Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.1.1. Post-Consumer Plastic Packaging Waste Fraction
2.1.2. Probiotic Bacterial Solution
2.2. Pretreatment With Probiotic Bacteria and Washing Process of the Separated Post-Consumer Packaging Waste
2.3. Sensory Evaluation
2.3.1. Panel
2.3.2. Triangle Test
2.3.3. Odor Profile Analysis
2.4. Characterization of Odorants
2.4.1. Solvent Extraction of Volatiles
2.4.2. Comparative Odor Extract Dilution Analysis
2.4.3. Gas Chromatography–Olfactometry
2.4.4. Two-Dimensional Gas Chromatography-Mass Spectrometry/Olfactometry
3. Results
3.1. Sensory Evaluation
3.2. Identification and Characterization of Causative Odorants
4. Discussion
4.1. Comparison of Human Sensory Evaluation and Analytical Results
4.2. Potential Origin of Identified Odorants
4.3. Odor Reduction by the Application of Probiotic Bacterial Cultures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Chemicals
References
- The New Plastics Economy: Rethinking the Future of Plastics. Available online: https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 3 July 2020).
- European Commission. Communication from the Commission to the European Parliament: The Council, The European Economic and Social Committee and the Committee of the Regions—A European Strategy for Plastics in a Circular Economy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A28%3AFIN (accessed on 16 June 2020).
- Huysman, S.; de Schaepmeester, J.; Ragaert, K.; Dewulf, J.; de Meester, S. Performance Indicators for a Circular Economy: A Case Study on Post-Industrial Plastic Waste. Resour. Conserv. Recycl. 2017, 120, 46–54. [Google Scholar] [CrossRef]
- Polymer Comply Europe. The Usage of Recycled Plastics Materials by Plastics Converters in Europe—A Qualitative European Industry Survey—Second Edition. Available online: http://www.ahpi.gr/wp-content/uploads/2019/01/PCE-Report-2nd-EuPC-Survey-on-the-Use-of-rPM-by-European-Plastics-Converters-v.1_compressed.pdf (accessed on 16 June 2020).
- Strangl, M.; Fell, T.; Schlummer, M.; Maeurer, A.; Buettner, A. Characterization of Odorous Contaminants in Post-Consumer Plastic Packaging Waste Using Multidimensional Gas Chromatographic Separation Coupled with Olfactometric Resolution. J. Sep. Sci. 2017, 40, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.C.; Casey, R.J.; Bigger, S.W. Review of Zeolites as Deodorants for Polyethylene Resins Used in Food Packaging Applications. Polym. Plast. Technol. Eng. 2002, 41, 795–818. [Google Scholar] [CrossRef]
- Camacho, W.; Karlsson, S. Quality-Determination of Recycled Plastic Packaging Waste by Identification of Contaminants by GC–MS after Microwave Assisted Extraction (MAE). Polym. Degrad. Stab. 2000, 71, 123–134. [Google Scholar] [CrossRef]
- Welle, F. Post-Consumer Contamination in High-Density Polyethylene (HDPE) Milk Bottles and the Design of a Bottle-to-Bottle Recycling Process. Food Addit. Contam. 2005, 22, 999–1011. [Google Scholar] [CrossRef]
- Strangl, M.; Ortner, E.; Buettner, A. Evaluation of the Efficiency of Odor Removal from Recycled HDPE Using a Modified Recycling Process. Resour. Conserv. Recycl. 2019, 146, 89–97. [Google Scholar] [CrossRef]
- Erema Group GmbH-Refresher-High-Efficiency Anti-Odour Technology. Available online: https://www.erema.com/en/refresher/ (accessed on 16 June 2020).
- Starlinger & Co. GmbH-Recyclinganlage-RecoSTAR Dynamic. Available online: https://www.starlinger.com/de/recycling/recostar-produktlinie/recostar-dynamic/ (accessed on 16 June 2020).
