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Abstract: As one of the most developed and competitive metropolitan areas in the world,
the contradiction between resource depletion and sustainable development in the Guangdong-Hong
Kong-Macao Greater Bay Area (GHMGBA) has become a crucial issue nowadays. This paper analyzed
the natural capital utilization patterns in GHMGBA during 2009–2016 based on a three-dimensional
ecological footprint model. Ecological carrying capacity intensity (ECintensity) was calculated to
optimize the accounting of ecological carrying capacity (EC). Ecological footprint depth (EFdepth) and
ECintensity were quantitatively investigated and influencing factors were further explored based on a
partial least squares (PLS) model. Results showed that GHMGBA had been operating in a deficit state
due to the shortage of natural capital flow and accumulated stock depletion. The highest EFdepth

occurred in Macao (17.11~26.21) and Zhongshan registering the lowest (2.42~3.58). Cropland, fossil
energy and construction land constituted the most to total ecological deficit, while woodland was
continuously in a slight surplus. Natural capital utilization patterns of 11 cities were divided into
four categories through hierarchical clustering analysis. Driving factors of EFdepth, ECintensity and
three-dimensional ecological deficit (ED3D) were mainly students in primary and secondary education,
disposable income, consumption expenditure, R&D personnel and freight volume. Our findings
could provide guidance for decision-makers to develop resource utilization portfolios in GHMGBA.

Keywords: ecological footprint size; ecological footprint depth; ecological carrying capacity intensity;
driving factor; GHMGBA

1. Introduction

Natural capital is the stock of natural ecosystems that yields a flow of valuable ecosystem goods or
services to meet human needs. The productive land/water in the ecological footprint theory can be an
iconic metric to represent natural capital and its capital flow [1,2]. Therefore, ecological footprint (EF)
model has been applied across various spatial scales by the government and academia to assess regional
sustainable development [3–6]. The dynamic study of ecological footprint and carrying capacity is
conducive to optimizing the industrial structure and constructing the ecological compensation system
and that has a crucial theoretical and practical significance for realizing sustainable development
within social-economic-natural complex ecosystems.

Borucke et al. [7] calculated the natural capital footprint of more than 200 countries and their
results showed that most regions were in a state of ecological deficit (ED). Researchers have also found
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that most provinces of China were in deficit with serious trends in past decades [8]. Yue et al. [9]
studied the spatial distribution pattern of ecological carrying capacity (EC) using high-resolution
image data and emphasized its spatial heterogeneity. EC calculated by the emergy model was more
conservative than the EF model [10], and ecological and economic systems were significantly spatially
uncoordinated [11]. Ecological footprint size (EFsize) and ecological footprint depth (EFdepth) were
introduced into the three-dimensional ecological footprint (3DEF) model by Niccolucci et al. [12,13]
to transparently distinguish between natural capital flows and stocks. Fang et al. [14,15] extended
the 3DEF model to China and made optimizations to solve the mutual offset problem within different
lands. The appropriation rate of capital flows and use ratio of stocks to flows were introduced to
represent the natural capital use in a case study. Peng et al. [16] conducted a multidimensional
“ecology–equity–efficiency” framework integrated with the Gini coefficient of EFsize and variation
coefficient of EFdepth to characterize the equality of capital flow and stock occupations. All 13 cities in
the Beijing–Tianjin–Hebei urban agglomeration showed a deficit state and EFdepth was influenced by
the amount and structure of consumed resources [17]. Natural capital flow and stock utilization and
their heterogeneity within different lands in other regions were analyzed and estimated coupled with
various prediction models [18–20].

The 3DEF model was proved to be more effective for depicting resource utilization,
and bidirectional impacts between economic development and energy consumption were
revealed [21,22]. Constructing models with the population, affluence, policies and technical level
of a region could describe the impact of economic and social driving factors on environmental
pressure [23–25]. Sun [26] proposed a complete decomposition analysis method and explained the
driving factors of the energy EF. Al-Mulali [27] confirmed that GDP, non-renewable energy consumption,
and urbanization could increase CO2 emission while renewable energy consumption, trade openness,
and energy prices reduce it in 27 advanced economies. Based on partial least square (PLS) model, Zhang
and Zeng [28] found that the population size and social economy were the main influencing factors of
the dynamic changes in capital utilization of the Pearl River Delta urban agglomeration. Andersson
and Lindroth [29] explored the transfer path of EF between developed and less developed countries,
revealing the ecological unfairness in international trade. Economic and financial development sparked
off nature capital consumption while contradictory results were also found on globalization [30,31].
An environmental Kuznets curve hypothesis based on EF measurements was demosntrated in low
income, middle income and high-income group countries [32]. The innovation activity and economic
freedom would have a major impact on the variability of EF [29,33,34]. Socio-demographic variables
such as urbanization, education, technology, life expectancy could improve the environment positively
in the long term, especially in undeveloped countries [32,35–37]. However, the actual EC cannot
be measured without the particular original year especially when accounting for human subjective
initiative [38,39]. This confuses the resource exhaustion threshold within the planetary boundaries [40].
It was more accurate to calculate the equilibrium factor and yield factors based on local conditions [41].
Compared with the economic level and resident lifestyle, the level of biomass use per capita was more
subjected to land use patterns and population density in the specific region [42].

