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Abstract: Exploring urban travelling hotspots has become a popular trend in geographic research in
recent years. Their identification involved the idea of spatial autocorrelation and spatial clustering
based on density in the previous research. However, there are some limitations to them, including the
unremarkable results and the determination of various parameters. At the same time, none of
them reflect the influences of their neighbors. Therefore, we used the concept of the data field and
improved it with the impact of spatial interaction to solve those problems in this study. First of all,
an interaction-based spatio-temporal data field identification for urban hotspots has been built. Then,
the urban travelling hotspots of Beijing on weekdays and weekends are identified in six different
periods. The detected hotspots are passed through qualitative and quantitative evaluations and
compared with the other two methods. The results show that our method could discover more
accurate hotspots than the other two methods. The spatio-temporal distributions of hotspots fit
commuting activities, business activities, and nightlife activities on weekdays, and the hotspots
discovered at weekends depict the entertainment activities of residents. Finally, we further discuss
the spatial structures of urban hotspots in a particular period (09:00–12:00) as an example. It reflects
the strong regularity of human travelling on weekdays, while human activities are more varied on
weekends. Overall, this work has a certain theoretical and practical value for urban planning and
traffic management.

Keywords: hotspots; spatio-temporal data field; spatial interaction; urban travelling; trajectory data

1. Introduction

Intra-city human activities have accelerated the urbanization process in recent years. There is
a huge urban population due to rural-to-urban migrations, especially. Furthermore, rapid urban
expansion causes imbalanced urban development, such as traffic congestion, resource shortage,
and environmental degradation [1–3]. The emergence of these problems is closely related to human
mobility in the city [2]. For example, a large number of commuting activities aggravate traffic problems
and air pollution in a particular period. These phenomena lead to various issues and discussions about
urban structure and urban sustainable development [1,3]. Human activities in the urban area, by its
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very nature, could be categorized as travelling activities. The occurrence of them would be varied
alone but would be geographically or temporally regular. Therefore, there is a feasible way to study
the characteristics and patterns of these travelling activities. It is critical for planners and managers to
understand urban structures and sustainable development for the modern city.

At the same time, the acquisition of geo big data became more convenient with the rapid
development of location-based service (LBS) and information and communication technology (ICT) [4,5].
Big data such as taxi trajectories, mobile phone records, and social media data include geographic
locations and the time when they appeared. Each datum records human activities from individuals,
which track people and updates in real-time. These data are widely used to solve the problem of
the human–environment relationship [5]. Compared with conventional questionnaires and remote
sensing data, they not only could be captured easily but also play a vital role in social sensing as the
sensor of individuals [3,5]. The advantages of those geo big data bring new opportunities to observe,
quantify, and even predict the dynamic patterns of human activities and the urban environment from
an individual to a society level.

Most human travelling activities are driven by many reasons. No matter what those reasons
are, these urban travels are also known as the spatio-temporal tracks that lead to a series of spatio-
temporal phenomena. Exploring inherent patterns of these phenomena has become more and
more popular in urban study. Previous research mainly focused on the traces of human travelling,
travelling origin–destination (OD) flow, and the patterns of urban areas involved in travels. Specifically,
the traces of human travelling included a series of travelling points that are responsible for the human
daily mobility patterns at the individual and population levels—for example, travelling motifs [6–8].
There are also several studies uncovering and forecasting the spatio-temporal travelling routines
through travelling traces [9–11]. At the same time, travelling OD flows as the expression of spatial
interactions between two places also play an essential role in discovering the patterns of human
travelling. Yao et al. caught hot spatial interactions with multiple flows using OD flow clustering which
could reflect the patterns of human travelling [12]. Evaluating those flows with the mutual constricted
relationship is a feasible way as well [13]. Besides, there is research using the volume of travelling
flows and snapshots depicting human travelling patterns [14]. Furthermore, analyzing the distribution
of human travels and the urban areas in which they appeared is also a research trend from recent
years. Some of them explored the spatial distributions of travels for diverse social activities [15] and
the geographical characteristics of urban travel demand [16]. Apart from that, Yang et al. evaluated
the diverse popularity of places in the urban area by human travelling [17,18]. Other research focused
on the spatio-temporal characteristics of urban travelling hotspots [2,19,20].

Generally, most of the studies working on the spatio-temporal patterns of urban travelling could
be categorized as discussions about where the popular areas of these travels appeared—in other words,
urban travelling hotspots. There are also many hotspots that we will study in the urban area, such as
crime hotspots, pollution hotspots, and epidemic hotspots. However, searching for the locations and
boundaries of those hotspots accurately is a common goal in the geographical view. One conventional
method is spatial autocorrelation, such as local Moran’s I and Getis-Ord Gi*, which means using the
quantitative statistic index to identify hot or cold areas at various scales [21,22]. Recently, the idea
of the emerging hotspot (EHS) was introduced to detect changes in trends of space–time data [23].
Harris et al. combined EHS analysis to study the condition of forest loss [24]. Another popular
method that identifies urban hotspots is density-based clustering. Some research detected urban
hotspots of trajectory with density-based spatial clustering of applications with noise (DBSCAN) [25,26].
One discovered the spatio-temporal hotspots of pick-ups and drop-offs and their intersections with an
improved DBSCAN method and analyzed their dynamic distributions [27]. Wang et al. improved the
traditional DBSCAN algorithm to suit the spatial network space to detect areas with dense events [28].
Furthermore, kernel density estimation (KDE) played an important role in hotspot identification.
For example, Zhang et al. explored and clustered the travelling patterns of residents in the urban
space using KDE [29]. Yang et al. studied the spatio-temporal characteristics of urban travelling
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hotspots by an improved one [2]. Meanwhile, there is an extension in which some studies found
hotspot locations with KDE and its improved methods in the urban road network [30,31]. However,
spatial autocorrelation would be bad at narrowing the hot area down to a limited range with the
most events. Density-based clustering and kernel density estimation have an obstacle, which is the
determination of critical parameters, including the number of (1) clusters and (2) cluster centers and
(3) radius, which would cause dynamic distribution of hotspots [19]. At the same time, all of them
would consider the aggregating high-density center rather than the influences by surrounding objects.

