
they both result in different multifactor asset pricing models that, using a wide range of factors, help
to greatly outperform the CAPM. One of the most successful multifactor asset pricing models is the
Fama–French three-factor model [40], which adds two extra factors to the classic CAPM—the small
minus big market value factor (SMB) and the high minus low book-to-market equity factor (HML).
On the other hand, Carhart [41] proposes a four-factor model, adding a momentum factor to the
Fama–French three-factor model. Fama and French [42] expand their three-factor model by including
two additional factors, namely, RMW (the excess return of the most profitable stocks minus the least
profitable) and CMA (the excess return of companies that invest conservatively minus aggressively).

As an alternative to the ICAPM and the APT, Ferson and Schadt [14] suggest parameterizing the
conditional betas in the CAPM using a vector of instruments that allows the model to capture the
conditioning information used by investors. Similarly, Cochrane [13] shows that a conditional beta
model can be written unconditionally simply by writing the linear stochastic discount factor (hereafter,
SDF) as a function of a vector of instruments with some predictive power for asset returns. In both
cases, the unconditional version of the CAPM adds other explanatory variables to the model in addition
to the return of the wealth portfolio to account for the conditioning information. In this regard, ref. [43]
suggests a scaled consumption model that uses the consumer confidence index (CCI) as an instrument.
The authors show that the consumption model scaled by the CCI performs significantly better than its
unscaled counterpart in the European equity market, concluding that the CCI is a feasible instrument
for capturing the conditioning information used by investors.

On the other hand, the relatively high profitability of stocks compared to the growth of the
gross domestic product (GDP) of most countries, as well as their high volatility, has led to some
well-documented puzzles, which are addressed from different perspectives in the asset pricing
literature [44]. In this regard, the literature on rare disasters builds on the fact that an increase in the
risk of disaster makes it likely that a large fraction of consumption will be lost, which results in lower
prices and, consequently, higher expected returns. Accordingly, research on the effects of rare disasters
on asset prices is largely based on the assumption that consumption growth is not lognormal but has a
fat-tailed distribution. According to [6,9], this is consistent with the small probability of the occurrence
of a disaster but also with the uncertainty of investors about the value of the model parameters [45].

In any case, rare disaster models have some limitations that hinder their use for practical purposes;
most of these limitations arise from the unobservable nature of the required variables. For example,
uncertainty about the probability of rare economic shocks constitutes an important drawback of rare
disaster models. Although the literature on rare disasters addresses this problem from different
perspectives that assume either a constant or time-varying probability of disaster [8,46–48], a complete
explanation of the dynamics of rare disasters is still far from being achieved. Interestingly, ref. [49]
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suggests a business cycle model of production and capital accumulation that includes a time-varying
risk of rare disasters. Based on the results of the investment–output ratio, the authors estimate the
jump intensity implicit in the historical data, finding that recession periods coincide with a rapid
increase in the probability of a disaster. Additionally, the study shows that the presence of adjustment
costs generates a procyclical price of capital that helps explain the equity premium puzzle. On the
other hand, the study [50] introduces ambiguity aversion—i.e., investors who exhibit conservative
behavior due to uncertainty about the true model of the economy—into a general equilibrium model
with catastrophic shocks. The authors conclude that ambiguity aversion helps explain both the equity
risk premium puzzle and the risk-free rate puzzle. However, all these models share common problems
arising from the unobservable nature of some of their explanatory variables, which limits their use in
practical applications.

On this basis, below, we exploit the tractability of the approach suggested by [13] in determining
the unconditional version of the conditional beta models, to analyze the effect of nuclear disasters on
the cost of equity of the companies listed in Japan, using the CAPM for this purpose. In particular,
we use the information provided by the occurrence of nuclear disasters, as measured by an instrument
zt, to transform the conditional CAPM into an unconditional three-factor model, with the return of the
wealth portfolio, the instrument zt, and the cross-product of the return of the wealth portfolio and zt

as model factors. As shown below, this allows the CAPM conditional on the occurrence of a nuclear
disaster to generate testable predictions of the cost of equity.

3. Models

Building on the fact that the law of one price—that is, the fact that two assets that provide the
same payoffs in all states of nature have the same price—guarantees the existence of a single SDF in
the payoff space that prices all assets without an error term [51–53], some of the most prominent asset
pricing models constitute attempts to find an economic explanation for such SDFs. Specifically, the law
of one price mechanically guarantees that the following pricing function is exactly satisfied:

pt = Et(mt+1xt+1) (1)

where pt is the N-dimensional vector of prices, mt+1 is the SDF, xt+1 is the N-dimensional vector of
payoffs and Et(·) is the expectation conditional on time t information. Since asset returns are a specific
class of investment with a price equal to one and payoff Rt+1, we can particularize expression (1)
as follows:

1 = Et(mt+1Rt+1) (2)

The difference between two returns is an excess return Re
t+1, which represents a long position in

an asset that is funded by a short position in another asset. Consequently, the excess returns are assets
with price zero, which allows us to rewrite expression (2) as follows:

0 = Et
(
mt+1Re

t+1

)
(3)

Writing the second moment on the right-hand side of expression (3) as a function of the covariance
between Re

t+1 and mt+1, we can rearrange expression (3) to write the expected excess returns as a
function of mt+1, as follows:

Et
(
Re

t+1

)
= −

covt
(
mt+1, Re

t+1

)
Et(mt+1)

(4)

Most of the asset pricing literature uses beta representations to evaluate model performance, that is,
representations where the expected returns are a function of the slope coefficients that result from the
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time-series regression of excess returns on factors. Accordingly, the transformation of expression (4)
into a beta model is straightforward, achieved simply by multiplying and dividing by var(mt+1):

Et
(
Re

t+1

)
= −

covt
(
mt+1, Re

t+1

)
vart(mt+1)

[
−

vart(mt+1)

Et(mt+1)

]
= βt

(
mt+1, Re

t+1

)
λt(mt+1) (5)

Although the above expressions are satisfied regardless of the linearity or nonlinearity of mt+1,
for the sake of simplicity, we follow the common practice of linearizing the SDF in a K-dimensional
vector of factors, so mt+1 can be written as follows (for a complete review of the procedures that allow
linearizing the SDF of any asset pricing model, see [15] (pp. 161–165)):

mt+1 = at + b′tft+1 (6)

where at and bt are parameters and ft+1 is the vector of factors. Accordingly, expression (5) can be
transformed into a factor model, as follows:

Et
(
Re

t+1

)
= βt

(
ft+1, Re

t+1

)
λt(ft+1) = βt,fλt,f (7)

where βt,f is the matrix of order N × K of betas of the excess returns on factors (i.e., the risk loadings),
and λt,f is the K-dimensional vector of the prices of risk. Importantly, the CAPM assumes that
ft+1 = RW

t+1, where RW
t+1 is the rate of return of the wealth portfolio. In that case, expression (7) can be

written as follows:
Et

(
Re

t+1

)
= βt,Rwλt,Rw (8)

It should be noted that all the previous expressions assume time-varying parameters. However,
when the asset returns are i.i.d., there is no difference between the conditional and unconditional
versions of the model, and expression (7) can be written as follows:

E
(
Re

t+1

)
= βfλf (9)