As the leading area for economic reform and opening up in China, the Guangdong-Hong
Kong-Macao Greater Bay Area (GHMGBA) has become one of the regions with the largest population,
the strongest economic vitality and the highest level of social development in the world. However,
such economic prosperity has been coupled with environmental degradation especially in recent
decades. Thus, it is imperative to assess the natural resource requirements for local sustainable
development. Identify natural capital utilization is the core issue to build GHMGBA into a living
paradise with limited resources. There were few studies of EF accounting in the case of GHMGBA
involving Hong Kong and Macao with the “one country, two systems” policy. This paper aims to
present a thorough tool for assessing natural capital utilization at municipal scale with 3DEF model.
The equivalence and yield factors of 11 cities were calculated based on output biomass data during
2009–2016 to improve research’s credibility. EFsize and EFdepth were calculated and temporal-spatial
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characteristics of different land types were described. Ecological carrying capacity intensity (ECintensity)
was constructed to represent the potential carrying capacity of social capital. The driving factors of
EFdepth, ECintensity and ED were further explored with PLS regression analysis. The results could
provide basic data support for industrial structure adjustment and ecological redline policy for regional
development planning and management.

2. Study Area

The Guangdong-Hong Kong-Macao Greater Bay Area (GHMGBA) comprises the two Special
Administrative Regions (SAR) of Hong Kong and Macao, and the nine municipalities of Guangzhou,
Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen and Zhaoqing in Guangdong
Province, China (Figure 1). Dominated by subtropical and tropical monsoon climates, average annual
rainfall in GHMGBA is 1300–2500 mm and the average temperature is 22.3 ◦C. The entire territory area
is 56,000 km2 with a total population of about 68 million. Her total economic size and population of
9 cities in the Pearl River Delta (PRD) account for 85% and 52% of Guangzhou Province, respectively.
And the 11 cities in GHMGBA account for 13% of the country’s overall GDP in 2016. As the specific
region with different systems and economic mechanisms, her development is accorded the status
of key strategic planning in China, weighing great significance in the country’s implementation of
innovation-driven development and commitment to reform and opening-up. The objectives are to
further deepen cooperation amongst Guangdong, Hong Kong and Macao, fully leverage composite
advantages of the three regions to develop an international first-class bay area ideal for living, working
and traveling.   
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Figure 1. Location of the study area.

3. Materials and Methods

3.1. Materials

According to the conventional EF model [2], all items were classified into six types: cropland,
grassland, woodland, water area, fossil energy land and construction land. This research used primary
data extracted from Statistical Yearbooks of 11 cities in GHMGBA, Agrotechnical Economics Manual
(Revised), Food and Agriculture Organization of the United Nations, and the study period was set
as 2009–2016. The data herein collected for calculating EF and EC included biological production
and energy consumption. Biomass production rather than consumption was gathered to effectively
elucidate the local land pressure. Thus, the interregional import and export adjustment amounts
would be not considered in this research. No matter whether it is produced locally or not, fossil
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energy and electricity are consumed by GHMGBA create ecological pressure for Fossil energy and
Construction land, respectively. There is no central heating in GHMGBA, so the thermal energy is not
considered (Table 1). Meanwhile, global average product data in 2009–2016 extracted from the Food
and Agriculture Organization of the United Nations were used as references to conveniently compare
with other regions, and energy consumption EF was converted with the average calorific values of
various items [43]. Based on the integrity and accessibility of data, the yearly patent data, scientific and
technological activities’ personnel and research funding were extracted from the Statistical Yearbooks
of 11 cities. Guangdong province’s data in each year were taken as a benchmark to calculate ECintensity

to be conducive to model uniformity.

Table 1. Biological and energy resource data selected for 3DEF model in Guangdong-Hong Kong-Macao
Greater Bay Area (GHMGBA).

