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Abstract: This study aimed to clarify the effect of walkability on urban sustainability, according to 

the types of residential clusters in the Osaka Metropolitan fringe area. For this purpose, this study 

analyzed the statistical causal relationship between the Walkability Index and the Ecological 

Footprint to Biocapacity (EF/BC) ratio of each residential cluster. The EF/BC ratio is the ratio of the 

ecological footprint of the biocapacity of the residential clusters. As a result, the effect of walkability 

on urban sustainability was clarified depending upon the types of residential clusters in the Osaka 

Metropolitan fringe area. Specifically, it was found that the Walkability Index negatively affects the 

EF/BC ratio in the sprawl cluster. This suggests that, in the sprawl cluster, active efforts to improve 

the Walkability Index can contribute to the realization of SDGs (Sustainable Development Goals of 

the 2030 Agenda). However, Walkability Index has a strong positive effect on the EF/BC ratio in the 

old new-town cluster, etc. For the residential clusters, the results of this study suggested that there 

is a necessity to improve urban sustainability through approaches other than improving 

Walkability. 

Keywords: walkability; ecological footprint; biocapacity; Osaka metropolitan fringe area; sprawl 

cluster; old new-town cluster 

 

1. Introduction 

This study aims to clarify the effect of walkability on urban sustainability, according to the types 

of residential clusters in the Osaka Metropolitan fringe area. Kato, et al. [1] defined walkability as 

“relevant to residential environments that promote walking or cycling with safety, comfort, and the 

attractions of daily life.” Walkability has been studied as a concept that contributes to the 

improvement of residents’ health, primarily in the field of public health. For example, Cerin, et al. [2] 

developed a walkability indicator called ANEWS (Abbreviated Neighborhood Environment 

Walkability Scale). In addition, they discovered that the majority of active individuals who live in 

areas of high walkability would be healthier than those who live in areas with low walkability. In 

Japan, Inoue, et al. [3], using the ANEWS indicator, have verified the associations of physical activity 

with environmental attributes for Japanese adults. Recently, Hino, et al. [4] investigated location data 

obtained from the Yokohama Walking Point Project. As a result, they clarified that the residents who 

walk frequently are healthy and that the living environment promotes walking [4]. 

At present, in the field of urban planning, many researchers have begun design research on 

living environments with high walkability. For example, Speck [5] proposed 101 characteristics of 

walkable cities. In Japan, Kato, et al. [1] developed the walkability indicator. Then, Kato, et al. [6] 

evaluated the “scenario in which vacant land is used,” as an alternative of the compact city in the 

sprawl cluster of the Osaka Metropolitan fringe area. Since 2020, Japanese MLIT (Ministry of Land, 

Infrastructure, Transport, and Tourism) has called for promoting “walkable city” projects [7]. 

Through these projects, 260 organizations in Japan have begun to establish walkable cities [8]. 
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This study hypothesizes that walkable cities contribute not only to improving the health of 

residents, but also to the realization of Goal 11 (Make cities and human settlements inclusive, safe, 

resilient, and sustainable) in SDGs (Sustainable Development Goals of the 2030 Agenda). In other 

words, the burden on the environment will be reduced by creating a walkable living neighborhood 

where the elderly population can live independently in Japan. The SDGs are “the blueprint for 

achieving a better and more sustainable future for all” [9]. One hundred and ninety-three countries 

of the United Nations work with 17 goals and 169 targets of the SDGs. Efforts toward the SDGs will 

not exceed the planetary boundary established by Rockström, et al. [10]. Regarding the planetary 

boundary, this study focused on land use, which can contribute to the field of urban planning for 

SDGs. The Ecological Footprint (abbreviated as EF) is the sustainability indicator for land use, which 

is evaluated for its effectiveness. 

The EF indicator was developed by Wackemagel and Rees [11], representing the land area 

necessary to support a particular lifestyle toward a sustainable recycling society permanently. 