Fortunately, the concept of the data field was proposed to solve this problem. It simulates the
mutual interactions between particles in the physical field to depict the relationship between data
objects [19,32]. There are previous research studies which used this idea in data clustering [33,34],
image segmentation [35], and detecting urban hotspots [19,20,36]. Despite the increasing success in
identifying hotspots with a data field, the spatial interaction in the geographical space would not be
considered in mutual interactions, which is an important factor driven by human activities. As a result,
this study improves the spatio-temporal data field with the impact of long-range spatial interaction
to discover urban travelling hotspots. A case study employs the proposed method to identify urban
hotspots, and then the accuracy of results is evaluated. Finally, we analyze the spatio-temporal
characteristics of the spatial distribution of those hotspots and their interactions. Figure 1 illustrates
the overall framework of this study.
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Figure 1. The overall flowchart of the research structure.

The remainder of this article is structured as follows. Section 2 discusses the basic theory and
applications of the data field. Section 3 introduces the proposed methods and evaluations used in this
study. In Section 4, we present a case study within the Sixth Ring Road in Beijing. Next, we discuss
some broader thinking about the interactions between hotspots under the urban spatial network in
Section 5, before concluding and pointing out directions for future work in Section 6.

2. Data Field Theory and Its Classical Expansions

There is a mutual interaction between individual particles, described as “the concept of the
field” in physical space. Each particle is regarded as a field source. Each field source would radiate
energy and influence others around it simultaneously; its energy value is considered as field potential.
Li [32] developed this concept for abstract data objects and their distributions. According to his idea,
the mutual interaction between data objects is depicted by the aid of a data field [20]. Meanwhile,
the concept of potential energy in the physical system had been brought to measure the influence of
the interaction between data objects with a suitable potential function [33,35]. As a result, the potential
value is an exact quantitative expression about how a field source (an object) influences its neighbors.
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In general, the radiation distance of the field source determines the type of the field [32]. There are
long-range fields and short-range fields in the data field. As the position in the long-range field is far
away from the field source, the potential value does not vanish. The short-range field, however, can be
represented the character which is the value that dropped sharply with an increasing distance in the
space. The potential functions of the short-range field fit specifically to quantify these characteristics of
distance decay with the Gaussian kernel function [19,20,32,33].

Instead of random microparticles in physical space, location-based data points, such as trajectory
data, would be aggregated in a particular area because of humans and the environment. Therefore,
they have their own data field and influence each other due to the nature of them. Zhao et al. followed
the idea of the data field and proposed a trajectory data field [19]. In trajectory data, each point is
treated as a field source with mass. Its potential value depends on the number of field sources around
it and the distance between them. However, taxi trajectories are the aid of distinctive spatio-temporal
data with rich time information. There is a temporal dimensional expansion from the classical spatial
data field [36]. Typically, the coordinates of two dimensions, x and y, describe the location where the
data point occurred. In a spatio-temporal space, the energy radiating from the field source is controlled
by the distance from the source and the time after the field source formed [20,36]. Figure 2 illustrates
the theoretical relationship of two points in a spatial space and in a spatio-temporal space.
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Figure 2. The conceptual expression of points in a spatial space (a) and in a spatio-temporal space (b).
Point A and point B are represented as A (x1, y1) and B (x2, y2) in the two-dimensional space, while in
the spatio-temporal space, point A and point B are quantified as A (x1, y1, t1) and B (x2, y2, t2).

Added with the time parameter, the traditional trajectory data field was evolved into the
spatio-temporal data field. Supposing that the trajectories dataset D =

{
p1, p2, . . . , pn

}
is in the

spatio-temporal data field, each pick-up or drop-off is abstract, as pi =
{
xi, yi, ti

}
, where xi, yi, ti is

separately represented to the coordinates x and y and the time that the event showed up. The definition
of the potential value of pi is expressed as the following Equations (1) and (2):

ϕ(i) =
∑n

j=1
m j × e−(

dij
σ )

k

×
1

∆ti j
(1)

∆ti j =
∆ti j − ∆tmin

∆tmax − ∆tmin
(2)

where m j represents the mass of the data object p j, normally equaled to 1; di j means the distance
between the object pi and p j; σ is the impact factor that controls the range of interactions among the
objects [33]; k is the distance index, normally equaled to 2; ∆ti j is defined as the normalization of the
interval of two data points happened; ∆tmin means the minimal interval in the dataset; ∆tmax means
the maximal interval in the dataset.

The impact factor measures the range within which a field source can influence others in the data
field. When the impact factor σ is greater, the interaction range R is larger. According to the principle
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of Gaussian kernel function, the influences of the short-range field vanish at 3
√

2
σ from the field source.

In previous studies, the value of σ equaled to around 0.3 [19,36], and entropy was used to evaluate the
distributions of data points and select a suitable impact factor for the dataset [32].

3. Methodology

Data field theory is a data-driven methodology simulating the form and distribution of a dataset
that puts data points as the priority. As a result, there are several applications in many study fields,
such as discovering urban hotspots [19,20,36] and data clustering [33,34]. In this section, we improve
the previous methods for detecting hotspots based on a data field with spatial interaction and introduce
evaluations of their accuracy.

3.1. Interaction-Based Spatio-Temporal Data Field (STDF) Identification for Urban Hotspots

In this part, the framework of interaction-based spatio-temporal data field (STDF) identification
for urban hotspots is introduced. There are three steps, including calculating the potential value for
each trajectory point with spatial interaction, calculating the sum of potential value in the urban unit,
and detecting urban hotspots by edge detection.