Biological Products/Energy Consumption Items Land Categories

Cereals, tubers, beans, oil-bearing crops, vegetables, pork, poultry eggs Cropland
Beef, mutton, milk, sheep wool, goat wool, cashmere Grassland

Honey, tea, wood, fruit Woodland
Fish, shrimps, prawns and crabs, shellfish, algae Water area

Coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas Fossil energy land
Electricity Construction land

Land use data of nine cities in Guangdong were derived from the Land Survey Results Sharing
Application Service Platform (http://tddc.mlr.gov.cn/to_Login). Hong Kong and Macao’s land use data
were taken from the yearbooks and 10 m resolution global land cover data [44]. These data were arranged
with the connotations of EF and current land use classification. The factors influencing ecological
footprint and carrying capacity are complex and heterogeneous in various regions. Based on previous
studies [16,28,45,46], accounting for the principles of data integrity, availability and comparability,
20 indicators were selected from yearbooks to comprehensively reflect the social development status of
GHMGBA, as shown in Table 2.

Table 2. Driving factors of ecological footprint depth (EFdepth), ecological carrying capacity intensity
(ECintensity) and per capita three-dimensional ecological deficit (ED3D) in GHMGBA.

Dimension of Index Driving Factors Unit

Population Permanent population 10,000 persons

Economics

GDP of the primary industry

100 million RMB
GDP of the secondary industry

GDP of the tertiary industry
GDP

Foreign trade Total value of exports 10,000 dollars
Total value of imports

Policy total fixed capital 100 million RMB

Residents’ life
total retail sales 100 million RMB

disposable income RMB
consumption expenditure RMB

Energy consumption electric consumption 100 million kWh

Circulation
highway mile 10,000 km

ownership vehicles 10,000 units
freight volume 10,000 tons

Urbanization level
construction area 10,000 hectares

Proportion of urban population to
permanent population %

Science and technology and education
R&D personnel

PersonStudents in primary education
Students in secondary education

http://tddc.mlr.gov.cn/to_Login
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3.2. Methods

EF is herein divided into six land types mentioned above. Equivalence and yield factors in each
city are calculated to align the measurement unit [2]. The calculation formulas are shown as follows:

EF = N ×
∑

i
(e fi × ri) = N ×

∑
i

∑
j

Ci j

Pi j
×

∑
j(Ci j×γi j)

Si∑
i
∑

j(Ci j×γi j)∑
i Si

 (1)

EC = N ×
∑

i
(eci × ri × yi) = N ×

∑
i

Si ×

∑
j(Ci j×γi j)

Si∑
i
∑

j(Ci j×γi j)∑
i Si

×

∑
j(Ci j×γi j)

Si∑
j

(
C′i j×γi j

)
S′i

 (2)

where N is the population (cap); e f is per capita EF (hm2/cap); i is land use type; j is an item produced
or consumed; ri is the equivalence factor of ith land; Ci j is per capita production or consumption
of j–th item in i–th land in the study area (kg/cap; m3/cap; GJ/cap); Pi j is the average production or
consumption of j–th item in i–th land in the world (kg/hm2; m3/hm2; GJ /hm2); γi j is the average
calorific value of j–th item in i–th land (GJ/hm2); and Si is per capita biological production area of
i–th land in the study area (hm2/cap); ec is per capita EC (hm2/cap); yi is the yield factor of i–th land;
C′i j is per capita production or consumption of j–th item in i–th land in the upper level area (kg/cap;

m3/cap; GJ/cap); and S′i is per capita biological production area of i–th in the upper level area (hm2/cap).
The equivalence and yield factors were calculated on urban scale based on the local productivity to
describe heterogeneity between cities. Note that some land types in Hong Kong and Macao SAR have
no biomass output, but still retain other ecosystem services more than provisioning [47]. Thus, their
equivalence and yield factors are replaced by the values of neighboring cities to avoid the null value.
Namely, factors in Hong Kong and Macao refer to the value of Shenzhen and Zhuhai respectively.

Shannon-Wiener Index, a popular diversity index in the field of ecology, is introduced to reflect
the abundance and evenness of land demand or supply in a given region [48]. The corresponding
formulas are as follows:

He f = −
∑

i

(
Pe fi

i × lnPe fi
i

)
(3)

Hec = −
∑

i

(
Peci

i × lnPeci
i

)
(4)

where He f , Hec are Shannon-Wiener Index of e fi and eci, respectively. Pe f
i , Pec

i are proportions of the
i–th land’s e fi and eci. The index should be ln i if EF and EC evenly distributed in each land type.

