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Abstract: Mining operations cause negative changes in the environment. Therefore, such areas
require constant monitoring, which can benefit from remote sensing data. In this article, research was
carried out on the environmental impact of underground hard coal mining in the Bogdanka mine,
located in the southeastern Poland. For this purpose, spectral indexes, satellite radar interferometry,
Geographic Information System (GIS) tools and machine learning algorithms were utilized. Based on
optical, radar, geological, hydrological and meteorological data, a spatial model was developed to
determine the statistical significance of the selected factors’ individual impact on the occurrence
of wetlands. Obtained results show that Normalized Difference Vegetation Index (NDVI) change,
terrain height, groundwater level and terrain displacement had a considerable influence on the
occurrence of wetlands in the research area. Moreover, the machine learning model developed
using the Random Forest algorithm allowed for an efficient determination of potential flooding
zones based on a set of spatial variables, correctly detecting 76% area of wetlands. Finally, the GWR
(Geographically Weighted Regression (GWR) modelling enabled identification of local anomalies of
selected factors’ influence on the occurrence of wetlands, which in turn helped to understand the
causes of wetland formation.

Keywords: machine learning; wetlands; mining subsidence; spectral indexes; SBAS

1. Introduction

The mining industry, through the exploitation of raw materials, has a negative impact on the
natural environment and urbanized areas [1–3]. Therefore, the monitoring and protection of areas under
the influence of mining is an important issue because changes caused by mining are, in many cases,
irreversible, as the reclamation of such areas can take up to several dozen years [4–6]. Monitoring of
mining areas is aimed at observing the changes taking place, defining their extent and determining the
level of threat of a given phenomenon (e.g., displacements of terrain and induced shocks) [7,8]. On the
other hand, environmental protection is associated with the implementation of solutions in technological
processes related to the operation, which will both minimize the undesirable impact on the environment
and mitigate the negative effects through reclamation. Environmental degradation depends primarily
on the method of exploitation of raw materials: opencast and underground methods. Specifically,
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the negative effects of exploitation using the above methods include: terrain subsidence [9,10], changes
in hydrogeological conditions [10–12], mining tremors [13,14], changes in land cover [15,16] and
damage to technical and urban infrastructure [17,18]. Terrain deformations lead to disturbances in
the gravitational runoff of water in both surface and underground watercourses. The result of this
phenomenon is the formation of floodplains and wetlands in the areas of subsidence. The following
factors contribute to the formation of the catchment areas: the size and distribution of post-exploitation
depressions, natural conditions concerning the permeability of the substrate and topography and
weather conditions. River valleys are among the areas most endangered by waterlogging [19].
Monitoring and research of the above effects arising in the environment of mining areas in large
domains using field methods is difficult, depends on the space and location, consumes plenty of time
and requires significant financial outlays. This difficulty is answered by passive and active remote
sensing from outer space, which gives the possibility of frequent observations of the Earth, and a
Geographic Information System (GIS), which offers tools for various types of spatial analysis and
graphic visualization of the results. One of the applications of remote sensing in mining is the detection
of terrain displacements caused by active or terminated mining, and the second application is the
study of terrain coverage (vegetation condition, land use and changes in the range of water reservoirs).
Noteworthy scientific publications on the use of remote sensing in monitoring and environmental
impact assessment are presented in Table 1. The studies cited in Table 1 show a clear division between
passive and active remote sensing techniques. Passive remote sensing is suitable for investigating
the environment in the context of land cover changes [20–26] while active remote sensing allows for
the detection of terrain deformation [27–31]. Both passive and active methods are used to assess
the condition of mining areas, enabling the creation of a sustainable mining strategy. The above
studies confirm the validity of using individual aspects of remote sensing, GIS and machine learning
classification and regression algorithms to identify subsidence zones in mining areas. This is due to
the fact that remote sensing is characterized by systematic observation of large areas. Additionally,
the time needed to download and process imagery is relatively short, often impossible to obtain during
field measurements. Another advantage is a short interval for image acquisition of the same area
(e.g., Sentinel-1A/B satellites provide new imagery every 6 days) and the possibility of researching past
phenomena, as long as satellite images for the studied period are available. The dynamic development
of remote sensing and related computing methods is caused by the increase in the number of satellite
missions observing the surface of terrain and oceans, as well as universal access to Earth images
and open-source software for satellite data processing. GIS is a complement to remote sensing
research [21,27] because it provides plenty of tools for further processing in conjunction with other
spatially referenced data. Spatial analysis enables the linking of environmental, geological-tectonic,
topographic and mining variables appearing over the research areas in such a way as to obtain
the result of the relationship between them both in time and space. GIS is also identified with the
storing, indexing, data management and modeling for various types of phenomena. The classification
and regression machine learning algorithms [20,26,32–34] enable the appropriate adjustment and
generalization of the dataset in the statistical analysis of dynamic phenomena. These methods not only
determine the statistically significant factors influencing the phenomenon studied, but also make it
possible to effectively forecast values of the dependent variable based on a set of independent variables.
Additionally, it should be emphasized that machine learning as a process of statistical analysis aids in
recognition of hidden relationships in the dataset and can detect anomalies and relationships between
variables. The above advantages of the use of remote sensing, GIS and machine learning, as well
as satisfactory results obtained in the referenced papers, prompted the authors to combine all the
techniques in the case study in this paper.
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Table 1. Selected studies on the use of active and passive remote sensing in monitoring the impact of
exploitation on the environment.