- Cabanes, A.; Valdés, F.J.; Fullana, A. A Review on VOCs from Recycled Plastics. Sustainable Mater. Technol. 2020, 25, e00179. [Google Scholar] [CrossRef]
- Strangl, M.; Lok, B.; Breunig, P.; Ortner, E.; Buettner, A. The Challenge of Deodorizing Post-Consumer Polypropylene Packaging: Screening of the Effect of Washing, Color-Sorting and Heat Exposure. Resour. Conserv. Recycl. 2021, 164, 105143. [Google Scholar] [CrossRef]
- Isolauri, E.; Salminen, S.; Ouwehand, A.C. Probiotics. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 299–313. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and Their Fermented Food Products are Beneficial for Health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Li, J.R.; Lin, J. Probiotics in Aquaculture: Challenges and Outlook. Aquaculture 2008, 281, 1–4. [Google Scholar] [CrossRef]
- Dalmin, G.; Kathiresan, K.; Purushothaman, A. Effect of Probiotics on Bacterial Population and Health Status of Shrimp in Culture Pond Ecosystem. Indian J. Exp. Biol. 2001, 39, 939–942. [Google Scholar] [PubMed]
- Gatesoupe, F.J. The Use of Probiotics in Aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Moriarty, D.J.W. Control of Luminous Vibrio Species in Penaeid Aquaculture Ponds. Aquaculture 1998, 164, 351–358. [Google Scholar] [CrossRef]
- Vandini, A.; Temmerman, R.; Frabetti, A.; Caselli, E.; Antonioli, P.; Balboni, P.G.; Platano, D.; Branchini, A.; Mazzacane, S. Hard Surface Biocontrol in Hospitals Using Microbial-Based Cleaning Products. PLoS ONE 2014, 9, e108598. [Google Scholar] [CrossRef] [Green Version]
- Subashini, M.L. Waste Water Treatment Using Probiotics. J. Chem. Pharm. Sci. 2016, 9, E226–E228. [Google Scholar]
- Liu, J.; Liu, Y.; Li, G.; Shen, J.; Tao, Z.; Tian, Y.; Chen, L.; Li, C.; Lu, L. Dynamic Comparison on the Usage of Probiotics in Organic Wastewater Treatment under Aerobic Conditions in a Diurnal Environment. J. Air Waste Manag. Assoc. 2016, 66, 1183–1190. [Google Scholar] [CrossRef]
- Temmerman, R.; Vervaeren, H.; Noseda, B.; Boon, N.; Verstraete, W. Inhibition of Legionella pneumophila by Bacillus sp. Eng. Life Sci. 2007, 7, 497–503. [Google Scholar] [CrossRef]
- Barzegari, A.; Kheyrolahzadeh, K.; Hosseiniyan Khatibi, S.M.; Sharifi, S.; Memar, M.Y.; Zununi Vahed, S. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect. Drug. Resist. 2020, 13, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Greenman, J.; Hewett, K.; Saad, S. Discovery, Development and Exploitation of Steady-State Biofilms. J. Breath Res. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Sannikova, N.; Kovaleva, O. Use of Probiotic Preparations in Waste Waters Cleaning of Agricultural Enterprises. KnE Life Sci. 2019, 136–144. [Google Scholar] [CrossRef]
- Demets, R.; Roosen, M.; Vandermeersch, L.; Ragaert, K.; Walgraeve, C.; de Meester, S. Development and Application of an Analytical Method to Quantify Odour Removal in Plastic Waste Recycling Processes. Resour. Conserv. Recycl. 2020, 161, 104907. [Google Scholar] [CrossRef]
- Strangl, M.; Ortner, E.; Fell, T.; Ginzinger, T.; Buettner, A. Odor Characterization along the Recycling Process of Post-Consumer Plastic Film Fractions. J. Cleaner Prod. 2020, 260, 121104. [Google Scholar] [CrossRef]
- Der Grüne Punkt GmbH-Produktspezifikation Fraktions-Nr 352. Available online: https://www.gruener-punkt.de/de/downloads.html (accessed on 6 August 2020).