EFsize and EFdepth are introduced to distinguish natural capital flow occupancy and capital stock
consumption [12,14]. ECintensity, an indicator of innovation and technological level, represents the
potential carrying capacity coupled with social capital. Assuming that scientific and technological
progress has positive multiplicative synergies effects on sustainable development [49,50], the minimum
value of this factor is set at 1.00. It represents the ratio of technology level of a metropolis to the regional
average value as productivity of social capital. The formulas are as follows:

EFsize = N × e fsize = N ×
∑

i
min

{
e fi, eci

}
(5)

EFdepth = e fdepth = 1 +
∑

i max
{
e fi − (1− 12%) × eci, 0

}∑
i eci

(6)

ECintensity = 3

√(
1 +

Pk
P′k

)
×

(
1 +

Mk
M′k

)
×

(
1 +

Fk
F′k

)
(7)

ED3D = EC× ECintensity − EFsize × EFdepth (8)
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where EFsize, e fsize are ecological footprint size (hm2) and per capita ecological footprint size (hm2/cap);
EFdepth and e fdepth are the same meaning of ecological footprint depth; according to Our Common
Future, 12% of the total land use is set aside for biodiversity protection. ECintensity is ecological carrying
capacity intensity. k is the city, Pk, Mk, Fk are the numbers of patent applications, researchers and
funds of R&D per thousand persons in k–th city in the study area, respectively(item/thousand persons,
person/thousand persons, RMB/thousand persons); P′k, M′k, F′k are the numbers of patent applications,
researchers and funds of R&D per thousand persons in the upper level area, respectively(item/thousand
persons, person/thousand persons, RMB/thousand persons); ED3D is the three-dimensional ecological
deficit(hm2), consistently meaning ecological surplus if ED3D > 0 and deficit if ED3D < 0.

PLS regression could synchronously represent the characteristics of principal component analysis,
canonical correlation analysis and linear regression analysis. Compared with the traditional multiple
linear regression model, PLS is particularly useful when the fewer independent variables are seriously
multicollinearity [51]. Using the variable importance in projection (VIP) analysis of PLS regression [52],
the value of each index reflects the effect on dependent variable. The calculation formula is as follows:

VIP j =

√√
p
∑m

h=1 Rd(Y; th)w2
hj

Rd(Y; t1, · · · , tm)
(9)

where VIP j is VIP of jth indicator to represent the explanatory power of each independent variable
to the dependent variable, p is the number of selected indices, m is pairs of extracted PLS principal
component, Rd(Y; th) represents explanatory power to Y of the axis th, whj denotes the weight of
j–th variable when mapping in the h–th iteration, Rd(Y; t1, · · · , tm) represents cumulative explanatory
power to Y of the axis t1, · · · , tm. VIP values greater than 1.00 indicate independent variables are
important factors, the variables with VIP value of 0.50–1.00 are the less important factors, and the
variables with VIP value lower than 0.50 are not important factors [52]. Regression coefficient is also
an important index to measure the effect of variables. With the increase of absolute value of coefficient,
it shows that the influence degree of the variable is stronger. The regression coefficient is positive,
which means that the dependent variable is positively correlated with the independent variable,
and vice versa. Therefore, by analyzing the VIP values and the regression coefficients, the influence of
each independent variable index on dependent variable can be directly expressed.

4. Results

4.1. Analysis of Ecological Footprint Size

EFsize represented the natural capital flow occupancy. Higher per capita EFsize concentrated in
regions with abundant resources and low population density, while lower values were more likely to
occur in populous areas with scarce utilizable lands. Yearly average per capita EFsize of 11 cities were
ranked as follows: Zhaoqing > Jiangmen > Huizhou > Shenzhen > Zhongshan > Guangzhou > Foshan
> Zhuhai > Hong Kong > Dongguan > Macao (Figure 2). Temporal-spatial characteristic differences
amongst cities were relatively large with the highest value was 0.46~0.52 hm2/cap in Zhaoqing and
lowest in Macao (<0.01 hm2/cap). Per capita EFsize in Zhaoqing, Jiangmen and Zhongshan presented
an upward trend while Shenzhen, Hong Kong, Guangzhou and Foshan showed a downward trend
especially during 2014–2016. Cities of large territory and sparse population owned higher per capita
EFsize represented a more sustainable development with local natural capitals.
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EFsize of six land types with different proportions in each metropolis were further analyzed
(Figure 3). Fossil energy consumption was the most important natural capital stock utilization while
no excess land was reserved to absorb carbon dioxide according to EF theory. Thus, EFsize of fossil
energy land in 11 cities was set as zero. Among the other five lands, cropland and construction land
components contributed greatly to total EFsize. Cropland EFsize of Zhaoqing, Jiangmen and Huizhou
accounted for 45.69~66.99%. The dominant land in Macao, Hong Kong, Shenzhen and Dongguan was
construction land (74.29~100.00%). Grassland and woodland EFsize had minimal impacts on GHMGBA
except for Zhaoqing.Sustainability 2020, 12, x FOR PEER REVIEW 3 of 7 
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Analysis of the diversity index found that land types of EFsize between cities were significantly
different. Shannon-Wiener Index in Macao was zero due to null values of cropland, grassland,
woodland and water area, followed by Shenzhen (0.18~0.62) and the highest value was Zhaoqing
(0.94~1.11). There existed a certain degree of land complementarity amongst cities. Generally, it was
difficult to maintain sustainable development relying purely on local natural resources in modern
society nowadays. In particular, lands of Hong Kong and Macao were significantly insufficient,
and most of the resources depended heavily on provisions from Mainland China.