Source Area of Interest Issues Satellite Data Methods

[21] Amynteon mine (Greece)
Impact of mining activities

on terrain and water
resource

Landsat-5 and
Landsat-7, SPOT

and ASTER

Unsupervised
classification techniques in

GIS

[22] The PT Freeport
Indonesia (Indonesia)

Impact of mining activities
on land cover Landsat-5 Three false-color

composite image

[23] Lignite mine
“Belchatów”, (Poland)

Impact of mining on
hydrogenic habitats

Landsat-5 and
Landsat-7

Normalized Difference
Vegetation Index (NDVI)

[24] Coal mine in Tangshan,
(China)

Impact of mining activities
on terrain

ETM, SPOT-4,
SPOT-5 and

IKONOS

Multi-spectral composite
imagery

[25] Lignite mines (eastern
Germany)

Monitoring of the
environment and
reclaimed areas

Landsat-TM and
ERS-1

Maximum Likelihood
Classification of Landsat

Thematic Mapper

[27]
Coal mine in

Gangwon-do (South
Korea)

Subsidence analysis in a
mining area JERS-1 SBAS algorithm and GIS

[28] Two coalfields, Bulianta
and Shangwan (China)

Determination of common
features of deformations

detected in two areas
ALOS PALSAR SBAS processing

[29]

Coal mines in the
Greater Region of
Luxembourg (the

French–German border)

Mapping coal
mining-related ground
subsidence and uplift

ERS-1/2 and
ENVISAT SBAS processing

[30]
The Northumberland
and Durham coalfield

(United Kingdom)

Investigation terrain
motion and groundwater
level change phenomena

ERS, ENVISAT and
Sentinel-1

Intermittent SBAS
technique

[31]
The South Wales
Coalfield (United

Kingdom)

Monitoring of uplift
caused by pumping

groundwater
ERS-1/2 Intermittent SBAS

technique

[20]
Mine of coal and metal
ores, Kirchheller Heide

(Germany)

Landscape dynamics and
extensive soil movement Landsat ETM+

Random Forest, Spectral
Mixture Analysis (SMA),
Normalized Difference

Vegetation Index (NDVI)

[32] The Three Gorges
Reservoir area (China)

Prediction of groundwater
level - Classification and

regression tree (CART)

[26] The southwestern part of
Ritu county, Bahrain

Assessment of
groundwater potential Landsat 8 OLI 7/5/3

Multi-criteria decision
model (MCDM) integrated

with decision tree
techniques (C5.0) and

CART

[33] Sichuan Province
(China)

Predicting displacement of
landslide -

Least Square Support
Vector Machines (LSSVM),
Genetic Algorithm (GA)

[34] Darling River Floodplain
(Australia) Modeling of wetlands - Random Forest

The main aim of the article was to combine Synthetic Aperture Radar (SAR) data from the
Sentinel-1A/B mission and optical data from the Sentinel-2A/B mission as well as geological and
meteorological data with machine learning and GIS analysis, to statistically determine whether the
terrain subsidence caused by underground operations has an influence on the state of the natural
environment. Emphasis was also put on learning whether different variables, such as geological
structure or hydrogeological state, influence the occurrence rate of flooding. The analysis was
conducted for the area of the Bogdanka underground hard coal mine. The time scope of the study
is from October 2014 to April 2019. The article is divided into six main sections. The Introduction
contains the motivation and goals of the conducted research. In the second section, various materials
and methods used in the study are characterized and the study area is described. Next, the GIS and
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Machine Learning analyses performed on the gathered data are outlined in the third section. The fourth
section presents the results of the analysis, inter alia the identified terrain subsidence zones and the
determined floodplains, together with the Machine Learning models and then the discussion on the
results is carried out. The last section formulates the conclusions of the research.

2. Materials

2.1. Study Area Description

The Bogdanka Hard Coal Mine, located in Lublin Voivodeship in south-eastern Poland (Figure 1a,b),
is currently the only active mining facility in the Lublin Coal Basin (LCB) region, specifically its
north-eastern part called the Central Coal Region (CCR). A total of 10 coal deposits are documented in
the LCB region, covering an area of around 1200 km2 altogether, out of which only one (Bogdanka)
is under exploitation, two (K-3 and Ostrów) are being prepared for extraction and the rest of the
documented reserves remain undeveloped [35]. The mining area of the Bogdanka deposit is divided
into three exploitation fields—one main field and two peripherals (Nadrybie and Stefanów). The three
coal deposits, numbered 385/2, 389 and 391, lie under a layer of overburden 650- to 730-m thick [36].
Mining operations are carried out at a maximum depth of around 1100 m below sea level using a
longwall extraction system with roof collapse and simultaneous elimination of longwall galleries as the
mining face progresses [37]. The extraction system used in the Bogdanka mine causes the roof layers to
collapse, filling the exploitation void with rock material. This leads the strata above the roof to slowly
subside and, as a consequence, continuous deformations may appear on the terrain, e.g., in the form of
subsidence troughs. If a subsidence occurs over an area with naturally shallow groundwater levels,
it can lead to local flooding and the formation of wetlands.

From a geological standpoint, the LCB area is situated in marginal, south-west part of the East
European (Pre-Cambrian) Platform in the region of the Bug River Basin. The basin, also known as
the Lublin Coal Basin, together with its fragment located in Ukraine—the Lviv Basin—is a gentle,
asymmetric synclinal structure. Its south-west wing is steep, while the north-east wing takes the form
of a gentle monocline, with many framework and fold structures manifesting as well. Relative to the
axis, the basin is divided into two predominant parts—the Lublin trench and the Łuków-Hrubieszów
elevation, over which the documented deposits of the LCB are located. The Bug River Basin area is
filled with lower and upper Carboniferous sediments, from Visen to Westphalian, formed as a result
of cyclical processes of marine, paralytic and limnic sedimentation. Two tectonic phases played an
important role in shaping the structure of the basin—the Breton one, which started the formation
of the structure, and the Asturian one, which decided its final shape [38]. Productive carbon within
the LCB is constituted by the Lublin Formation (Westphalian B), and hard coal is located within
relatively weak silt and clay rocks. In contrast to the deposits of the Upper Silesian Coal Basin, the
seams and accompanying layers are mostly horizontal and no faults are characterized by significant
discharges [36].
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Topography Mission (SRTM) background. The black polygons represent the documented coal 
deposits, the thicker line covers the Bogdanka deposit and the Bogdanka Coal Mine is indicated by 
the red dot. Map representing Lublin Coal Basin is in WGS 84 /Universal Transverse Mercator (UTM) 
zone 32N projection. (b) Map showing localization of Lublin Coal Basin in Poland, in WGS84 
projection. 