3.1.1. Calculation of Potential Value

In geographical space, mutual influences between individual locations are reflected by spatial
interaction and temporal activities [20]. However, spatial interaction includes two types, which are
touched interaction and untouched interaction. For example, closer objects are more related to others
around them and their relationships with distance decay are presented by untouched interactions,
which can also be regarded as short-range interactions. More importantly, touched interactions caused
by human-driven activities would also be a vital part of spatial interactions. They can be mentioned in
long-range interactions since the places seem to be geographically irrelative. Figure 3 shows how the
points from neighbors and couples affect one another. A conventional data field with or without a
temporal dimension is a mathematical function to draw short-range interactions. As is known to all,
the long-range interaction is one of the most important variations when discovering spatio-temporal
patterns in urban space, including detecting urban hotspots. Existing data field methods discovered
urban hotspots by the lack of long-range interactions. Therefore, we added the influence of long-range
interactions into the data field in this study.
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First of all, a mathematic function needed to be found to depict the long-range interaction in
the space. The concept of a long-range field with a slow distance decay can be referred to as a
long-range interaction. Generally, the potential function of pseudo gravity is often used to express
the long-range field [32]. In a spatio-temporal space, a long-range spatial interaction F contains an
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origin O =
{
xo, yo, to

}
and a destination D =

{
xd, yd, td

}
; the potential value of the origin affected by the

destination from a long-range interaction can be expressed as follows:

ϕD(O) = mD ×
1

1 + dOD
σ

×
1

∆tOD
(3)

where mD represents the mass of destination D; dOD means the distance between the origin O and the
destination D; σ means the impact factor; and ∆tOD determines the normalization of the interval of the
origin O and the destination D that happened as Equation (2).

Second of all, the influence of the long-range interaction can be considered when the distance of a
pair of origin and destination fell outside the distance of the short-range interaction R. Nonetheless,
there are two common distance measures used for calculations in geographic studies, which are the
Euclidean distance and the Manhattan distance. Compared with the Euclidean distance, the Manhattan
distance would be suitable to characterize the geographic relationship between taxi trajectories,
because their existences rely on the road network. In this study, the Manhattan distance is employed in
the distance measurement of two data points.

Combined with the spatial interaction, the potential value of the point pi in the spatio-temporal
data field is calculated as follows:

ϕ(i) =
∑n

j=1
ϕ j(i) (4)

ϕ j(i) =


m j × e−(

dij
σ1

)
2

×
1

∆ti j
, di j ≤

3
√

2
σ1

m j ×
1

1+
dij
σ2

×
1

∆ti j
, di j >

3
√

2
σ1

(5)

where m j is defined as the mass of data point j and the potential value of data point j in the pair of
OD flows when di j <

3
√

2
σ1 and di j ≥

3
√

2
σ1, respectively; di j means the distance between data objects

(origin and destination) i and j; σ1 and σ2 are the impact factors, according to the rule of minimal
entropy; σ1 and σ2 are amounts equal to 0.5 and 0.01, respectively; ∆ti j is the normalization of the
interval of data point i and j, calculated by Equation (2).

Points A, B, and C are three points in the space. The graduated circles represent the impact radiated
from data points. Spatial interaction is depicted by the graduated line with an arrow. The potential
values at locations 1 and 2 are the scalar sum of their neighbors A and B, respectively, while the
potential value at location 3 is regarded as the overlying of its neighbor A and couple C.

3.1.2. Quantifying the Potential Value of the Study Unit

Identifying collective spatio-temporal patterns from geo big data might be a variable challenge
caused by the granularity of the analysis unit [37,38]. Trajectory data points with potential values can
determine the maximal details as the minimal analysis unit undoubtedly. However, they are not regular
enough to extract urban travelling modes. It is more efficient that these data points are projected into
a fitting study unit with the increasing size of the study object. As a result, a specific urban unit is
introduced as the study unit in this work. The potential value of one study unit is represented as
Equation (5), which is quantified to the total potential value of data points within the unit.

ϕ(g) =
∑n

i=1
ϕ(i) (6)

where ϕ(g) means the potential value of the unit g; n means the number of the points projected in the unit.

3.1.3. Determining the Urban Hotspots by Edge Detection

There are various methods to identify hot and cold spots, including clustering based on potential
value and edge detection. Thresholding segmentation, introduced by Rosin, is a simple and effective
method for finding the boundary of images, which is a bilevel thresholding algorithm based on a



Sustainability 2020, 12, 9662 7 of 20

histogram plot [39]. It aims to find the location with a maximal distance from a straight line starting at
the peak and ending at the first empty bin of the histogram. All values in the histogram plot would
be divided by this location. This method is suitable for histograms with only one dominant value
(a peak) and a lower end. A histogram ranked by the potential values of urban units gives a long-tailed
distribution curve that fits the thresholding segmentation algorithm. Therefore, we employed this
method to determine hotspots in the urban area.

3.2. Evaluating the Proposed Methods

In this part, there are two aspects involved in the accuracy evaluation of urban travel hotspots,
which are basic validation and prediction accuracy index (PAI).

3.2.1. Basic Validation

Identifying urban hotspots addresses the discovery of social sensing and the patterns of human
activities. The most common validating method is a direct visual comparison. As a result, we first
compared the results of the proposed identification method with two other methods by directly
showing results on a map.

3.2.2. Quantifying the Accuracy of Identification

To validate the accuracy of detecting hotspots, researchers have begun to consider assessments
that can be used to measure how good a method is for identification. There is an assessment named
the prediction accuracy index (PAI), frequently used to evaluate the accuracy of crime prediction
hotspots. It solved the problem of other assessments which do not take into account the size of
the study areas where the crimes are predicted [40,41]. It has become the most popular accuracy
measurement of predicting the spatial patterns of crimes [40–43]. The idea of the PAI can also be
borrowed for quantifying the accuracy of identifying urban travel hotspots. The popularity of travel
hotspots increases with the number of pick-ups and drop-offs that appear in an area in some respects.
Counting the proportion of pick-ups and drop-offs that occur in the areas that are identified as hotspots
to all of the areas is the method of calculation of the PAI. Equation (7) illustrates the process of the PAI
as follows:

Prediction Accuracy Index =

(
n
N

)(
a
A

) × 100% (7)

where n means the number of events within the areas identified as hotspots; N means the number of
events within the study area; a and A represent the area of the hotspots and the study area, respectively.