Hereafter, we denote expression (9) as the unconditional CAPM or simply the CAPM, for the
specific case that f = Rw. However, the forecastable nature of asset returns results in shifts in the
investment opportunity set of investors, which partially invalidates expression (9). In this regard,
according to [13], to determine the unconditional version of expression (7), it is sufficient to consider
that coefficients at and bt in expression (6) vary linearly with an instrument or vector of instruments
observable at time t, where the instruments should be forecasting variables for excess returns [20].
Accordingly, we use the approach suggested by [13] to transform expression (8) into an unconditional
asset pricing model. Specifically, our model controls for the time-varying nature of parameters in
expression (8) using a variable that accounts for the occurrence of nuclear disasters. In particular, we
assume a linear SDF with time-varying parameters that depend on the occurrence or non-occurrence of
a nuclear disaster in the previous period, using an instrument zt that takes a value of 1 when a nuclear
disaster occurs and 0 otherwise. Accordingly, we define the following SDF:

mt+1 = at + btRW
t+1 = θ0 + θ1zt + (Ψ0 + Ψ1zt)Rw

t+1 (10)

where θ0, θ1, Ψ0 and Ψ1 are parameters. The use of zt as an instrument allows us to drop the t
subscripts in at and bt, under the assumption that their time-varying nature arises from the occurrence
of a nuclear disaster. Although the conditioning information used by investors comprises a large
number of observable and unobservable variables, in order to isolate the effect of nuclear disasters on
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asset prices, in this paper, we assume that these rare events allow us to perfectly explain the variable
nature of at and bt in expression (10). Accordingly, expression (3) can be rewritten as follows:

0 = E
{[
θ0 + θ1zt + (Ψ0 + Ψ1zt)Rw

t+1

]
Re

t+1

}
(11)

Rearranging terms, we obtain the following model, hereafter referred to as the conditional CAPM:

E
(
Re

t+1

)
= β

(
Rw

t+1, Re
t+1

)
λ
(
RW

t+1

)
+β

(
zt, Re

t+1

)
λ(zt) +β

(
ztRw

t+1, Re
t+1

)
λ
(
ztRw

t+1

)
= βRwλRw +βzλz +βzRwλzRw

(12)

Expression (12) shows that the parameterization of at and bt, as defined above, allows us to
transform the single-factor model shown in expression (8) into an unconditional three-factor model,
with Rw

t+1, zt and Rw
t+1zt as the explanatory variables.

In the next section, we compare the performance of the unconditional and conditional CAPM,
as represented in expressions (9) and (12), respectively, with that of the Fama–French three- and
five-factor models, for the Japanese equity market. Using expression (9), the Fama–French three-factor
model assumes that f′t+1 =

(
RMRF SMB HML

)
, while the Fama–French five-factor model assumes

that f′t+1 =
(

RMRF SMB HML RMW CMA
)
, where RMRF is the return of the value-weighted

market portfolio minus the risk-free rate. All the calculations below use RMRF as a proxy for the return
of the wealth portfolio RW

t+1, as typical in the asset pricing literature.

4. Results and Discussion

As noted above, we test the models described in the previous section on different sets of portfolios,
covering all stocks listed on the Japanese equity market (i.e., the Tokyo Stock Exchange, the JASDAQ
Securities Exchange and the Osaka Securities Exchange), for the period from July 1983 to June 2018.
This period covers different major nuclear disasters worldwide, as reported by Bloomberg news and
BBC news, namely, the disasters at (i) the Chernobyl power plant (Ukraine, 26 April 1986); (ii) Séversk,
formerly Tomsk-7 (Russia, 6 April 1993); (iii) the Tokaimura nuclear fuel processing facility (Japan,
30 September 1999); (iv) the Mihama power plant (Japan, 9 August 2004); (v) the Fukushima Daiichi
power plant (Japan, 11 March 2011); and (vi) the Marcoule nuclear site (France, 12 September 2011).

Unlike many studies that analyze the performance of asset pricing models in international stock
markets other than the US equity market, we test the models from the perspective of a domestic
representative investor. This leads us to use yen stock data and the three-month Treasury Bill rate for
Japan, as provided by the OECD, as the risk-free rate. Importantly, many other studies, such as [54],
take the perspective of an international investor—often an US investor—investing in an international
equity market, which means that all the stock data and the risk-free rate are denominated in dollars.
By contrast, in order to avoid distortions due to fluctuations in the exchange rate for Japan over time,
we perform all calculations in local currency. This fact largely conditions the data source used in the
research, since most data series publicly available for portfolio returns, as is the case of those available
on the Kenneth French website, are denominated in dollars. Accordingly, we collect all stock data
from the Datastream database and fully process all the data series used in the research. In particular,
we collect data series for the following items, on a monthly basis: (i) the total return index (RI series),
which allows us to determine stock returns; (ii) market value (MV series); (iii) market-to-book equity
(PTBV series); (iv) total assets (WC02999 series); (v) return on equity (WC08301 series); (vi) tax rate
(WC08346 series); (vii) price-to-earnings ratio (PE series); and (viii) primary SIC codes. We use the
filters suggested by [55] for Datastream series to exclude special purpose vehicles from the data.
Additionally, we remove all companies with fewer than 12 observations in RI series for the period
under analysis. Therefore, our sample comprises 5212 stocks, considering all companies that made
initial public offerings or that were delisted in the period under study. It is worth noting that the
fact that our data series include all the stocks delisted in the period (a total number of 1623) allows
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us to mitigate the survivorship bias in the sample, helping to improve the reliability of the results.
Remarkably, the average number of trading years of stocks amounts to 21.42. General information on
all the firms included in the study is available at [56].

We use the monthly series referred to above to generate three sets of portfolios, which constitute
our test assets. First, we form 25 size-BE/ME portfolios following a procedure analogous to that
suggested by [40]. Specifically, at the end of June of each year, we allocate all stocks to quintiles based
on their market equity, and, analogously, we allocate stocks in an independent sort to five BE/ME
groups. Size-BE/ME portfolios are determined as the intersections of the size and BE/ME groups.
We calculate value-weighted returns on a monthly basis using the market equity at the beginning of
each month to determine the portfolio weights. Second, we form 25 size-PE portfolios using the same
methodology. Third, we form 50 industry portfolios using two-digit SIC codes. Finally, we determine
the Fama–French factors in an analogous way, following the methodology described in [40,42]. All the
return data for the portfolios and factors under consideration are publicly available at [56].

Table 1 shows the number of stocks considered in each set of portfolios for the period under study.
Importantly, the industry portfolios include all the stocks traded on the Japanese equity market in
each period, while the size-BE/ME and size-PE portfolios comprise a smaller number of stocks due
to the presence of missing data in the sorting variables. The data available at [56] also provide the
number of stocks included in each portfolio each year, revealing that missing data are particularly
important at the beginning of the period and affect all size quintiles. Although this fact can result in
worse measured betas given the higher residual variance of the portfolios [15] (p. 436), we perform all
calculations using the entire period under study in order to enhance the statistical significance of the
expected returns and consider major nuclear disasters in recent decades, as shown below.

Table 1. Number of stocks in portfolios.

Panel A: Size-BE/ME Port. Panel B: Size-PE Port. Panel C: Industry Port.