2.2. Meteorological Data 

Before preparing the input data, an analysis of precipitation distribution was performed for the 
study area, based on meteorological data. Data on the sum of monthly precipitation used in the 
analysis were obtained from the Bulletins of the Polish Institute of Meteorology and Water 
Management National Research Institute [39]. It covers two stations located closest to the Bogdanka 
mine (Lublin and Terespol), shown in the Figure 1b. Figure 2 shows a graph of the average sum of 
precipitation in each month, covering the studied period. It can be noted that the highest sums of 
rainfall were recorded in July while the lowest were observed in the winter months. It should be 
noted, however, that from November to March, a snow cover can occur in this region of Poland; 
therefore, in early spring, the range of areas with a high groundwater level may be enlarged due to 
snow melting. In the summer (June–August) and autumn (September–November) periods, cycles of 
large amounts of rainfall or seasonal drought can occur. Due to the above, it was decided that the 
best period to perform the analysis is springtime, after the thaw period (April), as the period with the 
average sum of precipitation allowing for the most objective analysis. 

Figure 1. (a) The Lublin Coal Basin location over the 1′’ Digital Elevation Model (DEM) Shuttle Radar
Topography Mission (SRTM) background. The black polygons represent the documented coal deposits,
the thicker line covers the Bogdanka deposit and the Bogdanka Coal Mine is indicated by the red dot.
Map representing Lublin Coal Basin is in WGS 84 /Universal Transverse Mercator (UTM) zone 32N
projection. (b) Map showing localization of Lublin Coal Basin in Poland, in WGS84 projection.

2.2. Meteorological Data

Before preparing the input data, an analysis of precipitation distribution was performed for
the study area, based on meteorological data. Data on the sum of monthly precipitation used in
the analysis were obtained from the Bulletins of the Polish Institute of Meteorology and Water
Management National Research Institute [39]. It covers two stations located closest to the Bogdanka
mine (Lublin and Terespol), shown in the Figure 1b. Figure 2 shows a graph of the average sum of
precipitation in each month, covering the studied period. It can be noted that the highest sums of
rainfall were recorded in July while the lowest were observed in the winter months. It should be noted,
however, that from November to March, a snow cover can occur in this region of Poland; therefore,
in early spring, the range of areas with a high groundwater level may be enlarged due to snow melting.
In the summer (June–August) and autumn (September–November) periods, cycles of large amounts
of rainfall or seasonal drought can occur. Due to the above, it was decided that the best period to
perform the analysis is springtime, after the thaw period (April), as the period with the average sum of
precipitation allowing for the most objective analysis.
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Figure 2. Monthly average sum of precipitation calculated based on the meteorological data collected
over the studied period [39].

2.3. Identification of Flooding Areas Based on the Optical Satellite Data Analysis

The identification of flooding areas over the area of the Bogdanka Coal Mine, and areas
directly adjacent to it, was carried out using multispectral imagery from the Sentinel-2 mission
(Level-1C product), downloaded from [40]. For research purposes, 9 data packages were obtained
in *SAFE format, which contained images showing the reflectance value in 13 spectral channels
(from visible light to mid-infrared wavelengths). The aforementioned data set covered images
registered over 6-month periods, starting from the second half of the year 2015. In order to increase the
accuracy of the conducted analysis, during the selection of data, only images with a cloud cover not
exceeding 10% were chosen.

The acquired images were subjected to procedures aimed at standardizing the data registered in
various weather and lighting conditions. The first stage consisted of converting the radiometric values
of Digital Number (DN) to the value of recorded radiance LSAT according to the following Equation (1):

LSAT = c0 + c1·DN (1)

where c0 and c1 are the calibration constants for a given type of sensor and spectra channel, called shift
and gain, respectively [41].

The influence of phenomena and processes happening in the atmosphere was reduced in
the process of atmospheric correction, during which the following parameters were taken into
account: average terrain height (200 m), the aerosol model (in the analyzed case, a model dedicated
to poorly urbanized and slightly industrialized areas was adopted [42]) and the atmosphere model
(depending on the date of image registration, the models Mid-Latitude Summer, Mid-Latitude Winter
and Sub-Arctic Summer were chosen).

During the last stage of pre-processing, the spatial resolution of the data registered in near- and
mid-infrared channels was resampled to 10 m (channels 5, 6, 7, 8a, 11 and 12 have a spatial resolution
of 20 m) using the bilinear interpolation method.

In order to determine areas of flooding in the study area, two spectral indices were
used: Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index
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(MNDWI). The NDVI index was used to identify sites of vegetation degradation. Terrain subsidence,
with relatively high groundwater level, may lead to local flooding, having a significant impact on
the plant cover condition. The MNDWI index, on the other hand, is a combination of green and
mid-infrared channels and was used for the purpose of monitoring changes in the coastlines of water
reservoirs (MNDWI assigns positive values to surface waters and negative values to vegetation cover,
soil and built-up areas). Table 2 contains the equations used to calculate the spectral indices.

Table 2. The main studies on the use of active and passive remote sensing in monitoring the impact of
exploitation on the environment.

Index Mathematical Formula 1 Source

NDVI NIR−RED
NIR+RED [43]

MNDWI GREEN−SWIR1
GREEN+SWIR1 [44]

1 NIR, Red, Green and SWIR1 correspond to the reflectance value in the Near-IR, Red, Green and Mid-IR channels,
respectively (1565–1655 nm).

Calculations were carried out in the ENVI 5.5 software, using the following modules:
Raster Management, FLAASH, Radiometric Calibration and Band Math.