4. Case Study

4.1. Study Area and Dataset

As the center of politics, economy, technology, and transportation in China, Beijing attracts attention
from all over the world. Additionally, it is a suitable area to discover urban travelling problems.
Specifically, the study area in this article is within the Sixth Ring Road in Beijing, including six
main administrative districts and also part of the suburbs. This area is the main region of human
activities, with a huge population and convenient and complete transportation systems as well as
well-developed road networks. Traditionally, 500 m, or a walking time of less than 6 min, is used to
define the walkability of an area [44]. Considering the scale of human activity and spatial distribution
of trajectories, we considered 500 m as the research diameter and divided the whole study area into
regular grids (500 × 500 square meters). These regular grids became the urban units in this study.
Figure 4 shows the whole study area and the distribution of regular grids.
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Although the subway and buses are the most popular types of public transportation, taxis played
an important role in the urban transportation system in recent years [17]. Trajectory dataare attractive
for analyzing intra-city interactions and human travelling patterns. In this study, we applied a taxi
dataset including pick-ups and drop-offs collected from more than 15,000 taxis in a week (10 June to
16 June in 2016) in Beijing. All these data points are integrated into 24 h and grouped with 4-h intervals
for the purpose of exploring the temporal characteristics of them. Meanwhile, taxi origin–destination
(OD) flows that embody human travelling activities are abstracted as a pair of pick-up and drop-off

points. After data preprocessing, each data point contains its taxi’s ID, location, recording time,
and status (vacancy or occupancy). Furthermore, taxi OD flows are effective to express a real human
trip. The extracted OD flows reflect the spatial interactions between urban areas, especially long-range
interactions. Table 1 shows examples of processed taxi data. The study area is denoted in green
in Figure 4a. All place names mentioned in Sections 4 and 5 are corresponded to in Figure A1 of
Appendix A.

Table 1. Samples of origin–destination (OD) flows with pick-ups and drop-offs.

Taxi ID Pick-Up Time Pick-Up Location Drop-Off Time Drop-Off Location

1000 2016-6-10 10:37:44 116.58874, 40.07905 2016-6-10 11:5:1 116.39498, 39.99156
12179 2016-6-12 14:33:52 116.39114, 39.85552 2016-6-12 14:50:22 116.31633, 39.89542
1970 2016-6-14 20:58:35 116.55133, 40.06325 2016-6-14 21:7:54 116.47403, 40.01265

4.2. Spatio-Temporal Patterns of Urban Travelling Hotspots

Previous studies showed that there is a considerable variation at different hours and different
days regarding the number of taxi pick-ups and drop-offs [17,18]. Therefore, we selected, separately,
two groups of OD flows that appeared on weekdays and weekends. In the beginning, we employed
the interaction-based STDF to calculate the potential value of each grid in the study area. There is a 3D
view showing the result of the potential value assignment in Figure 5, which was obtained from the taxi
OD flows dataset (weekdays 13:00–16:00). The potential value is the measurement of the dimension
of height. Furthermore, the red columns and grids with high potential value represent the popular
travelling areas in the study area.
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4.2.1. Dynamic Characteristics of Hotspots on Weekdays

We divided all taxi trajectories into two groups including pick-ups (O) and drop-offs (D). Normally,
the spatio-temporal patterns of them are not same as each other. As a result, the trend of the
number of travelling hotspots in the study area was unwrapped at the beginning. Figure 6 illustrates
the difference between the number of hotspots identified between the origins and destinations on
weekdays. The blue line with the circle mark represents the number of pick-up hotspots, while the
yellow line with the square mark constitutes the tendency of drop-off hotspots. Although both of them
have a similar upward fluctuation, the quantity of destination hotspots is greater than the those of
origins. The reason for this might be that passengers would find the nearest place to them where taxi
drivers aggregate frequently when travel started, and they would be dropped off at the exact same
destinations. At 01:00–04:00, the number of origin hotspots was the smallest. Influenced by human
activities, it increased to 50 hotspots as a peak at 09:00–12:00. After a slight decrease, the number of
pick-up hotspots rose to over 50 again at 17:00–20:00. Then, it dropped to around 35 in the evening
(21:00–00:00 + 1). Similar to the pick-up hotspots, the number of destination hotspots had been
through a small increase from 01:00–04:00 to 05:00–08:00. Then, the maximum amount appeared at
17:00–20:00 with a mild increase, which was over 60. In the end, it fell back to as same as the number of
pick-up hotspots.