Year Stocks Year Stocks Year Stocks

1983 168 1983 156 1983 954
1984 191 1984 183 1984 957
1985 214 1985 198 1985 958
1986 217 1986 198 1986 958
1987 237 1987 225 1987 1068
1988 321 1988 309 1988 1569
1989 356 1989 425 1989 1812
1990 470 1990 557 1990 2086
1991 666 1991 624 1991 2253
1992 811 1992 707 1992 2345
1993 864 1993 683 1993 2413
1994 822 1994 642 1994 2533
1995 828 1995 655 1995 2729
1996 845 1996 710 1996 2861
1997 865 1997 902 1997 2997
1998 1048 1998 746 1998 3057
1999 1491 1999 1033 1999 3118
2000 1711 2000 1253 2000 3260
2001 1869 2001 1361 2001 3367
2002 1892 2002 1252 2002 3431
2003 1897 2003 1403 2003 3423
2004 1969 2004 1689 2004 3476
2005 1998 2005 1639 2005 3532
2006 2117 2006 1815 2006 3627
2007 2096 2007 1742 2007 3690
2008 1994 2008 1545 2008 3644
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Table 1. Cont.

Panel A: Size-BE/ME Port. Panel B: Size-PE Port. Panel C: Industry Port.

Year Stocks Year Stocks Year Stocks

2009 1913 2009 1021 2009 3578
2010 1861 2010 1466 2010 3470
2011 1921 2011 1557 2011 3398
2012 3049 2012 2487 2012 3345
2013 3099 2013 2660 2013 3306
2014 3114 2014 2701 2014 3313
2015 3142 2015 2728 2015 3375
2016 3171 2016 2667 2016 3404
2017 3221 2017 2872 2017 3412

Note: The table shows the number of stocks at the end of June of each year, which determines the stocks included in
the portfolios for the next 12 months.

In order to test the models described in the previous section, we compound the monthly return
series to determine annual returns, thus assuming that a nuclear disaster that occurs in year t influences
the stock returns of year t + 1. This simplification allows us to mitigate the problems that arise from
the specification of the duration of the disasters and help to promote consistency with the mechanics
of the conditional CAPM, as described in the previous section. As noted above, the period under
study covers six major nuclear disasters worldwide, with two of them occurring in the same year (the
Fukushima Daiichi power plant and the Marcoule nuclear site disasters, in 2011), which means that
the instrument zt takes a value of 1 in five years out of the 35 that constitute our sample, specifically,
for 1986, 1993, 1999, 2004 and 2011. In any case, in order to highlight the prevalence of annual results
at other frequencies, in the Appendix A, we also provide model results on a quarterly basis. For that
purpose, we assume that the effect of nuclear disasters on stock returns lasts for four quarters following
the occurrence of the disaster by assigning the instrument zt a value of 1 for those periods. As detailed
below, although the instrument zt allows the CAPM to perform significantly better both on an annual
and a quarterly basis, the prices of the risk that result from the model are highly sensitive to the
periodicity of returns. Consistent with [24], this suggests that nuclear disasters should help to forecast
either dividend growth or changes in the term structure of risk premia.

Table 2 reports annual averages and t-statistics for the portfolios and factors under consideration.
As shown, in the vast majority of cases, the expected returns are statistically significant, which is a
direct consequence of the large number of years considered in the analysis. Furthermore, Panels A and
B in Table 2 show that the size effect works as expected, meaning that the higher the market value of
the firms included in the portfolios, the lower the average excess return, and vice versa. Remarkably,
the BE/ME and PE quintiles provide much more diffuse patterns. Specifically, while the portfolios in
the fourth size quintile in Panel A exhibit higher returns as the BE/ME ratio increases, the portfolios
in the other quintiles exhibit irregular patterns. This is consistent with the strong reduction in the
value premium experienced in other equity markets, as noted by [15] (p. 452). The same applies to the
PE quintiles.

It is worth mentioning that the high average return shown in Table 2, Panel A, for the portfolio in
the first size and BE/ME quintiles is caused primarily by the presence of several stocks with extreme
returns over different periods of time, where this effect is magnified by the fact that we weight the
monthly returns using the market equity at the beginning of each month. In any case, the high variation
in expected returns across the portfolios helps the regression results shown below to more clearly
capture the differences in the performance of the models under study. Regarding factors, Panel D in
Table 2 shows that the mean for RMRF amounts to 17.21%, which is a relatively high value compared
to other stock markets. In any case, the Sharpe ratio—i.e., the ratio of the mean return to the standard
deviation—for RMRF is 0.5, which is fully in line with its value in most countries, usually ranging
from 0.4 to 0.5.
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Table 2. Summary statistics.

Panel A: 25 portfolios size-BE/ME

BE/ME quintiles BE/ME quintiles

Size Low 2 3 4 High Size Low 2 3 4 High

Means t-statistics

Small 73.36 55.92 57.46 40.23 37.63 Small 3.16 2.72 3.24 4.35 4.62
2 38.99 37.18 31.49 27.78 31.95 2 2.98 3.33 3.70 3.99 4.16
3 30.40 32.09 24.24 21.75 27.98 3 3.11 2.44 3.71 3.99 4.19
4 24.36 16.53 17.99 20.37 31.49 4 2.49 3.09 3.36 3.91 3.67

Big 13.12 14.27 18.42 16.38 15.03 Big 1.93 2.60 3.12 3.52 2.90

Panel B: 25 portfolios size-PE

PE quintiles PE quintiles

Size Low 2 3 4 High Size Low 2 3 4 High

Means t-statistics

Small 39.48 36.53 36.28 39.88 57.37 Small 3.88 3.60 4.08 3.72 2.23
2 32.39 28.46 27.79 39.93 24.68 2 4.04 3.70 3.40 3.21 3.63
3 27.58 24.20 23.18 27.42 21.17 3 3.81 3.65 2.89 3.49 2.93
4 22.39 21.34 17.35 17.34 25.57 4 3.76 3.56 3.54 3.29 2.18

Big 10.15 16.37 16.80 15.16 12.22 Big 2.52 2.64 2.83 2.43 1.86

Panel C: Industry portfolios deciles

Means t-statistics

1–5 9.34 11.07 12.25 12.79 13.87 1–5 1.71 1.94 2.11 2.22 2.46
6–10 14.82 16.43 18.85 21.08 50.33 6–10 2.66 2.77 2.99 3.27 3.92

Panel D: Factors and instruments

RMRF SMB HML RMW CMA z zRMRF

Means 17.21 16.37 1.40 10.76 −1.43 Means 0.15 Means 7.22
t-stat. 2.90 3.24 0.34 3.20 −0.55 t-stat. 2.38 t-stat. 1.51

Note: All results are determined using annual data. Means are percentages.