Moreover, the Global Footprint Network publishes assessment tools and worldwide footprint data 

[12]. Using the EF, Wackemagel, et al. [13] defined the significance of biophysical assessments for 

shaping successful economic policies. For the approaches by EF, Galli, et al. [14] communicated the 

effectiveness of regional-level policies towards the realization of the SDGs in Portuguese cities. For 

example, Lee and Peng [15] calculated EF in Taiwan from 1994 to 2011 and proposed measures to 

help Taiwan advance toward sustainability, carbon reduction, and energy-saving policies that will 

boost their economy. Shi, et al. [16] analyzed the relationship between EF and the human 

development index (HDI) in Hong Kong and Singapore during the years 1995–2016. As a result, they 

provided policy suggestions for transforming toward a “high HDI and low footprint” [16]. 

Based on previous studies focusing on the concept of ecological footprints, the novelty of this 

study is that it clarifies the causal relationship between walkability and the Ecological Footprint to 

Biocapacity (abbreviated as EF/BC) ratio, according to residential cluster types. The EF/BC ratio is the 

ratio of the ecological footprint of the biocapacity of the residential clusters. In addition, the EF/BC 

ratio represents the environmental load excess ratio. The EF/BC ratio suggests an ecological balance 

in each residential area. At the metropolitan scale, EF/BC is balanced by urban FP and rural BC. 

However, since the EF/BC ratio is in excess, we need to lower the urban FP. Speck [17] suggested 

that improving walkability contributes to urban sustainability. For example, improving walkability 

contributes to supporting nearby commercial facilities and reducing CO2 emissions from motorized 

transportation. However, the results were only qualitatively examined, meaning they have not been 

clarified quantitatively. By quantitatively analyzing the statistical causal relationship between 

walkability and sustainability, this research will effectively utilize the efforts of companies and local 

governments, focusing on walkability toward the realization of the SDGs. Furthermore, if results 

conclude that residential clusters do not have statistical causal relationships, it is expected that there 

will be the possibility of finding new approaches other than improving walkability. 

The statistical causal relationship was analyzed based on a residential neighborhood association 

(abbreviated as “NA”) scale. Japan has hierarchical structures of governance ranging from NA scale 

to Metropolitan Scale. The reason why this paper analyzed NA scale is that the scale of the foundation 

based on which residents make decisions about urban planning in Japan. 

As a case study, this study selected the Osaka Metropolitan fringe area, which is one of the major 

metropolitan areas in Asia. The Osaka Metropolitan fringe area is located in the surrounding areas 

of the Osaka metropolitan area. The Osaka metropolitan fringe area became urbanized rapidly after 

the 1950s [1]. Especially around the 1960s, the sprawl urbanization was serious because the fields 

were converted to residential land by a few sheets of land. In order to prevent the sprawl, high-end 

residential areas were developed as new-towns in the mountains. Over here, there are several types 

of residential clusters, including the sprawl cluster and the old new-town cluster [1]. Since the 

residential clusters are facing the problems of population decline and aging, this study analyzed for 

the Osaka Metropolitan fringe area. This study analyzed Osaka, Kyoto, and Hyogo prefectures in the 

Osaka Metropolitan area. The three prefectures are city-regions in the metropolitan area, where the 

population is declining more rapidly than in the Tokyo and Nagoya Metropolitan areas in Japan [18]. 
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Therefore, the Osaka Metropolitan fringe area must develop sustainable cities, even if the population 

decreases rapidly in the future. In 2025, the Osaka Expo 2025, which aims to build a society working 

toward achieving SDGs, will be held in the Osaka Metropolitan area. Therefore, the knowledge of 

this study will be significantly influential, not only in the Osaka metropolitan area but also in Asia. 

2. Materials and Methods  

The method of this study consisted of four steps (Figure 1). First, residential areas were 

categorized by urban ecological analysis. Second and third, the Walkability Index and Ecological 

Footprint were categorized. Finally, the statistical causal relationship between the Walkability Index 

and the Ecological Footprint was analyzed according to the types of residential clusters. 

 

Figure 1. Analysis steps in Chapter 2. 

2.1. Urban Ecological Analysis 

The types of residential clusters found in the metropolitan fringe area were clarified by 

categorizing residential areas using statistical analysis. The categories suggest locations of every type 

of residential cluster. The method implemented in this section was an urban ecological analysis. The 

urban ecological analysis is a method of analyzing spatial patterns by an inductive method using a 

wide range of statistical data [1]. The analysis consisted of five steps. 