The location of the floodplains was determined on the basis of classification of the image
representing the difference between the MNDWI index values for 2015 and 2019. During the process
of classification, it was assumed that a change in the said index by a value exceeding 0.9 indicates a
significant increase in the area of floodplains or an increase in the area of water reservoirs in the study
area. On the other hand, areas where pixels take values between 0.7 and 0.9 may potentially be flooded
by groundwater in the future. Figure 3 presents the identified flooding areas within and adjacent to
the Bogdanka hard coal mine.
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As the results indicate, the floodplains constitute 0.14% of the total area (4597 out of 3,243,601 pixels
were classified as floodplains), covering 4511 km2, and are located mostly along the borders of water
bodies located in the northern part of the study area. It should be emphasized that the southernmost
subdivision zone is located within the area of pseudo-vertical displacements of terrain, the extent of
which was determined using Synthetic Aperture Radar Interferometry (InSAR).

The identification of the flooding zones was also based on the analysis of changes in the NDVI
in 2015 and 2019. Figure 4a shows the areas of the smallest and the largest changes in the NDVI in
the analyzed time period, and Figure 4b shows the final boundaries of the flooding zones (the zones
are located in the places of the largest negative changes in NDVI and the largest positive changes in
MNDWI). These areas were used at a later stage in the analyses as input data in the spatial regression
model and machine learning.
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2.4. InSAR Terrain Displacement Data

Pseudo-vertical (in the Line of Sight LOS direction) displacements of the terrain caused by
underground hard coal mining in the area of the “Bogdanka” mine were determined using Sentinel-1
A/B Synthetic Aperture Radar imagery. The displacement calculations were carried out using the Small
Baseline Subset (SBAS) technique [45–47], allowing for the processing of interferograms in a time-series
manner. A total of 228 SAR images from ascending path no. 131 were used, covering a time period
between 26th October 2014 and 1st October 2019. The computational process was performed with the
use of the GMTSAR software [48]. The precise orbit ephemerides provided by the Sentinel-1 Quality
Control Subsystem [49] were used to correct the satellite state vector. The 1 arc second digital elevation
model developed as part of the Shuttle Radar Topography Mission (SRTM) was used to correct for the
topographic phase of interferograms [50]. The interferometric phase unwrapping process was carried
out using the Statistical-cost Network-flow Algorithm for Phase Unwrapping (SNAPHU) [51–53].
A total of 778 interferograms were created for the time-series analysis with the SBAS technique.
The results of the SBAS analysis are contained in raster format with cumulative terrain displacements
for the date of each acquisition, beginning with the first acquisition (displacement value 0). For further
analysis, rasters representing the annual (consistent with optical data) increase in subsidence were
selected, i.e., October 2015, April 2016, April 2017, April 2018 and April 2019.

The majority of the subsidence areas were identified in the vicinity of the exploited deposit
Bogdanka. Figure 5 shows cumulative displacements from 27 September 2015 to 21 April 2019.
The only area outside the deposit boundaries is the Brzezno Lake Reserve, which is located 2 km north
of the Bogdanka deposit. Cumulative displacements in this area have reached a maximum of 185 mm.



Sustainability 2020, 12, 9338 9 of 26

The largest displacements were recorded in the area of the main exploitation field, especially in its
northern and central parts, where the cumulative value of terrain displacement has reached up to 1050
mm. Within the other two fields (Stefanów and Nadrybie), the maximum displacement was 600 mm.
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2.5. Geological and Hydrogeological Data

The Detailed Geological Map of Poland 1:50,000 and the Hydrogeological Map of Poland—the
First Aquifer—Occurrence and Hydrodynamics 1:50,000, provided by the Polish Geological
Institute—National Research Institute—were used to select places where, from both geological
and engineering standpoints, flooding may occur. The analyzed area of the Bogdanka deposit is
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contained on four sheets of the above-mentioned maps, numbered 714 (Ostrów Lubelski) [54,55],
715 (Orzechów Nowy) [56,57], 750 (Łęczna) [58,59] and 751 (Siedliszcze) [60,61].

According to the Polish Hydrogeological Dictionary [62], a flooding is defined as “the appearance
of groundwater close to the ground surface in connection with: lowering of the ground surface,
accumulation of groundwater due to the rising of the water table in watercourses and surface reservoirs,
and anthropogenic inhibition of groundwater flow”. The phenomenon of terrain flooding may occur
naturally, inter alia in non-drainage depressions, provided there is a poorly permeable substrate below
the aquifer or could be a consequence of human activity, especially in the case of underground mining,
which leads to the formation of subsidence troughs. Flooding often occurs in large areas with a slight
slope or depression, with shallow occurrence of groundwater, in the presence of impermeable or
poorly permeable soil, and during the occurrence of heavy rainfall, which lead to an increase in the
groundwater level [63].

Various sites were classified as areas predisposed to the occurrence of flooding and
wetlands—mainly areas with organic soil, originating primarily from lake accumulation, such as low
peats (characterized by slowly flowing groundwater), transitional peats (fed mainly with rainwater) and
silt, as well as the accompanying clays and stagnant silts and their derivatives, with the simultaneous
presence of the groundwater table at a shallow depth (up to 2 m below the terrain level). The obtained
data were vectorized to enable their further processing and the classification was performed based on
the susceptibility to flooding and occurrence of wetlands. Three categories for the occurrence of the
first level of the groundwater table were adopted (Figure 6b):

1. Up to 1 m below ground level.
2. Between 1–2m below ground level.
3. More than 2 m below ground level.

Furthermore, three simplified soil categories were adopted (Figure 6a):

1. Organic soils.
2. Poorly permeable silts, loams and clays.
3. Permeable sands and gravels.
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3. Methods—GIS and Machine Learning Analysis

Figure 7 contains a diagram presenting the methodology of data processing and the performed
analysis. The individual stages are described in this chapter.
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3.1. Overview

Analysis of the flooding characteristics within the study area started with the preparation of input
data. In addition to all the data mentioned in the previous section, a digital elevation model from the
SRTM mission was obtained (Figure 8a) [50]. As a result of processing, the rasters of terrain slope
(values in %) and exposure (values generalized to 4 main geographical directions and flat terrain) were
also obtained (Figure 8b,c, respectively). The above data, as well as the previously developed rasters
(Table 3), were combined into a stack of data in a uniform reference frame, spatial extent and spatial
resolution. All rasters were transformed into the Universal Transverse Mercator (UTM) reference frame
(UTM zone 32N). Data with a spatial resolution other than 10× 10 m (highest resolution of the Sentinel-2
data) were converted to that resolution using a linear interpolation method. During the analysis,
the pixels that did not have correct values for at least one of the rasters were omitted. The range of
the NDVI values in the analyzed period were also calculated out of 4 NDVI datasets; for each pixel,
a minimum value was subtracted from the maximum. The cumulative terrain displacements for the
entire period of the study were calculated as well. Both data pre-processing and proper data analysis
and modeling were performed in the Python environment using open-source libraries: numpy [64],
sklearn [65], geopandas [66] and pysal [67].
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Table 3. List of variables used in the analysis.