- Chrisal Cleaning Products—PIP Aquatec Basic. Available online: https://www.g-bakterien.de/app/download/13720712522/Datenblatt+Aquatec+Basic+.pdf?t=1493029614 (accessed on 6 August 2020).
- Chrisal Cleaning Products—Probiotic Cleaning and Maintenance of Process Water and Cooling Water. Available online: https://www.g-bakterien.de/app/download/12288823222/Probiotische+Reinigung+-+Prozess-Wasser+Original+kurz.pdf?t=1463598771 (accessed on 6 August 2020).
- Engel, W.; Bahr, W.; Schieberle, P. Solvent Assisted Flavour Evaporation—A New and Versatile Technique for the Careful and Direct Isolation of Aroma Compounds from Complex Food Matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Bemelmans, J.M.H. Review of Isolation and Concentration Techniques. Prog. Flavour Res. 1979, 8, 79–98. [Google Scholar]
- Grosch, W. Evaluation of the Key Odorants of Foods by Dilution Experiments, Aroma Models and Omission. Chem. Senses 2001, 26, 533–545. [Google Scholar] [CrossRef]
- Buettner, A.; Schieberle, P. Application of a Comparative Aroma Extract Dilution Analysis to Monitor Changes in Orange Juice Aroma Compounds during Processing. ACS Symp. Ser. 2001, 782, 33–45. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Schranz, M.; Lorber, K.; Klos, K.; Kerschbaumer, J.; Buettner, A. Influence of the Chemical Structure on the Odor Qualities and Odor Thresholds of Guaiacol-Derived Odorants, Part 1: Alkylated, Alkenylated and Methoxylated Derivatives. Food Chem. 2017, 232, 808–819. [Google Scholar] [CrossRef]
- Laska, M.; Hudson, R. A Comparison of the Detection Thresholds of Odour Mixtures and Their Components. Chem. Senses 1991, 16, 651–662. [Google Scholar] [CrossRef]
- Strangl, M.; Schlummer, M.; Maeurer, A.; Buettner, A. Comparison of the Odorant Composition of Post-Consumer High-Density Polyethylene Waste with Corresponding Recycled and Virgin Pellets by Combined Instrumental and Sensory Analysis. J. Cleaner Prod. 2018, 181, 599–607. [Google Scholar] [CrossRef]
- Guadagni, D.G.; Buttery, R.G.; Okano, S.; Burr, H.K. Additive Effect of Sub-Threshold Concentrations of Some Organic Compounds Associated with Food Aromas. Nature 1963, 200, 1288–1289. [Google Scholar] [CrossRef] [PubMed]
- Grosch, W. Detection of Potent Odorants in Foods by Aroma Extract Dilution Analysis. Trends Food Sci. Technol. 1993, 4, 68–73. [Google Scholar] [CrossRef]
- Cabanes, A.; Strangl, M.; Ortner, E.; Fullana, A.; Buettner, A. Odorant Composition of Post-Consumer LDPE Bags Originating from Different Collection Systems. Waste Manag. 2020, 104, 228–238. [Google Scholar] [CrossRef]
- CosIng—European Commission Database for Information on Cosmetic Substances and Ingredients. Available online: https://ec.europa.eu/growth/sectors/cosmetics/cosing_de (accessed on 3 July 2020).