The spatio-temporal distributions of pick-up and drop-off hotspots at six distinct periods are
depicted in Figure 7. The green grids and blue grids represent the hotspots of origins and destinations,
respectively. These hotspots are discovered, almost on the whole, within the Fifth Ring Road,
except those from 01:00–04:00. At the same time, there are several areas identified as pick-up and
drop-off hotspots simultaneously at each period, such as Sanlitun, Wangjing, Beijing railway station,
and Beijing Capital International Airport. This means that human activities are more active to fit the
needs of work and business. Furthermore, the travel demands are varied on weekdays.
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Specifically, there are three places, grouped in Beijing Capital International Airport, Sanlitun,
and Nanluoguxiang, where we detected seven pick-up hotspot areas in the early morning. After this
period, the urban travelling hotspots were scattered from the center of the city to the Fifth Ring Road for
the rest of the periods. However, the time interval 05:00–08:00 is the only period when the hotspots were
not detected at Beijing Capital International Airport. There might be two reasons for this phenomenon.
One is there are fewer flights than other periods. The other is that other activities such as commuting
are more popular and predominant at this time interval. In this period, the hotspots are identified
around the two main railway stations (Beijing railway station and Beijing West railway station) and
residential communities, such as Xizhimen, Shuangjing, Caoqiao, Shangdi, and Zaoyuan. Except for
those places that appeared in the last period, there are more hotspots distributed around places with
more entertainment activities, such as Tiantan Park, Qianmen, Xidan, and Nanluoguxiang, or the areas
with full of students (Wudaokou, Renmin University, and Datunlu) at 09:00–12:00. During 09:00–16:00,
university students, old people, and children could have a chance to travel in the city. As a result,
areas including university campuses and local parks would also be identified as hotspots on weekdays.
At 13:00–16:00, the quantity and spatial distribution of hotspots both narrowed slightly. The popular
pick-up areas that people prefer to choose are around entertainment sites and transportation centers,
such as Xidan, Nanluoguxiang, Xizhimen, Sanlitun, Taiyanggong, Wangjing, and Wudaokou as well
as Beijing railway station, Beijing West railway station, and Beijing Capital International Airport.
After this period, the hotspots were discovered with a larger range than at 13:00–16:00. People tend to
depart from some business areas, transportation hubs, and nightlife centers because there are enormous
commuting activities and business trips in this period. Nightlife activities began to be popular after
work as well. The hotspot areas included Dongzhimen, Sanlitun, Dawanglu, Qingnianlu, Wangjing,
Datunlu, Wudaokou, Zhongguancun, Xizhimen, Xidan, Shuangjing, Zaoyuan, Beijing railway station,
Beijing West railway station, Beijing South railway station, and Beijing Capital International Airport.
In the deep of night, the hotspots are clustered at nightlife centers, housing areas, and transportation
centers, such as Sanlitun, Nanluoguxiang, Wudaokou, Wangjing, Dawanglu, Shuangjing, Liujiayao,
Zaoyuan, Beijing railway station, and Beijing Capital International Airport.

As illustrated in Figure 7, the spatio-temporal characteristics of drop-off hotspots have differences
with pick-up hotspots. First of all, compared with pick-up hotspots, there are some resident hotspots
discovered, apart from those at nightlife centers and transportation hubs, at 01:00–04:00. The main
reason that passengers went back home is the end of various nightlife activities and business trips.
In the next period, there are some hotspots that contain hospitals, such as the Children’s hospital and
Jishuitan hospital. The other hotspots are distributed from the northeast of the Fifth Ring Road to
the south of the Third Ring Road, which are some areas containing aggregated business activities,
such as Dongzhimen, Wangjing, and railway stations. Then, at 09:00–12:00, hotspots are added
around some business areas, including Sanlitun, Xizhimen, Caoqiao, Tiantan Park, and Beijing Capital
International Airport. After this period, hotspots are identified in some areas with more types of human
activities throughout the whole study area, such as Taiyanggong, Wangjing, Sanlitun, Nanluoguxiang,
Wudaokou, Xidan, Gongzhufen, Qingnianlu, Jinsong, railway stations, and the airport. In the
evening, entertainment activities are more predominant in the form of drop-off hotspots. Therefore,
hotspots appeared at Datunlu, Dongzhimen, Xizhimen, Zhongguancun, and Dongdan, and vanished
at Wangjing, Gongzhufen, and Jinsong at 17:00–20:00. Similar to the pick-up hotspots, the drop-off

hotspots are clustered at nightlife centers, residential communities, and transportation centers, such as
Sanlitun, Nanluoguxiang, Wudaokou, Taiyanggong, Shangdi, railway stations, and the airport.

Generally, the appearing pick-up and drop-off hotspots reflected the types of human activities
in the urban space. The spatio-temporal distributions of travel hotspots fit the routines of daily life
on weekdays. There are distinct temporal differences between periods, such as the commuting and
business periods and the nightlife period. Only a few nightlife places and the airport were identified
in the early morning. Commuting activities dominated the travel hotspots at 05:00–08:00. However,
human activities such as student activities during the daytime caused the hotspots to be scattered to
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some entertainment sites, universities, and urban parks. At 17:00–20:00, commutes and the closing
times of attractions began to influence the hotspot areas. Nightlife activities also led to some travels
from entertainment sites. After this period, the hotspots were often around nightlife centers. Apart from
that, transportation centers were hotspot areas all day due to frequent business trips on weekdays.

4.2.2. Dynamic Characteristics of Hotspots on Weekends

Figure 8 illustrates the difference between the number of hotspots identified between the origins
and destinations on weekends. Different from the travelling hotspots on weekdays, the number of them
has an opposite trend after 13:00. While the numbers of origin and destination hotspots are similar
from 01:00–04:00 to 09:00–12:00, after that, the number of drop-off hotspots is more short-distributed.
This might be explained by the fact that more and more people visit some places for recreation from
the entire city around the afternoon at weekends. The pick-up hotspots reached more than 50 as a
peak at 05:00–08:00. Then, there was a slight drop before 13:00–16:00 and the value fell to just over
40. Influenced by the active nightlife, the number of pick-up hotspots climbed constantly to 50 at
17:00–20:00 and even to 66 in the evening (21:00–00:00+1). As for the drop-off hotspots, there was a
sharp fall from the peak of over 50 at 05:00–08:00 to under 20 at 17:00–20:00. The number was consistent
into the next period, which was similar to the number from 01:00–04:00.Sustainability 2020, 12, x FOR PEER REVIEW 13 of 21 
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Figure 8. The different numbers of origins (O) and destinations (D) at different times on weekends.

The spatio-temporal patterns of pick-up and drop-off hotspots at six different periods are illustrated
in Figure 9. Different from the spatial distribution of hotspots on weekdays, most of the hotspots of
origins and destinations appeared at the same grids on weekends. Especially at 09:00–12:00, there is
only one place around Wangjing identified as only containing drop-off hotspots. This phenomenon
reflects that human activities are relatively homogeneous at weekends.