4.2. Analysis of Ecological Footprint Depth

All cities of GHMGBA were in deficit state with EFdepth much larger than 1.00, showing capital
flow could not meet the needs and capital stock was heavily occupied. The multi-year average EFdepth

were ranked as follows: Zhongshan < Zhaoqing < Guangzhou < Jiangmen < Foshan < Huizhou
< Shenzhen < Zhuhai < Hong Kong < Dongguan < Macao (Figure 4). The maximum EFdepth was
17.11~26.21 for Macao with larger population and deficient land while the minimum was 2.42~3.58
for Zhongshan. Contrary to the curve of per capita EFsize, Shenzhen held the lowest EFdepth in 2009
(1.85) and rapidly reached 12.29 in 2016 with the largest annual growth rate (31.10%). EFdepth of Macao
was with a U-shaped trend reaching a minimum of 17.11 in 2013 while Dongguan held an inverted
U-shaped curve.Sustainability 2020, 12, x FOR PEER REVIEW 4 of 7 
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Figure 4. Ecological footprint depth (EFdepth) of 11 cities in GHMGBA.

EFdepth component ratios in 11 cities were further analyzed. The deficit of cropland, fossil energy
and construction land were primary parts affecting EFdepth. Cropland constituted 62.16~76.01% in
Zhaoqing, Jiangmen and Huizhou while construction land dominated (60.40~76.02%) in Shenzhen,
Hong Kong and Macao. Construction land was in a slight surplus for Zhongshan, Jiangmen and
Zhaoqing due to their abundant impervious areas. Industrial scope and intensity in urbanization
process alleviated municipal ecological pressures besides the transformation of other type lands
into construction land. The proportion of water area was followed by 19.61~33.64% in Jiangmen,
Zhongshan, Foshan and Zhuhai. Regarding the grassland composition, EFdepth in Hong Kong and
Macao were 1.00, consuming only the natural capital flow of meadow due to scant local livestock
products. Woodlands of 11 cities were in surplus but with a downward trend during the study period,
largely owing to the forestry protection policy in GHMGBA.
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4.3. Analysis of Ecological Carrying Capacity Intensity

ECintensity exceeded the reference value of 1.00 in all cities, indicating a higher level of supportability
(Figure 5). This showed that social capital could improve regional resource coordination to meet higher
ecological demands. With the social progress in GHMGBA, scientific and technological innovation
capabilities improved gradually. The innovation ability in backward areas appeared to increase with
higher sensitivity than developed regions. ECintensity differed significantly among cities and the values
in developed cities were much higher similar to Matthew Effect. As the core innovative metropolis
in GHMGBA, ECintensity in Shenzhen reached 3.25~3.62, indicating that potential support capacity
multiplied more than threefold compared to that of natural capital solely. The next were Zhongshan
(2.61~2.80) and Zhuhai (2.35~2.65) directly related to higher proportions of researchers and patents.
ECintensity in Hong Kong (2.02~2.71) was followed due to affluent funds with a downward trend
similar to Shenzhen. The lowest was in Macao (1.29~1.37), with fewer patents, funds, and technicians,
resulting in weaker innovation capacity in GHMGBA.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 7 

 
Figure 5. ECintensity of 11 cities in GHMGBA. 

  

Figure 5. ECintensity of 11 cities in GHMGBA.

4.4. Analysis of Three-Dimensional Ecological Deficit

ED3D in 11 cities were calculated. As shown in Figure 6, there was no obvious spatial agglomeration
with an aggravated trend from the periphery to the center. Average per capita ED3D of Zhongshan and
Shenzhen exceeded 0.00 hm2/cap with a surplus state and the other nine cities were in deficit. Values in
Zhaoqing and Huizhou were the largest reaching −0.65~−0.61 hm2/cap. Per capita ED3D in Shenzhen
dramatically decreased from 0.74 hm2/cap to −0.29 hm2/cap and turned surplus into deficit in 2013.
Zhongshan transformed into a deficit state in 2012 and reversed into surplus in 2014 due to higher EC.
ED3D of Jiangmen, Zhuhai, and Zhaoqing fell rapidly and stayed in deficit during the study period.
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5. Discussion

5.1. Spatial Analysis of Natural Capital Utilization

Distribution of average per capita EFsize and EFdepth of 11 cities in GHMGBA was analyzed.
It could be found there was a significant regional complementarity between capital stock consumption
and capital flow occupation. Per capita EFsize of 11 cities arranged in descending order according to
EFdepth showed an upward trend. Results showed depletion of capital stock became prevailing along
with the socioeconomic development in GHMGBA.