We estimate the models described in the previous section using the two-pass cross-sectional
regression (CSR) procedure, where the time-series regressions of the portfolio returns on factors provide
the beta estimates in expressions (9) and (12), and the cross-sectional regression of the expected returns
on betas provides the lambda coefficients shown in the same expressions. In this framework, it should
be noted that the cross-sectional correlation of errors in the time-series regressions and the estimated
nature of betas can significantly distort standard errors [57,58]. To correct these problems, we map
the two-pass CSR procedure into the generalized method of moments (GMM), using the following
moment restrictions [15] (p. 241):

gT(b) =

E
E
(
Re

t − a−βXt
)[(

Re
t − a−βXt

)
Xt

]
E
(
Re

t −βλ
)

 (13)

where a is the vector of the intercepts of the time-series regressions, and Xt is the vector of the explanatory
variables, meaning that Xt = ft in the case of unconditional models, and X′t =

(
Rw

t zt−1 zt−1Rw
t

)
in

the case of the conditional CAPM. We estimate standard errors using a spectral density matrix with
zero leads and lags.

Table 3 provides the beta estimates that result from the time-series regressions of the excess returns
on factors for the conditional CAPM, while Table 4 reports their t-statistics. Importantly, Table 4
shows that, in most cases, the betas for RMRF and zRMRF are highly significant. This is an important
result, as the betas for zRMRF explicitly allow the conditional CAPM to reproduce the behavior of
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the time-varying betas in expression (8), leading this cross-product to become a crucial factor when
parameterizing the beta coefficients in the conditional asset pricing models [44] (p. 286).

Table 5 shows the results for the cross-sectional regression of the expected returns on betas
for all models under consideration, on an annual basis. Table 5 displays two rows for each model,
where the first row shows the lambda estimates and the second row, the t-statistics. We evaluate model
performance using three indicators, namely, the R2 statistic, the mean absolute error (MAE) and the
Hansen J-statistic [59]. Regarding R2 statistics, Table 3 provides both the ordinary least squares (OLS)
estimates and the generalized least squares (GLS) estimates, in that order, for each model. Lewellen,
Nagel and Shanken [60] explain that, while the GLS R2 statistic is strongly related to the relative
efficiency of the factor-mimicking portfolio embedded in the model factors, in the case of the OLS R2

statistic, such a relationship only exists when the factor-mimicking portfolio is mean-variance efficient,
which can lead the OLS R2 statistic to provide spurious results otherwise. Accordingly, the authors
suggest providing both estimates when evaluating model performance. On the other hand, the MAE
is determined as the average of the absolute value of the pricing errors, where the pricing errors
are calculated as the difference between the expected excess returns in Table 2 and the fitted values
provided by the model. As noted, the last column in Table 5 shows the results obtained for the J-test
for overidentifying restrictions, following the methodology suggested by [59].

Table 3 shows that the majority of the portfolios considered exhibit positive risk loadings for the
instrument z, while the loadings for zRMRF are generally negative. In parallel, the prices of risk λz

and λzRMRF shown in Table 5 for the conditional CAPM are positive in all cases (see Rows 2, 6 and 10
in Table 5), meaning that, according to expression (12), the impact of nuclear disasters on expected
returns is the result of two opposing forces. First, all other things being equal, nuclear disasters imply
higher expected returns and, consequently, higher costs of equity due to the co-movement of stock
returns with the instrument z lagged one period. Second, nuclear disasters can result in lower discount
rates, given the time-varying nature of the betas in expression (8), as captured by the third term on the
right-hand side of expression (12), and the negative exposure to zRMRF of most portfolios. On a net
basis, Rows 2 and 6 in Table 5 show that the price of risk λz in the conditional CAPM, for size-BE/ME
and size-PE portfolios, is significantly higher than λzRMRF, which means that the net effect of nuclear
disasters on expected returns is positive. However, the results shown in Row 10 in Table 5 for industry
portfolios reveal that the effect of nuclear disasters on discount rates can vary greatly depending on
risk loadings, given the small values of λz and λzRMRF in Row 10.

Regarding the performance of the CAPM for the Japanese equity market, Table 5 shows that, in
general, the introduction of the instrument z to control for nuclear disasters substantially improves the
performance of the conditional version of the model, especially for size-BE/ME and size-PE portfolios.
Indeed, for size-BE/ME portfolios, Panel A shows that the unconditional CAPM (Row 1) provides
an OLS R2 statistic of 0.496, while it increases to 0.938 in the case of its conditional counterpart.
Consistently, the MAE is more than halved when we control for nuclear disasters, decreasing from
7.77% to 2.86% in Models 1 and 2, respectively. In any case, it is worth noting that the GLS R2 statistics
in Panel A lead to more moderate results, with the unconditional CAPM and its conditional version
providing GLS R2 statistics of 0.491 and 0.681, respectively. This means that, although the instrument z
helps the conditional CAPM to significantly reduce pricing errors, the factor-mimicking portfolio of
the model is far from being mean-variance efficient. However, as shown in the last column in Table 5,
the J-test for overidentifying restrictions does not reject the conditional CAPM, while it rejects most of
the other models shown in Table 5.
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Table 3. Beta coefficients for the conditional capital asset pricing model (CAPM).

Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF

Panel A: 25 portfolios size-BE/ME Panel B: 25 portfolios size-PE Panel C: 50 industry portfolios

11 3.44 0.28 −2.59 11 1.64 0.13 −0.97 I13 0.81 0.08 −0.84 I41 0.63 0.26 −0.87
12 1.26 1.73 −1.92 12 1.79 0.42 −2.03 I14 1.01 0.19 −1.39 I42 0.76 0.21 −0.41
13 2.55 0.52 −3.26 13 1.53 0.07 −1.29 I15 0.94 0.28 −1.15 I44 1.13 −0.01 −1.14
14 1.66 0.17 −1.46 14 1.53 0.11 −1.69 I16 0.75 0.32 −0.89 I45 0.68 0.17 −0.78
15 1.24 0.45 −1.20 15 1.17 2.62 −3.18 I17 0.64 0.26 −0.87 I47 0.88 0.22 −0.63
21 2.21 0.23 −2.54 21 1.47 0.12 −1.04 I20 0.53 0.13 −0.53 I48 0.88 −0.12 0.82
22 1.87 0.07 −1.48 22 1.34 0.13 −1.07 I22 0.85 0.11 −1.05 I49 0.56 0.22 −0.49
23 1.20 0.45 −0.75 23 1.35 0.25 −1.36 I23 0.74 0.12 −0.80 I50 1.00 0.07 −0.54
24 1.20 0.14 −1.05 24 1.76 −0.03 −0.19 I24 0.53 0.27 −0.72 I51 0.98 0.15 −0.59
25 1.35 0.24 −1.38 25 1.20 0.20 −1.17 I25 0.73 0.12 −0.70 I53 1.01 0.25 −1.05
31 1.76 0.03 −1.23 31 1.26 0.10 −0.52 I26 0.59 0.06 −0.49 I54 0.70 0.04 0.30
32 1.83 −0.18 0.16 32 1.10 −0.03 −0.32 I27 0.73 0.15 −0.58 I56 0.98 −0.12 0.79
33 1.08 0.15 −0.77 33 1.38 0.13 −1.18 I28 0.60 0.04 −0.47 I57 2.13 −0.87 5.68
34 0.97 0.11 −0.75 34 1.15 0.35 −1.03 I29 0.69 0.13 −0.74 I58 0.55 0.17 −0.19
35 1.08 0.10 −0.35 35 1.18 0.10 −1.21 I30 0.73 0.15 −0.92 I59 0.92 0.11 0.15
41 1.31 −0.03 0.46 41 1.07 0.06 −0.44 I31 0.77 0.18 −0.89 I60 1.03 0.12 −0.82
42 0.99 0.04 −0.51 42 1.06 0.03 −0.34 I32 0.76 0.08 −0.85 I61 0.79 0.39 −0.71
43 0.96 0.00 −0.37 43 0.86 0.05 −0.42 I33 1.30 0.00 −1.37 I62 1.45 0.03 0.12
44 0.88 0.09 −0.69 44 0.86 0.03 −0.17 I34 0.81 0.07 −0.98 I63 0.79 0.02 −0.73
45 1.28 0.02 0.12 45 1.32 −0.20 1.15 I35 1.03 −0.04 −0.51 I70 1.31 0.10 −1.16
51 1.04 −0.04 0.15 51 0.65 0.10 −0.71 I36 0.96 −0.13 0.22 I73 1.30 −0.12 1.39
52 0.88 0.08 −0.11 52 0.96 0.12 −0.06 I37 0.78 0.01 −0.46 I78 0.99 0.05 −0.22
53 0.90 0.09 −0.16 53 0.81 0.11 0.11 I38 0.66 −0.12 0.00 I79 0.98 0.05 −0.31
54 0.82 0.14 −0.88 54 0.91 −0.04 0.28 I39 0.71 −0.13 0.15 I87 1.44 −0.06 −1.51
55 0.89 0.26 −0.94 55 1.03 −0.07 0.14 I40 0.68 0.13 −0.68 I89 1.58 0.18 −0.58