No. Name Description

1 NDVI Range Based on the Sentinel-2 imagery obtained for April,
during the years 2016–2019 (Section 2.3)

2 LOS terrain displacements Based on the Sentinel-1 SAR data, 5 rasters: October
2015, April 2016–2019 (Section 2.4)

3 Groundwater depth Divided into 3 categories (Section 2.5)

4 Geological classification of soil Divided into 3 categories, depending on the soil
susceptibility to water retention (Section 2.5)

5 DEM SRTM 1”
6 Slope Based on the DEM, values in %

7 Exposure Based on the DEM, values generalized to 4 main
geographic directions and flat terrain

8 Identified floodplains Based on the MNDWI values (Section 2.3)

3.2. Preliminary Statistical Analysis

The analysis started with a correlation study between spatial variables that have the potential for
being the descriptive variables for the occurrence of flooding. Histograms of independent variable
distributions were then prepared and examined. The variable distributions were compared with
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histograms of variables, separated according to the classification of the flooding areas performed
in Section 2.3. Zone statistics describing these distributions were also calculated. This allowed for
the selection of factors that may affect the occurrence of flooding and the size of their impact on
floodplain formation.

3.3. Machine Learning Global Model

The rate of influence of the examined variables on the occurrence of wetlands was assessed
on the basis of a model created with the use of supervised classification. Due to the presence of
both continuous and discrete (categorical) variables, the ensemble model based on tree architecture,
Random Forest (RF), was selected [68]. After discarding pixels with missing data, 3,177,834 pixels out
of the initial 3,243,601 pixels were processed. Incorrect values, which were excluded from the analysis,
constituted 2.03% of the total image pixel count. Each pixel contained information about the values
of 7 independent variables (features 1–7 in Table 3) and 1 dependent variable (feature 8 in Table 3).
The optimal parameters of the RF model, in particular the maximum tree depth, the minimum number
of observations in a leaf, the minimum number of observations for branch split and the number of
base estimators, were all determined using Grid Search analysis using stratified 3-fold cross-validation.
The F1 (4) value, i.e., the harmonic mean of the precision (2) and recall (3) metrics, was selected as a
criterion of the quality of the model fit.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
, (3)

F1 =
2

1
precision + 1

recall

, (4)

As the RF model is based on an ensemble of decision trees, it is impossible to determine the rate
of influence of individual independent variables on the model result, contrary to traditional regression
models. It is, however, possible to do so indirectly by analyzing the SHapley Additive exPlanations
(SHAP) values. SHAP is based on assumptions resulting from the game theory and allows for the
assessment of the size and type of influence of individual explanatory variables on the result of any
machine learning or deep learning model [69]. Efficient algorithms are available to calculate SHAP
values, in particular for tree-based models [70]. For the RF model used in the analysis, the SHAP
values were calculated and analyzed in two ways: (1) the SHAP point values of all observations
were summarized, reflecting the positive or negative impact of a given independent variable on the
classification of a given pixel as a flooded area and (2) the SHAP values were averaged to obtain the
overall weight of a given independent variable in the model’s decision on whether to classify the area
as flooded.

3.4. Geographically Weighted Regression (GWR) Local Modeling

The RF model constructed in Section 3.3 is a global model, i.e., it does not take into account
the spatial relationships between pixels closely related to each other. In order to check whether
such relationships exist, and, as a result, whether the influence of a given explanatory variable on
the occurrence of flooding in some regions is greater or smaller than in others, the Geographically
Weighted Regression (GWR) model [71] was fitted to the set of explanatory variables with a continuous
distribution. This method is based on fitting local regression models to the groupings of observations in
a specific neighborhood of each point and can be expressed as (5). Observation weights are determined
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based on the distance from the central point of a given local regression model (fixed bandwidth) or by
the neighborhood rank of the k-nearest neighbors, computed for the central point (adaptive bandwidth).

yi = β0(ui, vi) +
r∑

j=1

β j(ui, vi)xi j + εi, i = 1, 2, . . . , n (5)

where: yi—values of the dependent variable; xij — independent variables; ui, vi—coordinates of n
observations’ locations; β j(ui, vi)—r + 1 coefficients of the local regression model; εi—independent,
random errors following the N(0, 1) distribution.

The use of GWR allows for the identification and correct modeling of the relationship between the
independent variables and the dependent variables in areas where this relationship differs significantly
from the global trend. GWR comes in several variants, depending on the type of distribution of
dependent variables. Three types of distributions can be used: Gaussian, Poisson and binomial
distribution [72]. Due to lack of possibility of simultaneous modeling of variables with different
distributions in the utilized software, the GWR model was adjusted only to continuous variables:
NDVI range, terrain height, cumulative terrain displacements and slope. During the analysis in
Section 4.2, these variables were ranked first, second, fourth and fifth, respectively, in order of the
magnitude of the impact on the RF model classification score, so the resulting GWR model should
describe the relationships between the variables well enough to identify possible local anomalies
in the impact of specific factors. Due to the use of the Gaussian kernel, the analyzed variables
were transformed using the Yeo–Johnson power transform [73], converting the distributions of these
variables to the standard normal distribution N(0, 1).