Per capita EFsize and EFdepth of each year in 11 cities were standardized to be compared through
the Z-Score method, and hierarchical clustering analysis was carried out using SPSS 23.0 (IBM, Armonk,
NY, USA). According to the difference of per capita EFsize and EFdepth values, natural capital utilization
patterns were intuitively classified into four types and results were spatially distributed in Figure 7.
Cities of type I represented highest EFdepth and lowest EFsize; type II held higher EFdepth and lower
EFsize; type III owned lower EFdepth and higher EFsize; type IV implied lowest EFdepth and highest
EFsize. From type I to type IV, the consumption of capital stock was reduced while capital flow
was richer, which indicated superior ecological sustainability. The capital utilization types in some
cities changed during the study period. Shenzhen gradually converted from type IV to type II,
and Hong Kong transformed from type III to type I, representing a deteriorating trend of capital stock
consumption. The zoning of capital utilization illustrated a significant geographical agglomeration,
which was consistent with the spatial distribution of the natural endowments and socioeconomic
status in GHMGBA. Long time series analysis should be continued particularly on multiple scales for
more empirical conclusions. Policy decisions could not be made according to certain years, but that
still showed a highly severe trend in GHMGBA.
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The spatial characteristic of land supply and demand pattern is consistent with previous researches.
GHMGBA was in severer deficit state and overconsumption of capital stock continued during the study
period. According to the reports of Great Bay Areas in the world, the degree of resource depletion
(EFdepth) ranked as San Francisco > New York > Kawasaki > Hong Kong > Macao > PRD > GHMGBA
> world [8,10,28,53]. In addition to the inconsistency of data, the conclusion difference is directly
associated with the localization of weight parameters [41,54,55]. The majority of natural resources in
GHMGBA is transferred through imports [28,55]. EF in Hong Kong reached 3.7 hm2/cap excluding
forest area for fossil fuel emissions while more than 90% pressure was located outside the region.
Vegetable consumption of Hong Kong was 850 kilotons while its local production was only 14 kilotons
in 2016. Macao barely has primary industry and correspondingly its EF has been transferred to other
regions. Compared with other cities, Hong Kong and Macao are relatively barren inland output
productivity. Thus, it is more reliable to depict cropland, grassland, woodland, water area EF by
production rather than consumption. On the whole, the difference between this research and previous
studies is still within a reasonable range.

5.2. Driving Factors Analysis of Ecological Footprint and Carrying Capacity

Variance inflation factors of the indicators were all greater than 10.00, indicating that there was
serious multicollinearity between these selected indicators. Thus, PLS model was explored to analyze
driving factors of EFdepth, ECintensity and per capita ED3D in GHMGBA.

The explanatory fit degrees of PLS models in 2009–2016 were explored (Table 3), showing that
the regional differentiation characteristics in GHMGBA were relatively significant. Based on variable
importance projection (VIP) and regression coefficients of driving factors, the crucial driving factors
of EFdepth, ECintensity and ED3D during the study period were students in primary and secondary
education, residents’ income and consumption, R&D personnel, freight volume, etc.

The escalation of students in primary education indicates the continuous improvement of local
permanent population and educational resources. The vigorous development of catering, training,
science and education, entertainment, sports and other industries affiliated to the campus further
promotes continuous occupation of natural capital flow and stock. With the promotion of compulsory
education in China, the average number of pupils in 11 cities increased from 382,787 in 2009 to 468,188
in 2016. Under the trade-off of EFdepth and ECintensity, the number of pupils was generally positively
related to per capita ED3D with a regression coefficient of 4.23E-9, indicating that the deficit state was
ameliorated. There was a negative correlation in Type I and III cities, and a positive correlation in
Type II and IV cities; there took a negative correlation in Guangzhou, Shenzhen, Zhuhai, Foshan,
and Jiangmen, and positively related in Dongguan, Zhongshan, Zhaoqing and Macao; indicating
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that the increase in the number of pupils in most cities tended to worsen the ED. It was necessary to
strengthen the awareness of ecological environment protection and promote low-carbon life concepts
among primary students.

Table 3. PLS model fit of EFdepth, ECintensity and per capita ED3D in GHMGBA.