The green grids show the spatial distribution of pick-up hotspots on weekends. Specifically,
there are some popular places detected at Beijing Capital International Airport, Sanlitun, Qingnianlu,
Shuangjing, and Wudaokou at 01:00–04:00; most of them are distributed in the east of the city.
These places are popular nightlife centers, except the airport. After this period, the pick-up hotspots
are scattered throughout the whole study area for the rest of the periods. At 05:00–08:00, the hotspot
areas are identified at transportation hubs and residences in the city, which include Beijing Capital
International Airport, Beijing railway station, Sihui, Wangjing, Dongdaqiao, Shuangjing-Jinsong,
Liujiayao, Caoqiao, and Gongzhufen. After this period, the number of hotspots decreased gently.
There are 50 hotspots that appeared regularly within the Fifth Ring Road at 09:00–12:00. Those places
covered entertainment sites, such as Tiantan Park, Xisi, Xizhimen, Wudaokou, Wangjing, Dongzhimen,
Dongdan, and Sanlitun. Furthermore, transportation centers are the main popular departure sites for
people in this period. In the afternoon, the popular pick-up areas transferred people to other famous
entertainment centers and transportation hubs in the city, such as Xidan, Nanluoguxiang, Sanlitun,
Taiyanggong, Wangjing, Jinsong, Zhongguancun, Caoqiao, and Zaoyuan, as well as Beijing railway
station, Beijing West railway station, and Beijing Capital International Airport. With the development
of nightlife, more entertainment sites in the entire study area become popular. Besides those hotspots
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shown in the last period, Dawanglu, Datunlu, Wudaokou, and Xizhimen are also discovered as pick-up
hotspots. In the deep of night, the hotspots are clustered at nightlife centers and transportation centers
from the north Fifth Ring Road to the south Fourth Ring Road, where Sanlitun attracts a huge cluster
of hotspots.
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not only around nightlife centers but also around areas with various university students, such as
Sanlitun, Nanluoguxiang, Wudaokou, and Taiyanggong. However, the hotspots of destinations have
the same distribution as the hotspots of origins from 05:00 to 12:00. This is because human activities on
weekends would not become popular in this period. At 13:00–16:00, there are fewer places discovered
as hotspots throughout the entire study area, including Nanluoguxiang, Xidan, Jinsong, Liujiayao,
Caoqiao, Qingnianlu, Wangjing, Wudaokou, Haidianhuangzhuang, Xingong, Zaoyuan, Beijing railway
station, and Beijing Capital International Airport. In the evening, the spatial distribution of drop-off

hotspots is nearly located entirely within the Fourth Ring Road. At 17:00–20:00, all hotspots detected
are scattered at those places highly related to residents’ daily life, such as Xidan, Dongzhimen, Jinsong,
Sihui, and Zaoyuan. While Beijing railway station and Beijing Capital International Airport are
identified as hotspots in the deep of night, except from that, people prefer to arrive around Sanlitun,
Dawanglu, Xizhimen, Taiyanggong, Wangjing, and Liujiayao.

In general, the hotspots detected on weekends are dispersed in the entire urban space, while the
types of places that hotspots covered are almost all entertainment sites. The pick-up hotspots distributed
around residences and entertainment centers since 13:00 and the drop-off hotspots are concentrated on
the busiest entertainment sites in the urban spaces from the afternoon to the deep of night. This is
because people tend to be relaxed on weekends. Before the afternoon, the daily routines of residents
are stable. As a result, the pick-up hotspots are detected around residence communities in the morning.
Besides, transportation hubs, such as railway stations and airports, also are identified as travelling
hotspots at weekends. Business trips and tourists are the two important factors that contributed to
frequent visits.

4.3. Evaluation of Accuracy

We further compared the overlapping results between the Getis-Ord Gi* hotspot analysis,
the trajectory data field, and the proposed method to investigate the effectiveness of the proposed
method in a particular area. As shown in Figure 10, the yellow grids, the grids with the hashed black
line, and the grids with black dots represent the spatial distribution of the Getis-Ord Gi * hotspot
analysis, the trajectory data field, and the proposed method at 09:00–12:00 on weekdays, respectively.
Furthermore, the orange and the purple ones are the grids overlapped by those three colors. There are
140 complete grids in this particular area. The result of the Getis-Ord Gi * hotspot analysis covered the
entire area. It cannot be a piece of evidence to reflect the popular travel areas in people’s daily lives.
The spatial distributions of travel hotspots discovered by the other two methods are more identical
in comparison. However, the hotspot areas with black lines which appeared in 42 grids crossed a
large area from the west of the Second Ring Road to the east of the Third Ring Road. The two main
hotspot areas depicted in Figure 10 covered 3.25 km2 and 5.5 km2, which are too big to fit the human
cognition of hotspots. The hotspots extracted by the trajectory data field are not precise enough to be
representative of the popular area. As for our method, 10 hotspots were detected from all of the grids,
which make up a 7.1% share of this area. For instance, the black dot hotspots cover the exact area of a
famous entertainment site in Sanlitun, while the black lines cover a large and inaccurate area to reflect
this popular place, which surrounds the center of Sanlitun.

In general, the method with a greater PAI value has a good performance. Table 2 shows the
quantitative comparison of different methods that identify urban travel hotspots on weekdays and
weekends. It indicates that the pros and cons of the three identifying algorithms are reflected through
the trajectory data. The results show that there are distinct differences between Getis-Ord Gi * hotspot
analysis and the methods from the perspective of the data field. The PAI values of the trajectory data
field and the proposed method are higher than that of the Getis-Ord Gi *. It means that methods from
the perspective of a data field could find more pick-ups and drop-offs in a smaller area. Additionally,
the proposed identification method performed better than the trajectory data field in most instances,
especially those trajectories on weekends. In particular, the mean PAIs of the proposed method of
origins on weekdays and weekends are nearly three times higher than the mean values of the Getis-Ord
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Gi * analysis, and almost twice as great as the trajectory data field. The mean values of destinations
on weekdays and weekends have a similar trend, although the proposed method discovered a few
more drop-offs while covering a similar area. Moreover, the Wilcoxon signed rank (WSR) test results
shown in Figure 11 provide an additional insight that cannot be gained from the specific and mean
PAI results. In the case of origins on weekdays, the proposed method has a better performance than
other methods with a lower significance (p ≤ 0.05). There is a same significant result for the proposed
method when it identified drop-off hotspots. At weekends, the proposed method outperformed the
other two methods (p ≤ 0.1) for discovering either origins or destinations.
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Table 2. The prediction accuracy index (PAI) value of different methods on weekdays and weekends.