- Vera, P.; Canellas, E.; Nerín, C. Compounds Responsible for Off-Odors in Several Samples Composed by Polypropylene, Polyethylene, Paper and Cardboard Used as Food Packaging Materials. Food Chem. 2020, 309, 125792. [Google Scholar] [CrossRef]
- Bravo, A.; Hotchkiss, J.H.; Aeree, T.E. Identification of Odor-Active Compounds Resulting from Thermal Oxidation of Polyethylene. J. Agric. Food Chem. 1992, 40, 1881–1885. [Google Scholar] [CrossRef]
- Lacoste, J.; Vaillant, D.; Chmela, S. Gamma-, Photo- and Thermally-Initiated Oxidation of Polyolefines Used in Packaging. J. Polym. Eng. 1995, 15, 139–152. [Google Scholar] [CrossRef]
- Mayer, F.; Breuer, K. Material Odor—Odoractive Compounds Identified in Different Materials—The Surprising Similarities with Certain Foods, Possible Sources and Hypotheses on Their Formation. Indoor Air 2006, 16, 373–382. [Google Scholar] [CrossRef]
- Tyapkova, O.; Czerny, M.; Buettner, A. Characterisation of Flavour Compounds Formed by γ-Irradiation of Polypropylene. Polym. Degrad. Stab. 2009, 94, 757–769. [Google Scholar] [CrossRef]
- Lewis, V.J.; Moss, C.W.; Jones, W.L. Determination of Volatile Acid Production of Clostridium by Gas Chromatography. Can. J. Microbiol. 1967, 13, 1033–1040. [Google Scholar] [CrossRef]
- Tracey, R.P.; Britz, T.J. Freon 11 Extraction of Volatile Metabolites Formed by Certain Lactic Acid Bacteria. Appl. Environ. Microbiol. 1989, 55, 1617–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Langenhove, H.; Roelstraete, K.; Schamp, N.; Houtmeyers, J. GC-MS Identification of Odorous Volatiles in Wastewater. Water Res. 1985, 19, 597–603. [Google Scholar] [CrossRef]
- Kannengiesser, J.; Sakaguchi-Söder, K.; Mrukwia, T.; Jager, J.; Schebek, L. Extraction of Medium Chain Fatty Acids from Organic Municipal Waste and Subsequent Production of Bio-Based Fuels. Waste Manag. 2016, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, J.; Veijanen, A. Determination of Odorous VOCs and the Risk of Occupational Exposure to Airborne Compounds at the Waste Water Treatment Plants. Water Sci. Technol. 2011, 63, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Dickschat, J.S. Bacterial Volatiles: The Smell of Small Organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef] [PubMed]
- Dickschat, J.S.; Wagner-Döbler, I.; Schulz, S. The Chafer Pheromone Buibuilactone and Ant Pyrazines Are Also Produced by Marine Bacteria. J. Chem. Ecol. 2005, 31, 925–947. [Google Scholar] [CrossRef]
- Deshmukh, Y.; Khare, P.; Patra, D.D.; Nadaf, A.B. HS-SPME-GC-FID Method for Detection and Quantification of Bacillus cereus ATCC 10702 Mediated 2-Acetyl-1-Pyrroline. Biotechnol. Progr. 2014, 30, 1356–1363. [Google Scholar] [CrossRef]
- Garbeva, P.; Hordijk, C.; Gerards, S.; de Boer, W. Volatiles Produced by the Mycophagous Soil Bacterium Collimonas. FEMS Microbiol. Ecol. 2014, 87, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and Use of Potential Bacterial Organic Antifungal Volatiles in Biocontrol. Soil Biol. Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Höckelmann, C.; Jüttner, F. Volatile Organic Compound (VOC) Analysis and Sources of Limonene, Cyclohexanone and Straight Chain Aldehydes in Axenic Cultures of Calothrix and Plectonema. Water Sci. Technol. 2004, 49, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, A.; Fuwa, K.; Jimbu, M. Identification of Odorous Compounds in Fresh and Rotten Swine Manure. Agr. Biol. Chem. 1984, 48, 3001–3010. [Google Scholar] [CrossRef]