First, in this section, the standardization of 53 indicators for the NA scale of the Japanese census 

in 2015 was analyzed [19]. In Japan, the national Census is conducted every five years. Therefore, the 

2015 Census is the most recent available data. See Appendix A for percentages of population sorted 

by age. Next, the standardized composition ratio ��
�  was calculated by standardizing the data of 

each indicator in the Osaka Metropolitan area in Equation (1). The Osaka Metropolitan area includes 

Osaka, Kyoto, Hyogo, Nara, Shiga, and Wakayama prefectures. The reason is that the distribution 

range between the data differs among the 53 indicators. 

��
� =

���
� − �����

����� − �����
 (1) 

where ���
�  is the number of NA i for indicator x in the residential area k.; ����� is the minimum 

value of NA i for indicator x.; and ����� is the maximum value of NA i for indicator x. 

Third, the principal component was analyzed using the standardized composition ratio ��
� . 

Since the Cronbach’s α coefficient of the principal component analysis was 0.985, reliable data were 

obtained as social survey data. Fourth, seven principal components were extracted according to the 

Guttman Kaiser criterion. Reliable data were obtained because the total variable amount of these 

seven principal components was 78.8%. Finally, residential clusters were categorized by hierarchical 

cluster analysis using their seven principal component scores. Then, the name of each cluster was 

determined by analyzing the content composition ratio Rki of each indicator for each residential 

cluster (Appendix A). Besides, the effectiveness of the clusters was verified from their location on the 

map and photographs of the actual residential clusters. 

Subsequently, to clarify the residential clusters found in the metropolitan fringe area, the 

“urbanized area ratio” was analyzed. The “urbanized area ratio” is the ratio of the residential areas 
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included in the urbanized area. Then, “the average distance from the center” of the metropolitan area, 

which comprises Umeda Station, Karasuma Station, and Sannomiya Station, was calculated. As a 

result, residential clusters were clarified with over 50% of “urbanized area ratio” and an average city 

center distance of over 10 km of “the average distance from the center.” The analysis clarified the 

residential clusters located in the Osaka Metropolitan fringe area. 

2.2. Walkability Index 

Residential areas were evaluated using the Walkability Index. Brownson, et al. [20], classified 

three types of walkability indicators: using GIS-based measures, perceived environment measures, 

and observational measures. Some of the significant indicators of “Using GIS-based Measures” are 

Walkability 3Ds and Walk Score®. Walkability 3D was developed as an index to evaluate the impact 

of the neighboring environment on tourists in the case of the San Francisco Bay coast [21]. Walk Score® 

was developed as an index to evaluate the walkability of the neighborhood environment in the case 

of the US metropolitan area [22]. In Japan, Kato, et al. [1] also proposed a Japanese version of a 

walkability indicator. Among them, the Walkability Index is an evaluation index developed by Frank, 

et al. [23,24] as an index to evaluate the neighborhood environment in Australia. A feature of this 

Walkability Index is that many studies have verified its effectiveness on the actual number of 

pedestrians [25]. In Japan, Kanai, et al. [26] analyzed changes in walking activity due to walking space 

development using the Walkability Index. 

This Walkability Index is composed of the three components, net residential density 

(abbreviated as “ND”) in Equation (2), the density of street connectivity (abbreviated as “SC”) in 

Equation (3), and land use mix (abbreviated as “LUM”) in Equation (4). WI, which is the score of the 

Walkability Index, is the sum of the standardized values of ND, SC, and LUM in Equation (5). 

ND� =
��

��

 (2) 

SC� =
��

��
 (3) 

LUM� = �
��,� × ln ��,�

ln �

�

���

 (4) 

WIk = z-NDk + z-SCk + z-LUMk (5) 

where ��  is the total number of net residents in residential area k by Japanese census data in 2015 

[19]; �� is the total housing area in residential area k by Japanese census data in 2015 [19]; ��  is the 

number of street connectivity in residential area k by road centerline data [27]; �� is the total length 

of the street in residential area k by road centerline data [27] (m); ��,� is the area ratio of land use i in 

residential area k by the data of the numerical map 5000 in Japan [28]; �  is the classification of land 

use i (residential land, commercial land, public facility land); and z- is the standardized value. 