Due to computational limitations and a significant excess of data on non-flooded areas, the GWR
analysis was carried out on down-sampled data: all pixels with flooding were selected, and an additional
10 times more pixels, selected randomly from the whole study area, were added, representing places
of no flooding. The optimal bandwidth of the model was determined by optimizing the Akaike
Information Criterion with a correction for small sample sizes (AICc) estimator, which describes
the quality of the statistical model used for the comparative analysis of a number of models [72].
Lower estimator values correspond to a higher quality of the model.

4. Results and Discussion

The presentation of analysis results has been divided into three subsections corresponding to the
order of operations performed (see Section 3).

4.1. Preliminary Statistical Analysis

The correlation analysis between spatial variables showed that most of the variables do not have
a significant correlation with each other (Figure 9). Only the groundwater depth shows a noticeable
correlation with the geological type of the substrate. However, it is not significant enough to consider
them as directly dependent (collinearity) and exclude any of them from further analysis.

Figure 10 shows histograms and statistics of cumulative displacements, NDVI range, elevation and
slope, classified into flooded and non-flooded areas. Results of the same classification of parameters
with discrete values: terrain aspect, groundwater level and soil type, are shown in Figure 11.

The histogram of cumulative terrain displacements clearly shows that in the analyzed period,
flooding occurred more frequently in the areas of subsidence caused by mining workings. Both mean
and median value of subsidence in flooded areas is 2.5–3 times higher than in the rest of the area.

The NDVI index range distribution also indicates differences between flooded areas and areas with
no flooding. However, this dependence is not so clear—although, flooding was much more frequent in
areas where the NDVI value was approximately constant (and therefore the maximum differences
oscillated around 0). The non-flooded areas were most often characterized by moderate differences,
reaching 0.3. In the flooded areas, there were maximum NDVI range values, from predominant values
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of around 0 to very significant differences in the index values, constituting the second distribution
mode of around 1.35. Both distribution medians are approximately the same, but their mean values are
significantly different: for flooded areas, the mean is almost twice the mean for the remaining areas.
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The terrain elevation and the slope histograms clearly show that the flooding occurred mainly in
the areas situated relatively low and with low slopes, particularly in flat areas. The mean elevation
of the flooded areas was approximately 5 m lower than in other areas. For the slope, the analogous
difference in mean values was 0.7%, but their medians differed by more than 1.5%.

The terrain aspect, apart from the more frequent occurrence of flooding in flat areas,
already mentioned in the slope analysis, does not show a significantly strong correlation with
flooding occurrence. The share of individual geographic directions of exposure for flooded areas,
after considering the increase in the share of flat areas, is approximately reduced relative to non-flooded
regions. The smallest difference is for areas facing north.

The groundwater level category distributions for flooded and other areas differ substantially.
Around 75% of the flooding occurred in areas with the shallowest groundwater table. The regions with
the deepest groundwaters account for only 5% of the floodplains, compared to 53% of the entire region
where these waters occur. Similarly, the dependence of the geological type of substrate on flooding
occurrence is considerable—in the areas most susceptible to water retention, constituting a total of 28%
of the study area, 86% of flooding occurred. On the other hand, soil types with the lowest retention,
covering 40% of the research area, were covered by only 1% of all flooding.
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4.2. Machine Learning Global Model

The metrics values of the trained RF model are summarized in Table 4. The confusion matrix is
presented in Table 5. The map (Figure 12) depicts the predictions made by the model. It can be seen
that the model achieves satisfactory results. The developed RF model correctly detected about 76% of
all floodplains, with a total model accuracy of 99.96%. However, it should be considered that pixels
classified as flooded are also subject to an error of earlier classification with the MNDWI. Moreover,
the discrepancies in the classification results and the RF model’s prediction do not concern most of the
entire floodplains but only the spatial extent of individual larger flooding areas, which is visible on the
map in Figure 12a,b.

Table 4. Random Forest model: accuracy metrics.

Precision Recall F-1 Score

Non-flooded area 99.97% 99.99% 99.98%
Flooded area 93.42% 75.85% 83.73%

Table 5. Random Forest model: confusion matrix.

Predicted
Non-Flooded Area Flooded Area

True
Non-flooded area 3,173,140 238

Flooded area 1076 3380

The SHAP values and the averaged influence of the dependent variables are shown in Figure 13.
The SHAP values analysis confirms most of the observations made in the histogram analysis in
Section 4.1. It accounts for an additional validation of the correct functioning of the developed RF
model. High values of the NDVI ranges contributed significantly to the classification of the area
as flooded, while low ranges were only of slight importance in reducing the probability of such
classification. Lower elevation values contributed to the classification of the area as flooded more
often, but it is also clear that many low-lying areas were not classified correctly. High groundwater
depth values clearly reduced the likelihood of the site being identified as a floodplain. Large values
of subsidence significantly increased this probability, while values around 0 resulted in a slight
decrease of possibility of classifying an area as flooded. Areas with a low slope or flat regions
had an increased chance of being classified as a floodplain. Finally, high values of the geological
type of substrate (corresponding to the areas with the lowest retention) had a negative impact on
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positive classification.The averaged influence of the dependent variables shows that the NDVI range
variable mostly associated with the occurrence of floodplains. This may be due to both the change in
characteristics of the electromagnetic wave reflection in the area mostly covered with water and the
degradation of vegetation caused by inundation. The next factor is terrain elevation—logically, the local
lower areas are more prone to flooding. The next three variables (groundwater level, cumulative terrain
displacement and slope) have a similar effect on prediction results. The geological type of subsoil has
a slightly lower impact. Exposure has the lowest impact of all variables—flat areas, more prone to
flooding, are already included in the slope variable, and the geographic direction of exposure did not
turn out to be related to occurrence of inundation.