- Gerber, N.N. A Volatile Metabolite of Actinomycetes, 2-Methylisoborneol. J. Antibiot. 1969, 22, 508–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izaguirre, G.; Hwang, C.J.; Krasner, S.W.; McGuire, M.J. Abstracts Of Papers Of The American Chemical Society. Appl. Environ. Microbiol. 1982, 43, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerny, M.; Schieberle, P.; Maier, B.; Riess, G.; Gronauer, A. Identifying Odours in Pighouse Air. Landtechnik 2001, 56, 342–343. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
No.a | Odorant | Odor Quality b | OD c | RI d on | Identification Criteria e | ||
---|---|---|---|---|---|---|---|
REF | PRO | DB-FFAP | DB-5 | ||||
1 | 2,3-butanedione | butter-like | 9 | 1 | 984 | <700 | RI, O |
2 | ethyl 3-methylbutanoate | fruity, blueberry-like | 3 | 1 | 1072 | 885 | RI, O, MS |
3 | 1-hexen-3-one | super glue-like, lighter gas-like | 3 | 9 | 1096 | 774 | RI, O |
4 | propyl 2-methylbutanoate | fruity, pineapple-like | 9 | 9 | 1132 | 950 | RI, O |
5 | (Z)-4-heptenal | fishy, fatty | 9 | <1 | 1230 | 895 | RI, O |
6 | styrene | almond-like, pungent | 27 | 9 | 1251 | 894 | RI, O, MS |
7 | octanal | citrus-like, soapy | 9 | 9 | 1280 | 1002 | RI, O, MS |
8 | 1-octen-3-one | mushroom-like | 27 | 9 | 1291 | 979 | RI, O, MS |
9 | 2-acetyl-1-pyrroline | popcorn-like, roasty | 81 | 9 | 1321 | 932 | RI, O |
10 | (Z)-rose oxide | flowery, soapy | 9 | 9 | 1344 | 1135 | RI, O, MS |
11 | dimethyl trisulfide | garlic-like, cabbage-like | 81 | 9 | 1365 | 970 | RI, O, MS |
12 | 2-mercapto-3-pentanone | cat urine-like, black currant-like | 243 | 9 | 1367 | 946 | RI, O |
13 | trimethylpyrazine | earthy, musty | 27 | 9 | 1401 | 1022 | RI, O, MS |
14 | (E)-2-octenal | fatty | 243 | 81 | 1417 | 1058 | RI, O, MS |
15 | 2-furfurylthiol | roasted coffee bean-like | 1 | <1 | 1427 | 916 | RI, O |
16 | acetic acid | vinegar-like | 9 | 3 | 1435 | 738 | RI, O, MS |
17 | methional | cooked potato-like | 27 | 3 | 1444 | 905 | RI, O |
18 | (Z)-2-nonenal | fatty, cardboard-like, green | 1 | <1 | 1494 | 1145 | RI, O |
19 | 3-isobutyl-2-methoxypyrazine | bell pepper-like, pea-like | 27 | 9 | 1506 | 1177 | RI, O |
20 | (E)-2-nonenal | fatty, cardboard-like | 243 | 81 | 1523 | 1160 | RI, O, MS |
21 | linalool | flowery, fresh | 9 | 9 | 1534 | 1102 | RI, O, MS |
22 | 2-methylpropanoic acid | cheesy, sweaty | 27 | 9 | 1552 | 765 | RI, O |
23 | 2-methylisoborneol | earthy, musty | 729 | 27 | 1583 | 1191 | RI, O, MS |
24 | 2-acetyl-1-pyridine | popcorn-like | 9 | <1 | 1588 | 1026 | RI, O, MS |
25 | butanoic acid | cheesy, sweaty | 27 | 3 | 1618 | 804 | RI, O, MS |
26 | acetophenone | marzipan-like, flowery | 1 | <1 | 1645 | 1069 | RI, O, MS |
27 | 3-methylbutanoic acid | cheesy, sweaty | 81 | 27 | 1653 | 861 | RI, O, MS |