2.3. Ecological Footprint 

The EF/BC ratio of each residential area was assessed. The EF was calculated by summing up 

the five footprints (abbreviated as “FP”) in Equation (6). Those FP are cropland FP, grazing land FP, 

forest land FP, urban land FP, and carbon FP. This study calculated EF by referring to the “Ujihara-

Taniguchi Model” developed by Ujihara, et al. [29] based on the “compound method.” The 

“compound method” is a top-down method of calculating EF using statistical data of the entire 

region, and is the opposite methodology to the “component method” that sums up the components 

of EF. The component method is thought to be problematic because it fails to consider the local 

variability of EF. However, the compound method produces exceptionally reliable data because the 

risk of double addition is low [11]. 



Sustainability 2020, 12, 9248 5 of 18 

Regarding the “compound method,” the “Ujihara-Taniguchi Model” can be analyzed on an NA 

scale using open data that can be acquired in Japan, and therefore was utilized in this study. In 

addition, Chen, et al. [30] verified the effectiveness of the model in Japan. The calculations for each 

FP are provided in Appendix B. 

��� = ����������
� + ���������

� + ��������
� + ����������

� + ��������
�  (6) 

where k is residential area k, ���  is EF in residential area k (ha), ����������
�  is cropland FP in 

residential area k (ha), ���������
�  is grazing land FP in residential area k (ha), ��������

�  is forest land 

FP in residential area k (ha), ����������
�  is build-up land FP in residential area k (ha), and ��������

�  is 

the FP required for CO2 absorption in residential area k (ha). 

Using the ���, this section calculated EF/BC ratio in Equation (7). The EF/BC ratio stands for 

the environmental load excess ratio. An EF/BC ratio >1.0 suggests that EF is “overshooting” beyond 

the BC in the residential area k. The EF/BC ratio is the best way to analyze the ecologically balanced 

area, though several methods have been proposed to analyze the relationship between EF and BC. 

For example, the Global Footprint Network [12] analyzed the difference between EF and BC. 

However, the difference between EF and BC is not suitable for analyzing the NA scale because it 

tends to be influenced by the size of the residential areas and its population. Chen, et al. [30] analyzed 

the local cities of the Tokyo Metropolitan area using the EF/BC ratio. Then, the effectiveness of the 

index was evaluated because it allows us to analyze the ecological balance of the NA scale without 

being affected by the size of the residential areas. In 2016, Japan’s ratio was 7.7 compared to the global 

ratio of 1.7. Therefore, Japan has to improve the EF/BC ratio, even in urban areas. For the 

improvement in Japan, the neighborhood scale of urban central areas needs to lower EF and raise BC, 

although the Metropolitan scale essentially balances urban EF and rural BC. In Equation (7), ���  

was calculated by Equation (8). ��� means the bio-productive supply available in the residential 

area k. 

��/�� ����� =
���

���
 (7) 

��� = � ����
�

��

���

 (8) 

where ����
�  is the area build-up of land use lu in the residential area k, which is calculated from the 

data of the numerical map 5000 in Japan [28]. lu is eleven types of land uses (industrial land, 

residential land, commercial land, office land, road land, parks, green spaces, public facility land, 

forest, farmland, and vacant land). 

2.4. Regression Analysis between WI and EF/BC Ratio 

In Section 2.4, the statistical causal relationship between WI and the EF/BC ratio on the NA scale 

according to the types of residential clusters was analyzed. For this purpose, regression analysis was 

performed for each residential cluster classified in Section 2.1, by setting WI calculated in Section 2.2 

as an explanatory variable and EF/BC ratio calculated in Section 2.3 as an objective variable. 

Regression analysis was conducted using the stepwise selection method. As a result, this study 

extracted only the explanatory variables for which significant differences could be confirmed. 

3. Results 

3.1. Classification of Residential Areas 

Categories of residential clusters were analyzed by the urban ecological analysis. As a result, 

Appendix A illustrates thirteen types of residential clusters in the Osaka Metropolitan area. These 

clusters include inter-city cluster, business center cluster, mining industry cluster, dense cluster, 

public housing cluster, non-residential cluster, agriculture cluster, sprawl cluster, high-rise 

residential cluster, mountain cluster, old new-town cluster, suburban agriculture cluster, and rural 
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cluster. Each residential cluster was plotted on the map in Figure 2, which indicates location 

characteristics according to each residential cluster. 