Note: The table shows the beta coefficients that result from the time-series regressions of returns on factors and instruments. All results are determined on an annual basis.
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Table 4. t-statistics for the beta coefficients of the conditional CAPM.

Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF Portfolio βRMRF βz βzRMRF

Panel A: 25 portfolios size-BE/ME Panel B: 25 portfolios size-PE Panel C: 50 industry portfolios

11 5.31 0.44 −2.35 11 6.71 0.55 −2.33 I13 6.83 0.71 −4.16 I41 3.38 1.44 −2.72
12 1.82 2.54 −1.62 12 8.34 1.99 −5.54 I14 6.55 1.28 −5.31 I42 9.01 2.48 −2.83
13 5.06 1.05 −3.80 13 7.29 0.33 −3.62 I15 5.03 1.55 −3.61 I44 7.67 −0.09 −4.52
14 8.40 0.88 −4.33 14 4.93 0.37 −3.18 I16 4.47 1.94 −3.11 I45 4.44 1.14 −3.00
15 6.03 2.24 −3.42 15 1.37 3.10 −2.17 I17 4.56 1.89 −3.61 I47 6.43 1.62 −2.71
21 7.15 0.76 −4.82 21 9.74 0.83 −4.03 I20 4.95 1.19 −2.87 I48 4.63 −0.65 2.54
22 6.78 0.25 −3.16 22 7.77 0.79 −3.65 I22 5.75 0.74 −4.14 I49 2.82 1.13 −1.46
23 5.74 2.18 −2.10 23 6.74 1.26 −3.98 I23 6.35 1.04 −4.03 I50 8.51 0.64 −2.69
24 7.55 0.92 −3.85 24 6.02 −0.12 −0.37 I24 3.57 1.84 −2.85 I51 10.55 1.69 −3.77
25 7.94 1.45 −4.78 25 8.02 1.35 −4.61 I25 5.05 0.81 −2.82 I53 7.56 1.90 −4.61
31 8.71 0.13 −3.57 31 10.42 0.86 −2.52 I26 6.83 0.65 −3.31 I54 4.89 0.29 1.22
32 6.30 −0.63 0.32 32 8.46 −0.21 −1.46 I27 8.80 1.86 −4.13 I56 4.53 −0.57 2.14
33 6.99 0.98 −2.94 33 7.44 0.73 −3.74 I28 6.15 0.37 −2.82 I57 3.83 −1.60 6.00
34 8.55 0.96 −3.89 34 5.42 1.68 −2.84 I29 5.47 1.07 −3.45 I58 6.39 2.01 −1.32
35 8.45 0.79 −1.61 35 6.37 0.55 −3.83 I30 7.46 1.55 −5.48 I59 5.38 0.65 0.52
41 8.83 −0.20 1.80 41 12.16 0.70 −2.92 I31 5.16 1.21 −3.48 I60 5.58 0.67 −2.60
42 12.12 0.53 −3.62 42 12.06 0.38 −2.30 I32 5.28 0.56 −3.45 I61 5.08 2.54 −2.68
43 10.99 −0.01 −2.50 43 9.75 0.63 −2.76 I33 8.33 0.01 −5.16 I62 8.62 0.20 0.40
44 7.08 0.74 −3.26 44 9.65 0.33 −1.15 I34 8.71 0.78 −6.17 I63 6.10 0.13 −3.28
45 10.14 0.14 0.55 45 7.78 −1.17 3.95 I35 14.05 −0.51 −4.12 I70 6.21 0.50 −3.23
51 13.45 −0.53 1.16 51 6.28 0.97 −4.04 I36 8.65 −1.14 1.18 I73 6.22 −0.61 3.92
52 11.84 1.17 −0.87 52 11.46 1.41 −0.42 I37 7.04 0.13 −2.44 I78 6.57 0.33 −0.85
53 7.99 0.80 −0.85 53 8.32 1.14 0.66 I38 7.04 −1.35 0.03 I79 6.44 0.30 −1.18
54 8.11 1.44 −5.06 54 18.41 −0.82 3.35 I39 4.93 −0.94 0.60 I87 6.50 −0.26 −4.01
55 7.89 2.35 −4.87 55 13.89 −0.99 1.10 I40 4.66 0.94 −2.74 I89 6.76 0.77 −1.45

Note: The table shows the t-statistics of beta coefficients that result from the time-series regressions of returns on factors and instruments. All results are determined on an annual basis.
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Table 5. Regression results for factor models.

Market factors Instrument

Row Model Intercept λRMRF λSMB λHML λRMW λCMA λz λzRMRF R2 MAE (%) J-test

Panel A: 25 portfolios size-BE/ME

1 Unconditional CAPM 0.039 0.249 0.496 7.77 55.022
(0.490) (2.152) 0.491 (0.000)

2 Conditional CAPM 0.015 0.209 0.206 0.015 0.938 2.86 31.696
(−0.152) (1.871) (1.337) (0.300) 0.681 (0.063)

3 Fama–French (3 factors) 0.009 0.161 0.161 0.015 0.939 2.97 45.541
(0.121) (1.882) (2.886) (0.229) 0.889 (0.001)

4 Fama–French (5 factors) −0.009 0.177 0.168 0.012 0.067 0.018 0.942 2.79 34.529
(−0.147) (2.002) (3.167) (0.217) (1.499) (0.488) (0.016)

Panel B: 25 portfolios size-PE

5 Unconditional CAPM 0.146 0.123 0.102 7.47 73.746
(1.914) (1.450) 0.074 (0.000)

6 Conditional CAPM −0.075 0.263 0.139 0.010 0.907 2.38 38.666
(−0.931) (2.440) (0.989) (0.194) 0.485 (0.011)

7 Fama–French (3 factors) 0.030 0.142 0.144 0.008 0.932 2.13 52.549
(0.528) (1.668) (2.380) (0.129) 0.916 (0.000)

8 Fama–French (5 factors) 0.016 0.159 0.148 0.008 0.052 0.020 0.938 2.02 45.870
(0.277) (1.877) (2.814) (0.145) (1.084) (0.440) 0.761 (0.001)