28 | (E,E)-2,4-nonadienal | fatty | 9 | <1 | 1690 | 1213 | RI, O, MS |
29 | pentanoic acid | sweaty, pungent | 9 | <1 | 1723 | 888 | RI, O, MS |
30 | naphthalene | fuel-oil-like, fecal | 9 | 9 | 1733 | 1191 | RI, O, MS |
31 | 2-methylpentanoic acid | fruity, pungent | 1 | 1 | 1751 | 932 | RI, O |
32 | α-damascone | apple juice-like | 27 | 27 | 1754 | 1394 | RI, O, MS |
33 | 3-methylpentanoic acid | fruity, sweaty, cinnamon-like | 1 | <1 | 1777 | 938 | RI, O |
34 | 2-phenylethyl acetate | rose-like, flowery | 27 | 27 | 1815 | 1257 | RI, O, MS |
35 | trans-anethole | anise-like | 3 | 1 | 1821 | 1289 | RI, O, MS |
36 | α-isomethylionone | flowery, rose-like | 729 | 729 | 1835 | 1477 | RI, O, MS |
37 | guaiacol | smoky, smoked ham-like | 81 | 9 | 1852 | 1087 | RI, O, MS |
38 | verdyl acetate | banana-like | 729 | 729 | 1888 | 1420 | RI, O, MS |
39 | β-ionone | violet-like, flowery | 27 | 27 | 1918 | 1483 | RI, O, MS |
40 | benzothiazole | rubber-like, car tire-like | 81 | 27 | 1937 | 1227 | RI, O, MS |
41 | heptanoic acid | plastic-like, sweaty, dusty | 9 | <1 | 1940 | 1087 | RI, O |
42 | verdyl propionate | banana-like | 27 | 9 | 1950 | 1527 | RI, O, MS |
43 | 1-methyl-β-ionone | flowery | 3 | 3 | 1992 | 1583 | RI, O, MS |
44 | γ-nonalactone | fruity, coconut-like | 81 | 27 | 2018 | 1360 | RI, O, MS |
45 | octanoic acid | musty, coriander-like, fatty | 243 | 27 | 2039 | 1179 | RI, O, MS |
46 | 2,4-/2,5-dimethylphenol | fecal, smoky | 3 | <1 | 2069 | 1164 | RI, O, MS |
47 | p-cresol | horse stable-like, fecal | 729 | 27 | 2078 | 1085 | RI, O, MS |
48 | γ-decalactone | peach-like, fruity | 243 | 243 | 2129 | 1472 | RI, O, MS |
49 | patchouli alcohol | moldy, earthy | 27 | 27 | 2161 | 1664 | RI, O, MS |
50 | sotolone | lovage-like, celery-like | 1 | 3 | 2175 | 1102 | RI, O |
51 | γ-undecalactone | peach-like, soapy | 81 | 27 | 2255 | 1572 | RI, O, MS |
52 | 2,6-dimethoxyphenol | smoky, smoked ham-like | 3 | <1 | 2283 | 1650 | RI, O, MS |
53 | γ-dodecalactone | fruity, peach-like | 3 | <1 | 2361 | 1679 | RI, O, MS |
54 | unknown | mushroom-like | 729 | 729 | 2387 | 1754 | - |
55 | indole | fecal | 3 | <1 | 2448 | 1310 | RI, O, MS |
56 | skatole | fecal, mothball-like | 27 | 9 | 2474 | 1391 | RI, O, MS |
57 | unknown | fecal | 9 | <1 | 2595 | n.d. f | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lok, B.; Buettner, A.; Denk, P.; Ortner, E.; Fell, T. Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria. Sustainability 2020, 12, 9432. https://doi.org/10.3390/su12229432
Lok B, Buettner A, Denk P, Ortner E, Fell T. Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria. Sustainability. 2020; 12(22):9432. https://doi.org/10.3390/su12229432
Chicago/Turabian StyleLok, Bianca, Andrea Buettner, Philipp Denk, Eva Ortner, and Tanja Fell. 2020. "Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria" Sustainability 12, no. 22: 9432. https://doi.org/10.3390/su12229432
APA StyleLok, B., Buettner, A., Denk, P., Ortner, E., & Fell, T. (2020). Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria. Sustainability, 12(22), 9432. https://doi.org/10.3390/su12229432