Weekdays/Weekends Method 01:00–04:00 05:00–08:00 09:00–12:00 13:00–16:00 17:00–20:00 21:00–00:00+1 Mean

O

Weekdays
Getis-Ord Gi* 3.680 3.423 3.737 3.816 3.815 3.608 3.680

Data field 12.270 10.003 9.598 9.174 6.811 6.018 8.979
Interaction-based STDF 24.682 8.252 8.377 9.929 8.228 8.857 11.388

Weekends
Getis-Ord Gi* 3.636 2.926 3.150 3.305 3.922 3.137 3.346

Data field 7.438 4.802 6.156 6.856 5.108 5.139 5.917
Interaction-based STDF 10.089 7.787 8.105 8.159 14.935 6.498 9.262

D

Weekdays
Getis-Ord Gi* 3.669 3.413 3.624 3.951 3.815 3.485 3.660

Data field 8.454 10.313 8.686 8.895 6.587 5.846 8.130
Interaction-based STDF 10.565 11.623 8.952 7.983 7.420 6.301 8.807

Weekends
Getis-Ord Gi* 3.572 3.057 3.263 3.412 3.895 3.153 3.392

Data field 10.150 4.703 5.863 7.088 5.599 5.858 6.544
Interaction-based STDF 6.604 8.422 8.139 8.402 12.761 5.864 8.365
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Figure 11. The results of the Wilcoxon signed rank (WSR) test, showing the significance of any
differences between the PAI values of the methods. The green part means the comparison of methods
for origins on weekdays, the blue part represents destinations on weekdays, the purple part represents
origins on weekends, and the grey part represents destinations on weekends. All parts follow the
rule that the row method is more accurate than the column method. When the color becomes darker,
the significance is lower.
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5. Discussion

In this section, we further analyze the spatio-temporal patterns of spatial interaction between
urban travelling hotspots using spatial interaction networks. At the same time, the structures of
cities are closely related to intra-city human travelling patterns [45–48]. The spatial structures of
hotspots will also be discovered in this process. The hotspots detected from 09:00–12:00 are chosen
to be an example of discovering the characteristics of urban spatial structures. In the beginning,
the directed and weighted spatial-interaction network of hotspots (SINH) has been built. Then,
degree centrality has been employed to depict the characteristics of spatial interactions between
hotspots and urban structures.

Because of the direction of each node, the in-degree centrality only belongs to the pick-up
hotspots, and the out-degree centrality is suitable for the drop-off hotspots. As illustrated in Figure 12,
the hotspots discovered on weekends are more popular for both pick-up and drop-off passengers than
on weekdays. It indicates that the departure areas and arriving areas meet the regular demands for
residents in the city at 09:00–12:00 on weekdays. However, the pick-up and drop-off hotspots are
various and contain different types of urban travel on weekdays. There is further evidence to prove this
phenomenon from the spatial distribution of urban travelling hotspots. The grids 4358, 4359, 4003, 4962,
5087, and 5841 contribute significantly to urban travelling on weekdays, which cover Sanlitun, Caoqiao,
Wufangqiao, Beijing railway station, and Beijing West railway station. These areas play a significant
role as bridges in connecting other grids, which are seen as the travelling centers in the study area.
The grids 3794, 4441, 4856, 5824, and 6037, with higher out-degree centrality than others, are the most
important departure hotspots, which include Xidan, Xizhimen, Jianguomen, Tiantan Park, Sanyuan
Bridge, and Beijing South railway station on weekdays. Meanwhile, Jinsong, Shilihe, Dahongmen,
and Beijing Capital International Airport have a great in-degree centrality to attract travel because they
are located in grids 4775, 4130, 3692, 8651, and 5303. The nodes with a great in-degree centrality and a
great out-degree centrality appeared in different areas, which means the distributions of urban travels
with strong regularity are stable on weekdays.

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 21 

5. Discussion 

In this section, we further analyze the spatio-temporal patterns of spatial interaction between 

urban travelling hotspots using spatial interaction networks. At the same time, the structures of cities 

are closely related to intra-city human travelling patterns [45–48]. The spatial structures of hotspots 

will also be discovered in this process. The hotspots detected from 09:00–12:00 are chosen to be an 

example of discovering the characteristics of urban spatial structures. In the beginning, the directed 

and weighted spatial-interaction network of hotspots (SINH) has been built. Then, degree centrality 

has been employed to depict the characteristics of spatial interactions between hotspots and urban 

structures. 

Because of the direction of each node, the in-degree centrality only belongs to the pick-up 

hotspots, and the out-degree centrality is suitable for the drop-off hotspots. As illustrated in Figure 

12, the hotspots discovered on weekends are more popular for both pick-up and drop-off passengers 

than on weekdays. It indicates that the departure areas and arriving areas meet the regular demands 

for residents in the city at 09:00–12:00 on weekdays. However, the pick-up and drop-off hotspots are 

various and contain different types of urban travel on weekdays. There is further evidence to prove 

this phenomenon from the spatial distribution of urban travelling hotspots. The grids 4358, 4359, 

4003, 4962, 5087, and 5841 contribute significantly to urban travelling on weekdays, which cover 

Sanlitun, Caoqiao, Wufangqiao, Beijing railway station, and Beijing West railway station. These areas 

play a significant role as bridges in connecting other grids, which are seen as the travelling centers in 

the study area. The grids 3794, 4441, 4856, 5824, and 6037, with higher out-degree centrality than 

others, are the most important departure hotspots, which include Xidan, Xizhimen, Jianguomen, 

Tiantan Park, Sanyuan Bridge, and Beijing South railway station on weekdays. Meanwhile, Jinsong, 

Shilihe, Dahongmen, and Beijing Capital International Airport have a great in-degree centrality to 

attract travel because they are located in grids 4775, 4130, 3692, 8651, and 5303. The nodes with a great 

in-degree centrality and a great out-degree centrality appeared in different areas, which means the 

distributions of urban travels with strong regularity are stable on weekdays. 