Panel C: 50 industry portfolios

9 Unconditional CAPM 0.081 0.097 0.771 2.52 53.592
(1.346) (1.117) 0.563 (0.268)

10 Conditional CAPM 0.045 0.133 0.020 0.030 0.801 2.33 47.924
(1.423) (1.832) (0.199) (0.643) 0.730 (0.395)

11 Fama–French (3 factors) 0.047 0.121 0.075 −0.020 0.835 2.10 48.446
(0.937) (1.454) (1.263) (−0.324) 0.740 (0.375)

12 Fama–French (5 factors) 0.035 0.135 0.087 −0.034 0.019 −0.020 0.853 1.98 42.586
(0.650) (1.576) (1.350) (−0.595) (0.492) (−0.471) 0.839 (0.532)

Notes: The table displays two rows for each model, where the first row shows the coefficient estimates and the second row, the t-statistics. Ordinary least squares (OLS) and generalized
least squares (GLS) R2 statistics are provided for each model, in that order. All p-values resulting from the J-tests are in parentheses. We use an annual frequency to estimate all models.
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Additionally, the results in Table 5, Panel A, show that the instrument z allows the conditional
CAPM to perform very similarly to the Fama–French three- and five-factor models, which provide
MAEs that range from 2.79% to 2.97%. However, it should be noted that, although the conditional CAPM
and the Fama–French three-factor model provide OLS R2 statistics of 0.938 and 0.939, respectively,
their GLS counterparts amount to 0.681 and 0.889. Moreover, the OLS and GLS R2 statistics of the
Fama–French five-factor model are 0.942 and 0.897, respectively. This means that the factor-mimicking
portfolios of the Fama–French models are closer to being mean-variance efficient than those of the
conditional CAPM. Table A1, Panel A, in the Appendix A shows that the gap between the conditional
CAPM and the Fama–French models increases on a quarterly basis. Nevertheless, the explanatory
power of nuclear disasters clearly persists in Table A1, with the instrument z allowing the CAPM to
increase the OLS R2 statistic from 0.099 to 0.769 (Models 1 and 2, respectively) and the MAE to fall from
1.85% to 0.95%. Remarkably, while the price of risk λzRMRF is positive and statistically insignificant
in Table 5, it turns out to be negative and statistically significant in Table A1. This fact suggests that
nuclear disasters should either forecast dividend growth or alter the term structure of expected returns,
as is the case with other variables used successfully as instruments in the asset pricing literature, such
as the consumption–wealth ratio [20,24].

Panel B in Table 5 shows that the size-PE portfolios provide similar results to the size-BE/ME
portfolios in Panel A. Furthermore, Rows 5 and 6 show that nuclear disasters contribute to improving
the performance of the CAPM to a greater extent in Panel B than in Panel A. In particular, as shown in
Panel B, the OLS R2 statistic of the unconditional CAPM amounts to 0.102, while it rises to 0.907 for its
conditional version. Moreover, the instrument z helps the CAPM divide the MAE by more than three,
which falls from 7.47 to 2.38 in Rows 5 and 6, respectively. As in Panel A, the Fama–French five-factor
model is the best performer in Panel B. Remarkably, although the OLS R2 statistic of the conditional
CAPM is similar to that of the Fama–French models, its OLS R2 statistic is much lower. As in the
case of size-BE/ME portfolios, Panel B in Table A1 shows that the gap between the conditional CAPM
and the Fama–French models increases for size-PE portfolios when we use quarterly data. However,
Rows 5 and 6 show that the instrument z helps the CAPM to increase the OLS R2 statistic from 0.095
to 0.682 and the MAE to fall from 1.54% to 0.93%. As with size-BE/ME portfolios, the price of risk
λzRMRF for size-PE portfolios is positive and statistically insignificant in Table 5, while it is negative
and statistically significant in Table A1.

Panel C in Table 5 shows that the effect of nuclear disasters on the performance of the CAPM is
less evident in the case of industry portfolios. In fact, the results in Row 10 show near-zero values
for λz and λzRMRF, which means that nuclear disasters have little influence on the expected returns
of industry portfolios. Specifically, as shown in Panel C, the unconditional and conditional CAPM
provide OLS R2 statistics of 0.771 and 0.801, respectively, while their MAEs amount to 2.52% and 2.33%.
Moreover, industry portfolios widen the gap between the conditional CAPM and the Fama–French
models, with the Fama–French three- and five-factor models providing OLS R2 statistics of 0.835 and
0.853, respectively, and MAEs of 2.1% and 1.98% (see Rows 11 and 12). However, it should be noted
that the GLS R2 statistics shown in Rows 9 and 10 for the CAPM are relatively close to their OLS
counterparts, while the J-test for overidentifying restrictions does not reject any model as shown in
Panel C. On the other hand, Panel C in Table A1 shows that all the models perform significantly worse
on a quarterly basis, with the conditional CAPM and the Fama–French five-factor model providing
OLS R2 statistics of 0.326 and 0.557, respectively. However, even in this case, the instrument z allows
the conditional CAPM to clearly outperform its unconditional counterpart.

Figure 1 explicitly relates the fitted values provided by the models under analysis to the mean
excess returns of our test assets in Table 2. Accordingly, the better the model performs, the more
concentrated the estimates are around the 45 degree angle, and vice versa. In this regard, Figure 1 shows
that the fitted values provided by the conditional CAPM satisfactorily track the average returns of most
portfolios, resulting in patterns comparable to those of the Fama–French three- and five-factor models.
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On the other hand, the results provided by the unconditional CAPM are much more scattered, meaning
that the model performs significantly worse, which is particularly evident for size-PE portfolios.
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the largest) and the second number being the BE/ME ratio code (with 1 representing a low ratio and 5,
a high ratio). Size-PE portfolios are also represented by a code with two numbers, the first number
being the size code (as in size-BE/ME portfolios, 1 is the smallest size and 5, the largest size) and the
second number being the PE ratio code (with 1 representing a low ratio and 5, a high ratio). We depict
industry portfolios according to the letter “I” followed by the first two digits of the SIC code.

In summary, our results suggest that nuclear disasters help to largely explain the fraction of the
expected returns that remains unexplained by the classic CAPM for the Japanese equity market. In this
regard, our results show that the unconditional CAPM explains 49.6% of the cross-sectional variation
of the expected returns of size-BE/ME portfolios, while the conditional CAPM captures 93.8% of such
variation. Furthermore, in the case of size-PE portfolios, the unconditional and conditional CAPM
provide OLS R2 statistics of 0.102 and 0.907, respectively, suggesting that nuclear disasters are highly
explanatory for these portfolios. Our results also show that most expected returns are positively related
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to nuclear disasters. However, as shown in Table 5, industry portfolios constitute an exception to this
rule, which is a direct consequence of the small price of disaster risk λz for these portfolios.