Sustainability 2020, 12, x FOR PEER REVIEW 18 of 26 

mostly associated with the occurrence of floodplains. This may be due to both the change in 
characteristics of the electromagnetic wave reflection in the area mostly covered with water and the 
degradation of vegetation caused by inundation. The next factor is terrain elevation—logically, the 
local lower areas are more prone to flooding. The next three variables (groundwater level, cumulative 
terrain displacement and slope) have a similar effect on prediction results. The geological type of 
subsoil has a slightly lower impact. Exposure has the lowest impact of all variables—flat areas, more 
prone to flooding, are already included in the slope variable, and the geographic direction of 
exposure did not turn out to be related to occurrence of inundation. 

 
Figure 12. Result of the Random Forest machine learning algorithm, showing the classification of the 
areas as flooded and non-flooded, over the studied area. 

 
Figure 13. Left: feature importance in the Random Forest prediction of flooded areas; right: feature 
impact on the Random Forest prediction of flooded areas. 

Figure 12. Result of the Random Forest machine learning algorithm, showing the classification of the
areas as flooded and non-flooded, over the studied area.

Sustainability 2020, 12, x FOR PEER REVIEW 18 of 26 

mostly associated with the occurrence of floodplains. This may be due to both the change in 
characteristics of the electromagnetic wave reflection in the area mostly covered with water and the 
degradation of vegetation caused by inundation. The next factor is terrain elevation—logically, the 
local lower areas are more prone to flooding. The next three variables (groundwater level, cumulative 
terrain displacement and slope) have a similar effect on prediction results. The geological type of 
subsoil has a slightly lower impact. Exposure has the lowest impact of all variables—flat areas, more 
prone to flooding, are already included in the slope variable, and the geographic direction of 
exposure did not turn out to be related to occurrence of inundation. 

 
Figure 12. Result of the Random Forest machine learning algorithm, showing the classification of the 
areas as flooded and non-flooded, over the studied area. 

 
Figure 13. Left: feature importance in the Random Forest prediction of flooded areas; right: feature 
impact on the Random Forest prediction of flooded areas. 

Figure 13. Left: feature importance in the Random Forest prediction of flooded areas; Right: feature
impact on the Random Forest prediction of flooded areas.



Sustainability 2020, 12, 9338 19 of 26

4.3. GWR Local Modeling

The bandwidth estimated for the optimal AICc value was 383 m. The global linear regression
model, fitted to compare the results, has an AICc of 22,533, and the correlation coefficient reaches
only 0.02. On its basis, however, the statistical significance of the regionalization of the regression
model deviations for a given variable was determined. The GWR model statistics are presented in
Table 6. Based on the p-value, for which the statistical significance threshold was set at <5%, it was
found that only the relation of flooding and the NDVI range did not show a statistically significant
regionalization. The remaining three variables reached p-values below 0.5%. The AICc value for the
GWR model was 44,768 and the correlation coefficient was 0.92. This means that the model accounting
for the spatial variability of the regression coefficients for the four analyzed dependent variables is
much better than the global regression model. The model deviation map (Figure 14) shows a relatively
low spatial autocorrelation of positive and negative deviation values—the regionalization of the model
prevented the occurrence of large, uniform clusters of similar values of deviation.

Table 6. GWR model: coefficients statistics.

Variable Mean Std. Min. Median Max. p-Value

Cumulative displacement −0.01 0.08 −0.66 0.00 0.33 0.00
NDVI maximum difference −0.02 0.14 −0.54 0.00 0.61 0.54

Terrain height −0.10 0.33 −8.13 0.00 2.28 0.00
Slope 0.00 0.14 −1.98 0.00 4.06 0.00
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The spatial variability of the regression coefficients in the GWR model is shown in Figure 15.
Through their analysis, one can see the dependencies causing their regionalization. The areas highlighted
in Figure 15 as no. 1, 3 and 4, where the negative values of terrain displacement have a significantly



Sustainability 2020, 12, 9338 20 of 26

greater impact on the occurrence of flooding, are in fact covering lakes created (or enlarged) as a
result of damage caused by mining activities, in particular the subsidence formation and disturbances
in local groundwater levels. Negative values of the coefficient for the Z variable are caused by the
increased probability of flooding in the subsided regions, but due to local changes in the topography, the
magnitude of this impact may be greater or smaller in various regions. For this reason, negative values
of the GWR coefficient were obtained in the areas of flooding marked as 1, 3 and 4. In area no. 2,
with a topography favoring the occurrence of flooding, there were only a few enlargements of the
existing water reservoirs, most likely unrelated to mining activities, hence the positive values of the
GWR coefficient for the elevation variable. Based on the NDVI, no significant vegetation degradation
was detected in this area, resulting in negative values of this factor assigned in the GWR analysis.
The impact of slope on the occurrence of flooding may also vary, depending on the local conditions of
the terrain relief, e.g., increasing the risk of flooding in flat areas with natural topography (area no. 1).
On the other hand, for the no. 4 area the values of the slope coefficient assume peak values-negative for
the area of the water reservoir (because it was formed on a flat area), and positive near its north-west
shore, which may be caused by its bigger inclination. In the areas marked with no. 5, flooding has
been identified in agricultural areas in the near vicinity of post-mining heaps. NDVI value decreases
were also detected for this area, visible on the NDVI range factor map for the GWR method.
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4.4. Summary

A very wide spectrum of spatio-temporal data was used in the conducted study: radar and optical
imaging from the Sentinel-1 and Sentinel-2 satellites, geological and hydrogeological data and maps,
a Digital Elevation Model and meteorological data as well. SBAS satellite radar interferometry and
indices based on hyperspectral data as well as GIS tools were used to process these input data. As a
result, various datasets (NDVI, LOS displacement time series, groundwater depth, geological substrate,
DEM, slope map, aspect map and map of areas identified as flooded, based on the MNDWI index)
were used. Based on these datasets, a statistical study of the correlation between spatial variables using
spatial regression methods and machine learning supervised classification was performed.

The RF model trained in the study allowed for the correct identification of 76% of flooded zones,
based on seven independent spatial variables, and an analysis of the impact of individual variables
on the recognition of a given region as susceptible to flooding by the machine learning algorithm.
It should also be noted that with the GWR analysis, it was possible to identify and interpret local
changes in the magnitude of said impact in selected areas.