  

Weekdays Weekends 

Figure 12. The directed spatial-interaction network of hotspots at 09:00–12:00 on weekdays and 

weekends. The blue nodes, the green nodes, and the yellow nodes represent the grids as both pick-

up and drop-off hotspots, only pick-up hotspots, and only drop-off hotspots, respectively. The more 

important nodes with a greater degree centrality are bigger. 

Compared with weekdays, the most popular grids in the urban space involve both destinations 

and places of departure. The travelling hotspots identified on weekends which dominate urban 

travels are aggregated at Sanlitun, Taiyanggong, Wufangqiao, Beijing railway station, and Beijing 

Capital International Airport (grids 4358, 4359, 6717, 5841, 5518, 9289, and 5405). The spatial 

distributions and the urban functions of these areas demonstrate that human activities fit various 

Figure 12. The directed spatial-interaction network of hotspots at 09:00–12:00 on weekdays and
weekends. The blue nodes, the green nodes, and the yellow nodes represent the grids as both pick-up
and drop-off hotspots, only pick-up hotspots, and only drop-off hotspots, respectively. The more
important nodes with a greater degree centrality are bigger.

Compared with weekdays, the most popular grids in the urban space involve both destinations
and places of departure. The travelling hotspots identified on weekends which dominate urban travels
are aggregated at Sanlitun, Taiyanggong, Wufangqiao, Beijing railway station, and Beijing Capital
International Airport (grids 4358, 4359, 6717, 5841, 5518, 9289, and 5405). The spatial distributions
and the urban functions of these areas demonstrate that human activities fit various residents’ needs
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more than on weekdays. Indeed, entertainment sites would be the most popular demand for residents’
travel on weekends.

Although the spatial distribution of hotspots would be dispersed geographically either on
weekdays or on weekends, connections between the two of them exist directly with a short path.
This means that the spatial-interaction network of hotspots is similar to a small-world network on
weekdays and weekends.

6. Conclusions

Identifying urban travelling hotspots has become a popular trend for researchers in recent years.
It also plays a vital role in discovering the characteristics of human mobility. At the same time,
taxis, an important means of public transportation, reflect urban individual travels. Trajectory data
with pick-up points and drop-off points could be seen as an abstract of spatial interactions that
connect two different places in the city directly. They also provide a new opportunity for reflecting
urban spatial structures, which are helpful to solve urban problems and promote urban sustainable
development. Therefore, this study combined the data field theory with spatial interactions and
proposed an identification tool named the interaction-based spatio-temporal data field to discover
urban travelling hotspots. The proposed method could give us new insights into what is happening to
human travels in the urban area. There is a case study to detect urban travelling hotspots using the
proposed method within the Sixth Ring Road in Beijing. First of all, trajectory data were aggregated to
pick-ups and drop-offs at six periods on weekdays and weekends. Each 4-h period was integrated as a
time interval. Then, urban travelling hotspots were identified with the proposed method at each period.
Next, we analyzed the spatio-temporal patterns of those hotspots during a day. Finally, qualitative and
quantitative evaluations were employed to test the accuracy of the proposed method.

The following conclusions were obtained in this study:
(1) Urban travelling hotspots are most scattered within Fifth Ring Road at different periods.

However, the quantities and geographic distributions of them are quite distinct. In quantity, the number
of hotspots was no more than 60 at any period on weekdays. There was a similar trend with two
peaks for origins and destinations on weekdays. Compared with the numbers on weekdays, the first
peak with around 50 hotspots appeared at 05:00–08:00 for pick-ups and drop-offs at weekends.
After 13:00–16:00, the number of pick-up hotspots had an upward trend, reaching over 60, while the
number of drop-off hotspots dropped to under 20. The spatial distribution of hotspots fit the needs
of regular residents in the city. For instance, job–home areas would be popular during the commute
period (including 05:00–08:00 and 17:00–20:00) on weekdays due to a large number of commuting
activities. The hotspots were almost all distributed around entertainment sites at weekends. At the
same time, transportation hubs and nightlife centers become hotspots at a particular time either on
weekdays or weekends.

(2) The results from the case study were compared with hotspots identified by Getis-Ord Gi* and
identification with data field through overlapping comparison and PAI. In total, the accuracy of the
proposed method performed better than the other two methods. Specifically, 99.3%, 30%, and 7.1% of
areas were identified as hotspots in the sample area by Getis-Ord Gi*, data field, and interaction-based
STDF, respectively. The PAI and mean PAI results show that the hotspots identified by the proposed
method could discover more points in smaller areas. These results also pass the WSR test with a lower
significance (p ≤ 0.1).

(3) We further discuss the centrality of travelling hotspots in urban structures. Workplaces and
transportation centers became popular areas on weekdays, while entertainment sites dominated urban
travels at weekends. Furthermore, the connections between hotspots reflected the characteristics of the
small-world network on weekdays and weekends.

This research offers a new perspective for analyzing human travelling and urban structures based
on the data field theory, yet there are limitations here. In the beginning, this proposed method is
suitable for fixed study units. However, the hotspot area should be irregular with human cognition
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and experience in the urban environment rather than existing areas. In addition, the difference
in time between two data points appearing is an important factor in the interaction-based STDF.
Considering the threshold of urban travel time, an appropriate time interval could help us to better
explore the characteristics of urban travel.
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