Importantly, the results shown in Tables 3–5 for the conditional CAPM indicate that, while the
beta coefficients for zRMRF are statistically significant for most of the portfolios under study, the
prices of risk for z and zRMRF are insignificant. These results suggest that nuclear disasters entail
significant changes in the quantity of market risk of the stocks traded on the Japanese equity market,
but have a much more limited effect on the prices of risk. Nevertheless, the results shown in Tables 5
and A1 for the conditional CAPM indicate that nuclear disasters give rise to transitory effects on the
risk premiums for size-BE/ME and size-PE portfolios. Specifically, while the estimates for λzRMRF in
Table 5 are positive and statistically insignificant on an annual basis, they turn out to be negative and
statistically significant on a quarterly basis (see Table A1). This pattern is consistent with the results
provided by other predictive variables, such as the consumption–wealth ratio, that help to forecast
dividend growth or involve changes in the term structure of expected returns [24].

Finally, in order to determine the estimated variation in the cost of equity that would occur in
the case of the mitigation of nuclear disasters, we analyze the difference between the fitted values
provided by the conditional CAPM, as defined in expression (12), and the fitted values provided by the
conditional CAPM in the absence of nuclear catastrophes. For that purpose, we assume that nuclear
disasters do not affect the price of risk λRw or risk loadings βRw , which means that the conditional
CAPM in the absence of nuclear disasters is fully equivalent to expression (12), ignoring the second
and third terms on the right-hand side. Thus, denoting the estimated conditional CAPM as “Model A”
and the estimated conditional CAPM in the absence of nuclear disasters as “Model B”:

Model A :
~
E
(
Re

t+1

)
=

~
βRMRFλ̃RMRF +

~
βzλ̃z +

~
βzRMRFλ̃zRMRF (14)

Model B :
~
E
(
Re

t+1

)
=

~
βRMRFλ̃RMRF (15)

where the circumflex denotes estimated values. The betas in expressions (14) and (15) are taken from
Table 3, while the lambdas are taken from Table 5. Therefore, the theoretical reduction in the cost of
equity that would result from the complete elimination of nuclear disasters is given by the difference
between expressions (14) and (15).

Table 6 shows the results provided by Models A and B for all the portfolios under consideration.
Although the variation in the cost of equity for each portfolio differs depending on the risk loadings
~
βz and

~
βzRMRF in expression (14), Table 6 shows that the average reduction in the cost of equity for

size-BE/ME portfolios in the case of a zero probability of a nuclear disaster amounts to 2.81%, while it
is 1.96% for size-PE portfolios. Consistent with the results shown in Tables 3 and 5, nuclear disaster
mitigation does not imply a reduction but an increase of 1.11% in the discount rates of industry
portfolios. Furthermore, the average reduction in the cost of equity for all the portfolios under analysis
amounts to 1.22%.

Nevertheless, it should be noted that the variations shown in Table 4 are highly volatile, yielding a
standard deviation of 13.46%. Obviously, this means that the intensity of the effects of nuclear disaster
mitigation on discount rates is highly dependent on the betas shown in Table 3. In this regard, it is
important to highlight that the variation in the cost of equity follows a highly asymmetric distribution
in all the portfolio sets. Furthermore, Figure 2 shows the histograms of the variations in Table 6 for the
cost of equity, revealing that the average reduction in discount rates displays a markedly right-skewed
pattern. This fact emphasizes the propensity of the cost of equity to decrease in the event of nuclear
disaster mitigation, so the lower the number of nuclear disasters, the lower the cost of equity, and vice
versa. As noted above, corporate value is highly dependent on discount rates, consistent with the
mechanics of discounted cash flow models. In this regard, our results suggest that nuclear disaster
mitigation can enhance value creation in the economy, contributing to significantly reducing the cost of
capital in a large number of companies.
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Table 6. Reduction in the cost of equity in the event of elimination of nuclear disasters.

Portfolio Model
A

Model
B Diff Portfolio Model

A
Model

B Diff Portfolio Model
A

Model
B Diff Portfolio Model

A
Model

B Diff.

Panel A: 25 portfolios size-BE/ME Panel B: 25 portfolios size-PE Panel C: 50 industry portfolios

11 72.23 70.35 1.88 11 36.54 35.65 0.89 I13 12.88 15.25 −2.37 I41 10.81 12.89 −2.08
12 57.58 24.84 32.74 12 43.56 39.72 3.85 I14 14.08 17.91 −3.83 I42 13.8 14.62 −0.81
13 57.48 51.75 5.72 13 32.33 32.67 −0.34 I15 14.07 16.97 −2.9 I44 16.08 19.56 −3.48
14 34.41 33.11 1.3 14 32.78 32.87 −0.1 I16 12.44 14.49 −2.05 I45 11.49 13.51 −2.02
15 31.81 24.33 7.48 15 56.43 23.32 33.11 I17 10.95 13.03 −2.09 I47 14.72 16.19 −1.47
21 45.66 44.72 0.94 21 31.91 31.23 0.68 I20 10.23 11.57 −1.34 I48 18.35 16.12 2.23
22 36.58 37.45 −0.87 22 28.52 27.72 0.81 I22 12.88 15.84 −2.95 I49 10.89 11.94 −1.05
23 31.51 23.46 8.05 23 30.26 28.14 2.12 I23 12.13 14.31 −2.18 I50 16.29 17.76 −1.48
24 25.02 23.64 1.38 24 38.25 38.91 −0.66 I24 9.87 11.5 −1.63 I51 15.97 17.45 −1.48
25 29.5 26.62 2.88 25 25.53 23.95 1.58 I25 12.36 14.23 −1.87 I53 15.22 17.88 −2.66
31 33.97 35.29 −1.32 31 26.57 25.66 0.91 I26 10.98 12.35 −1.37 I54 14.84 13.85 0.99
32 33.26 36.72 −3.46 32 20.79 21.47 −0.68 I27 12.75 14.21 −1.46 I56 19.67 17.53 2.14
33 22.92 21.03 1.89 33 29.54 28.85 0.69 I28 11.11 12.45 −1.34 I57 48.16 32.75 15.41
34 19.87 18.8 1.07 34 26.54 22.71 3.84 I29 11.69 13.66 −1.98 I58 11.5 11.74 −0.24
35 22.6 21.09 1.51 35 23.67 23.47 0.2 I30 11.75 14.22 −2.47 I59 17.41 16.73 0.68
41 25.97 25.88 0.1 41 21.09 20.68 0.41 I31 12.42 14.74 −2.32 I60 15.91 18.14 −2.23
42 19.34 19.23 0.11 42 20.41 20.3 0.11 I32 12.22 14.64 −2.41 I61 13.6 14.95 −1.35
43 17.94 18.51 −0.57 43 15.57 15.22 0.35 I33 17.65 21.81 −4.16 I62 24.14 23.73 0.42
44 17.61 16.79 0.82 44 15.4 15.17 0.23 I34 12.43 15.25 −2.82 I63 12.84 15.01 −2.16
45 25.75 25.22 0.53 45 25.77 27.36 −1.58 I35 16.5 18.12 −1.63 I70 18.59 21.9 −3.31
51 19.7 20.3 −0.6 51 10.21 9.54 0.67 I36 17.7 17.28 0.42 I73 25.71 21.74 3.96
52 18.42 16.83 1.58 52 19.22 17.67 1.54 I37 13.49 14.86 −1.37 I78 17.13 17.7 −0.57
53 18.91 17.32 1.58 53 15.34 13.72 1.62 I38 13.02 13.25 −0.24 I79 16.67 17.51 −0.83
54 17.33 15.69 1.64 54 16.16 16.44 −0.27 I39 14.16 13.98 0.18 I87 18.89 23.59 −4.69
55 21.06 17.1 3.96 55 18.64 19.5 −0.86 I40 11.73 13.51 −1.78 I89 24.07 25.45 −1.39