Firstly, attention should be paid to the fact that the flooded area formation may be the result
of several factors, as is shown by the analysis. Inundations occurred much more frequently in the
areas of subsidence caused by mining activities, as well as in natural local sites of terrain depression.
An important aspect is that coal mining causes a gradual subsidence of areas where mining is carried out.
The process of subsiding is due to the fact that there are no larger geological structures, e.g., faults [74],
which would most likely reinforce the terrain deformation process. Over the studied area, the main
effect of mining operations is a slow increase in terrain range of the existing subsidence troughs.
As the exploitation area grows, the subsiding area also widens. Based on the analysis of cross-sections
(Figure 5), it can be concluded that the terrain displacements are not spatially uniform—the change
in displacement speed depends on the progress of the front and the exploitation of a given seam.
For this reason, in some areas, the rate of subsidence can be very high in one year and can decrease
sharply later. Such periodic changes may also affect the rate of appearance and disappearance of
floodplains. Contrary to other Polish hard coal mines located in the Silesian region, the influence zone
of the Bogdanka mine covers agricultural areas that are not heavily urbanized. Over uninhabited
areas, the terrain subsidence causes a seeming rise in the water level [75]. With a relatively high
groundwater level in the Bogdanka mine vicinity, its further raising contributes to the enlargement
of inundation zones, some of which have a permanent form [76]. This phenomenon is exacerbated
by unfavorable weather conditions, such as prolonged rainfall or spring thaw, which may further
cause flooding. In places where the variable of cumulative ground displacement is of the greatest
significance, primarily water reservoirs and wetlands can be found.

The examples of the use of remote sensing data, GIS and machine learning in the aspect of
monitoring changes in the area of terrain surface, quoted in Section 1, do not undertake this issue in
such a comprehensive way as the approach adopted in this study. In the presented paper, it was shown
that with the combined use of various datasets and modern methods of geospatial data processing
and analysis, a more accurate and comprehensive analysis of the occurring phenomena is possible.
The methodology presented in the paper can provide a tool for companies from the mining and energy
industries to enhance the monitoring of areas affected by mining activities, or by other operations with
a significant impact on the surface and the natural environment. Systematic monitoring of the influence
of mining on the environment, e.g., the occurrence of flooding, may translate into controlling the
degree of weight that underground mining may put on the surface. In line with the idea of sustainable
extraction of natural resources, it can play a vital role when mining has a negative social response
related to progressing climate changes. Due to the worldwide coverage, as well as open access to
the data from the Copernicus Sentinel programme, the adopted methodology can be successfully
applied in other areas of raw material extraction. Satellite data mentioned above, as well as geological,
hydrological and other data listed in the article, can be extended with additional datasets available for
selected areas. An emphasis must be put on the stage of initial data processing and preparation for
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use with machine learning algorithms and GWR modeling. It should be taken into account, though,
that the classification accuracy, as well as the degree of influence of individual factors on the studied
phenomenon, may achieve values different from those obtained in this paper, e.g., due to different
geological structure and topography, or for particular climate zones and excavation characteristics.

5. Conclusions

An application of various available open-source data (Sentinel-1 SAR imagery, Sentinel-2 optical
imagery and other spatial datasets) in monitoring the changes in the natural environment on a case
study of an underground coal mine operation was presented in the article. During the study, a focus
was put on the area covered by the influence of underground mining operations. Based on the
Sentinel-1 SAR data, a Line-of-Sight displacement time-series was calculated using the Small Baseline
InSAR technique for the study area, which showed how the terrain surface subsided over the analyzed
period (2015–2019). Using Sentinel-2 optical and hyperspectral imagery, the NDVI and MNDWI
were calculated, based on which the wetland locations were determined and the overall condition of
vegetation was assessed. The derived products of the Sentinel-1 and Sentinel-2 missions, together with
data about terrain elevation (DEM), groundwater depth and geological data, were processed using
GIS tools and machine learning algorithms. A Random Forest machine learning model was created,
which aims at detecting floodplains based on the input data. The developed model achieved an
accuracy of about 75%. In addition, a Geographically Weighted Regression (GWR) analysis was
conducted on the input data to investigate the influence of individual factors on the occurrence of
flooding. The executed analysis showed that the elevation and displacement variables play the most
significant role on the probability of wetland occurrence. The GWR analysis also made it possible to
identify areas where individual factors may locally influence said probability in a more significant way.

Both the causes and effects of flooding were studied. The results obtained clearly indicate that
flooding occurrence does not depend on a single factor but on multiple ones. A significant subsidence
of terrain is not the only and the most important factor, as the analysis has shown. Terrain elevation,
geological structure of the terrain and groundwater level all play a significant role in the occurrence of
flooding. Additionally, the NDVI changes allowed for an assessment of the extent to which flooding
affects the condition of the vegetation cover.

In subsequent analyses, it is suggested that more precise geological and hydrogeological data
should be used to improve the accuracy of the machine learning model. Furthermore, the model
can also be extended with additional variables based on additional meteorological or hydrological
geospatial data, which were either not available for the area studied in this paper or their form did not
enable their use in spatial modeling.
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Abbreviations

AICc Akaike Information Criterion with a correction for
small sample sizes

CCR Central Coal Region
DN Digital Number
DEM Digital Elevation Model
GIS Geographic Information Systems
GWR Geographically Weighted Regression
InSAR Interferometric Synthetic Aperture Radar
LCB Lublin Coal Basin
LOS Line of Sight
MNDWI Modified Normalized Difference Water Index
NDVI Normalized Difference Vegetation Index
RF Random Forest
SAR Synthetic Aperture Radar
SBAS Small Baseline Subset
SHAP SHapley Additive exPlanations
SNAPHU Statistical-cost Network-flow Algorithm for Phase

Unwrapping
SRTM Shuttle Radar Topography Mission
UTM Universal Transverse Mercator
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