Municipality EFdepth ECintensity Per Capita ED3D

Guangzhou 0.94 — 0.14
Shenzhen 0.99 0.97 0.90

Zhuhai 0.93 0.77 0.88
Foshan 0.95 0.89 0.89

Huizhou 0.58 0.94 —
Dongguan — 0.08 0.82
Zhongshan 0.65 — 0.61
Jiangmen 0.61 0.87 0.98
Zhaoqing 0.87 0.92 0.98

Hong Kong 0.86 0.97 —
Macao 0.92 — 0.92

With the implementation of China’s family planning policy, the birth population continued to
decrease in the 1990s and early 20th century, which led to lower age-appropriate middle school
students during the study period. A great many students from outside Guangdong Province go to
primary schools in developed areas, but they cannot straight attend high school due to household
registration restriction. If the migrants could continue to study, their family income was generally
higher, otherwise, they cannot pay for local borrowing fees, school selection fees, agency fees and
other expenses, which were related to residents’ disposable income. In Type I and III cities, there was a
negative correlation between the number of middle school students and per capita ED3D while positive
in Types II and IV ones, and the regression coefficients were greater than the former. Results showed
that the increase of students in secondary education in most cities tended to the deterioration of per
capita ED3D, which was consistent with the results of students in primary education.

As a frontier position for China’s reform and opening up, economic growth in GHMGBA exploded
in recent years. The annual per capita disposable income of residents increased significantly. VIP value
indicated that it was the most important driving factor in Macao and the second most important
factor in Hong Kong and Zhuhai. Generally, disposable income was positively correlated with per
capita ED3D. The income had the most important impact on the deficit in Dongguan and Macao and
their regression coefficients were positive. There showed lower negative regression coefficients in
Guangzhou, Shenzhen, Zhongshan, Jiangmen with smaller VIP values, indicating that the increase in
residents’ income had a large positive effect on amelioration of ED.

EF theory takes human consumption as the starting point, so the level of residents’ consumption
has a direct impact on natural capital utilization. Consumption expenditure and per capita ED3D were
positively correlated with the regression coefficient of 5.28E-7. Coefficients in Type I, III, and IV cities
reached 4.27E-7, 4.70E-6, and 3.53E-5, higher than the negative coefficient of −2.25E-05 in Type II cities.
The results showed that ED tended to be ameliorated with an increase in consumption expenditure,
mainly benefiting from the potential supporting capacity of social capital.

The level of technology innovation has a significant positive effect on regional sustainable
development. R&D personnel in 11 cities increased dramatically, with a growth rate of 117.20%. R&D
personnel and per capita ED3D were positively correlated in GHMGBA with a regression coefficient
of 2.55E-6. VIP value of R&D personnel in Dongguan was next to disposable income, indicating
investment of scientific and technological manpower had a significant amelioration effect on deficit
state; while negative coefficients were found in Guangzhou, Shenzhen, and Zhuhai, showing the
escalation in R&D personnel had a stronger effect on EF expansion than potential carrying capacity of
social capital, which may be related to lag effect of technological productivity.
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Freight volume can reflect the resource circulation among regions. The average volume of 11 cities
increased from 138.55 million tons in 2009 to 255.20 million tons in 2016; the growth rates of developed
cities such as Hong Kong (3.68%) and Shenzhen (41.97%) were lower while Macao showed a negative
rate (−18.05%), which reflected the coupling relationship between material transportation scale and
economic level in various cities. Regression coefficients of Types I, II, III, and IV between freight
volume and per capita ED3D were positive, representing an important driving factor in ameliorating
the deficit state of natural capital. Similar to ECintensity, positive PLS regression coefficients of Foshan,
Dongguan and Zhaoqing were higher than the negative values of other cities, indicating that increase
of freight volume tended to ameliorate regional deficit. Economically developed areas could transfer
their EF to other regions and the degree of dependence on resource import significantly increased,
meaning these metropolises should strengthen international cooperation.

Due to the unavailability of panel data, the relationship between economic development and
ecological deficit needs to be further verified, especially accounting for factors such as technological
innovation, residents’ living patterns, and talent policies. Industrial policy formulation needs to weigh
the coupling relationship between EFdepth and ECintensity.

5.3. Implications for Ecological Deficit Mitigation

The proposal of GHMGBA was of great significance to national strategies such as The Belt and
Road Initiative. Occupancy ratios of natural capital flow and stock in GHMGBA were depicted
based on 3DEF model. Contradiction between resource consumption and land supply could be
more intuitively scrutinized accounting for ECintensity, which compensated for the underestimation
of traditional EF model on human subjective initiative. Prior researches indicated that developed
regions were likely more unsustainable [16,19,34], which was inconsistent with the reality of social
development. The introduction of ECintensity coupling with social components bridged this gap.
Therefore, pinpointing policy recommendations could be put forward to implement national strategies
according to local ecological status in different cities.