Average: 2.81 Average: 1.96 Average: −1.11

Note: The columns labeled “Model A” show the fitted values provided by the conditional CAPM as determined using expression (14), while the columns labeled “Model B” show the fitted
values provided by the conditional CAPM assuming a zero probability of nuclear disaster, as determined by expression (15). The table also shows the difference between these two series.
All results are annual percentages.
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5. Conclusions

Recent experience has clearly underlined the catastrophic consequences of nuclear disasters in
a wide variety of areas, ranging from geopolitics to public healthcare. From an economic point of
view, the effects of nuclear disasters have traditionally been addressed from the perspective of energy
supply and infrastructures, largely ignoring their important effects on financial markets and economic
growth. In this framework, the increase in the cost of capital and the fall in consumer spending in the
event of a nuclear disaster are major consequences of nuclear hazard that have not been sufficiently
addressed in the literature. In particular, disincentives to invest stemming from the high perceived
risk can largely become a barrier to social and economic development. Moreover, increased efforts to
develop environmentally friendly energy not only can lead to a better protection of the environment,
but also promote value creation and economic growth via lower costs of capital.

Building on the fact that discount rates are one of the key elements that drive investment decisions,
this paper analyzed the effect of nuclear disasters on the performance of the CAPM, as it is by far the
most widely used model in practice for determining the cost of equity. In particular, we studied the
effect of nuclear catastrophes on investors’ perceptions using the CAPM and the role of conditioning
information in the decisions of economic agents.

Our results show that nuclear disasters are positively related to the returns provided by a large
fraction of the portfolios that constitute our test assets. Furthermore, our results show that the use of
information on past nuclear disasters as part of the information sets used by investors to drive their
economic decisions significantly helps the CAPM to improve its performance in explaining expected
returns. Moreover, our approach allows the model to isolate the fraction of the cost of equity that
results from the occurrence of nuclear disasters and, therefore, estimate discount rates in a context
of the absence of nuclear disasters. Our results suggest that nuclear disasters and the cost of equity
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are positively related for most of the portfolios considered, although their exact relationships largely
depend on the risk loadings shown in Table 3. In any case, the estimated variation in the cost of equity
when we assume the absence of nuclear disasters is strongly right-skewed, which emphasizes the
propensity of the cost of equity to decrease in the case of nuclear disaster mitigation.

Nevertheless, it should be noted that the above results are subject to the limitations imposed by
the specific nature of nuclear disasters and, specifically, the fact that nuclear disasters occur rarely.
This constraint reduces the number of years that comprise nuclear catastrophes in our sample to five
out of a total of 35. Furthermore, while the return series of the portfolios under study comprise more
than 3,000 stocks in the last years of the period considered, the missing accounting data at the beginning
of the sample drastically reduce that number, which can lead to some measurement errors in betas.

Given the aforementioned findings, future research should address different aspects that naturally
follow from our results. First, further research should study the extent to which these results persist
in other countries with less exposure to nuclear hazard than Japan. Moreover, our methodology can
easily be accommodated to the study of the spreads in the cost of equity that arise as a function of
the orientation of economies towards clean energy and environmental policies. Second, our results
suggest that the effect of nuclear disasters on the prices of risk is sensitive to the periodicity of data,
which generates transitory effects on risk premiums. Future research should explore the predictive
power of nuclear disasters at different horizons in order to determine the persistence of their effects over
time. For that purpose, the Campbell–Shiller approximation for asset returns [61], as used by [24] for
the dividend yield and the consumption–wealth ratio, could be an extremely useful tool. Furthermore,
our model could greatly benefit from research on regimes followed by the economic consequences of
nuclear disasters (e.g., consumption growth, gross domestic product, etc.), allowing the instrument zt

to better capture the specific patterns followed by economic indicators across countries. Finally, further
research on the firm-specific characteristics that determine the exposure of discount rates to nuclear
disasters is essential.
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Appendix A

Table A1. Regression results for factor models on a quarterly basis.

Market Factors Instrument

Row Model Intercept λRMRF λSMB λHML λRMW λCMA λz λzRMRF R2 MAE (%) J-test

Panel A: 25 portfolios size-BE/ME

1 Unconditional CAPM 0.001 0.065 0.099 1.85 42.890
(0.034) (2.571) 0.095 (0.007)

2 Conditional CAPM −0.048 0.080 0.181 −0.042 0.769 0.95 12.490
(−1.233) (2.128) (0.867) (−2.304) 0.643 (0.925)

3 Fama–French (3 factors) −0.005 0.039 0.038 0.000 0.854 0.74 24.800
(−0.203) (1.424) (4.344) (0.041) 0.843 (0.256)

4 Fama–French (5 factors) −0.017 0.051 0.035 0.000 0.004 0.031 0.876 0.70 19.499
(−0.736) (2.097) (3.620) (−0.026) (0.220) (1.935) 0.840 (0.425)

Panel B: 25 portfolios size-PE

5 Unconditional CAPM 0.110 −0.062 0.095 1.54 38.062
(2.692) (−1.473) −0.181 (0.025)

6 Conditional CAPM −0.032 0.071 0.083 −0.035 0.682 0.93 21.958
(−1.006) (2.097) (0.570) (−2.458) 0.041 (0.402)

7 Fama–French (3 factors) −0.006 0.041 0.042 −0.031 0.809 0.71 19.249
(−0.236) (1.436) (2.861) (−0.833) 0.754 (0.569)

8 Fama–French (5 factors) −0.016 0.052 0.033 −0.007 0.000 0.015 0.862 0.60 19.252
(−0.715) (2.036) (3.427) (−0.383) (0.016) (0.897) 0.758 (0.441)

Panel C: 50 industry portfolios

9 Unconditional CAPM 0.016 0.021 0.192 0.68 70.825
(1.702) (1.510) 0.185 (0.018)

10 Conditional CAPM 0.005 0.026 −0.057 −0.013 0.326 0.62 64.411
(0.525) (1.881) (−0.618) (−1.355) 0.226 (0.038)

11 Fama–French (3 factors) 0.008 0.025 0.019 −0.012 0.552 0.51 62.153
(0.907) (1.747) (1.752) (−0.869) 0.531 (0.056)

12 Fama–French (5 factors) 0.005 0.029 0.015 −0.015 0.001 0.002 0.557 0.51 56.792
(0.505) (1.927) (1.432) (−1.130) (0.121) (0.181) 0.528 (0.093)

Notes: The table displays two rows for each model, where the first row shows the coefficient estimates and the second row, the t-statistics. OLS and GLS R2 statistics are provided, in that
order. All p-values resulting from the J-tests are in parentheses. We use a quarterly frequency to estimate all models.
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