Enhancing EC of specific regions should simultaneously promote EFsize and ECintensity and also
reduce EFdepth. EFsize is predominated by natural capital, ECintensity is decided by technological
innovation and EFdepth is widely affected by resource consumption. Thus, it is necessary to lessen
resource consumption, optimize industrial structure through technical reform and resident lifestyle.
Previous researchers found that GHMGBA was unsustainable during past decades. We conducted an
empirical study taking the potential productivity of science and technology into account. Innovation in
information technology and cross-sectoral collaboration would be key to reduce the human footprint [56].
As one of the most developed regions in China, the impact of transportation and tourism in GHMGBA
could not be neglected [57,58]. Sustainable development of modern fisheries must be strengthened with
a vast tract of the ocean [59,60]. Integrated land use planning needs to actively explore accounting for
resources coupled with public participation and green consumption [61,62]. Each city should optimize
industrial structures to promote economy based on local natural endowments. Jiangmen and Zhaoqing
should determinedly implement the crucial concepts “lucid waters and lush mountains are invaluable
assets”, while Hong Kong and Shenzhen focus on scientific innovation and integrated management to
improve resource utilization efficiency. It is urgent to profitably allocate resources for energy efficiency
and conservation projects to moderate environmental degradation [63,64]. Financial development
especially cross-border investment is a potential instrument to preserve the environment providing
better chances to get advanced technologies and energy-efficient products [31,65]. Public promotion
should be strengthened to improve living lifestyle [66,67]. However, due to limited number of years
selected in the cross-sectional data, relationship between economy and ED requires further verification,
especially when considering technology and lifestyle [68,69]. The policy portfolios toward sustainable
development should be made considering the balance between EFdepth and ECintensity.
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5.4. Uncertainty Analysis of ECintensity

The EF model has been discussed by many scholars these years [70,71]. In addition to the
natural capital, the impact of science and technology on regional EC could not be ignored during
rapid socioeconomic development [72]. There are few quantitative studies on EC of social capital.
The lifestyle and production mode of residents in all aspects have profoundly changed especially in the
information age. This paper constructs ECintensity based on technological innovation level to represent
the potential carrying capacity of social capital.

With the development of science and technology, the proportion of facilities farming, hydroponics,
modern fisheries and clean energy is increasing [60,73,74]. The yield of major crops in GHMGBA
has increased greatly over the past few years, especially the output of economic crops, fruits and
aquatic products (16.83–113.12%). Spatial expansion is achieved through modern technology, greatly
broadening the actual land area. With abundant natural resources combined with convenient circulation
and preferential policies based on scientific support, the population in GHMGBA has increased from
61 million to 73 million in the past decade. The high growth of the number of primary and secondary
school students laterally shows the attraction of the region. While the average annual decrease rate of
energy consumption for GDP reaches 4.20% during 2010–2019. This study conducted an empirical
study and ECintensity could be complementary to the traditional model. It is the correction of yield
factors coupling with social capital within social–economic–natural complex ecosystem.

ECintensity can reflect the ability of scientific and technological innovation, but it has not directly
considered the residents’ lifestyle and policies. The personalized utilization of resources by the public
has a great impact when estimating the most probable value of EC [62,75]. Resource allocation and
policy interventions can effectively reduce the consumption rate especially in high-income countries or
regions [76]. The tracking and investigation of specific behaviors could be strengthened, including
multi-dimensional indicators such as age, disposable income, education level and preference of
residents [31,68,77,78]. Further research should analyze the contribution of natural capital, innovation
and policy through piecewise linear representation or decomposition model with long-time series data.

6. Conclusions

Based on the 3DEF model, per capita EFsize and EFdepth of 11 cities in GHMGBA during 2009–2016
were analyzed. ECintensity was introduced as a potentiality for sustainable development to avoid
underestimated evaluations. There depicted a distinctive state of ES/ED in various cities; And most
of them held relatively higher ecological pressure, even considering the potential productivity of
technological innovation. The introduced parameter (ECintensity) emphasized the subjective initiative
of human beings, which was more consistent with the reality of social and economic development.
The growth of students in primary and secondary education would aggravate the consumption of
local resources and tend to worsen ED for most cities. Increment of disposable income, consumption
expenditure and freight volume had a greater positive effect on ameliorating the ecological deficit.
While R&D personnel had a stronger effect on footprint expansion than the potential carrying capacity
of social capital in most cities. Policy suggestions were proposed in the aspects of industrial structure,
technology promotion and environmental protection publicity to achieve harmony between nature
and human beings.

The estimation and driving force analysis for per capita ED3D should be further researched,
especially taking social capital into account. EF and EC inventory should be established for more
accurate results with long-time series panel datasets. Hysteretic effects of technology promotion and
information exchange could not be ignored. Source and sink relationships are difficult to identify
due to inaccessible trade data. As the developed metropolitan statistical area, GHMGBA plays an
important “sink” role for neighboring regions. Our findings are beneficial to provide basic support for
coordination of capital utilization and economic development in GHMGBA and other similar regions.
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