This section clarified the clusters in the metropolitan fringe areas. Thus, residential clusters with 

over 50% of “urbanized area ratio,” and an average city center distance of over 10 km of “the average 

distance from the center,” were identified. As a result, Appendix A illustrates six types of residential 

clusters in the Osaka Metropolitan fringe areas: dense clusters, public housing clusters, non-

residential clusters, sprawl clusters, high-rise residential clusters, and old new-town clusters. Of these 

six types of residential clusters, the non-residential cluster was excluded from the analysis, because 

this study analyzed residential areas. Figure 2 verified the same conclusion as a result of urban 

ecological analysis for the northern part of the Osaka Metropolitan area [1]. 

Finally, the five types of residential clusters in the Osaka Metropolitan fringe area were 

identified. First, the dense cluster was defined as densely urbanized residential areas with small 

wooden houses [31]. The dense cluster was constructed with too narrow streets with fragile road 

networks, as well as insufficient public open spaces and high population density before the 1950s 

[31]. The dense clusters have been regarded as dangerous urban areas in Japan, where earthquakes 

are common [31]. Figure 2 illustrates that the dense cluster is located close to the outer edge of the 

inner-city cluster. The public housing cluster was defined as residential areas constructed by public 

institutions for affordable housing. Figure 2 shows that the public housing cluster is dispersed in the 

metropolitan fringe area. The sprawl cluster was defined as urban residential areas with a lack of 

urban infrastructure, characterized by narrow streets and small vacant lots, that were developed 

around farmlands since the 1970s [1]. That sprawl cluster has been regarded as problematic in terms 

of efficient land use. Figure 2 shows that the sprawl cluster is located between inner-city clusters and 

old new-town clusters. The high-rise residential cluster was defined as residential clusters 

constructed as tower-type buildings, constituting redevelopment projects as Transit-Oriented 

Development. Figure 2 shows the high-rise residential cluster located along the railway and stations. 

Finally, the old new-town cluster was defined as planned and large-scale suburban residential areas 

featuring detached houses [32]. The old new-town cluster has encountered urban challenges for older 

adults, because the cluster was developed at hillside areas with slopes that make it difficult to walk 

[32]. Figure 2 shows that the old new-town cluster was located on the hillside in the mountains. 

 

Figure 2. Location of the clusters in the Osaka Metropolitan area. 
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3.2. WI and EF/BC Ratio of Each Residential Cluster 

The WI and EF/BC ratios of each NA scale were calculated, based on the analyses described in 

Sections 2.2 and 2.3. Then, the results of WI and EF/BC ratios were illustrated on the map in Figures 

2 and 3. Figure 3 categorizes the data by the Jenks natural breaks classification, which is a method of 

thresholding where the change in the data is relatively large. As a result, Figure 3 shows that the 

Osaka Metropolitan area has higher WI scores in the suburban areas, compared to Los Angeles 

Metropolitan area [33]. Besides, Figures 3 and 4 show that the WI and EF/BC ratio of each NA were 

affected by the residential clusters. For example, Figure 4 shows that the EF/BC ratio is higher in the 

central areas and lower in the outer edge areas. 

Therefore, in Section 3.2, the box plot diagram of the WI and EF/BC ratios according to each 

residential cluster was analyzed in Figures 5 and 6. As a result, Figures 5 and 6 show that WI has less 

change in each residential cluster compared to the EF/BC ratio. Regarding the EF/BC ratio, Figure 6 

shows that the EF/BC ratio exceeded 1.0 in most clusters. The result means that “overshooting” occurs 

in the Osaka Metropolitan area. The results show that residents in the Osaka Metropolitan area 

should alter their lifestyle to lower the EF/BC ratio. Among the clusters, the EF/BC ratio was low in 

the agricultural cluster (Me = 6.90), and mountain cluster (Me = 4.76). The next highest EF/BC ratios 

are the residential clusters located in the metropolitan fringe area. These include the sprawl (Me = 

12.29) and old new-town clusters (Me = 15.96). Finally, the EF/BC ratio was high in the inner-city (Me 

= 20.60), dense residential (Me = 20.64), and public housing area clusters (Me = 19.32), located near 

the center of the metropolitan area. 

 

Figure 3. Walkability Index (WI) in the Osaka Metropolitan area. 

 

Figure 4. Ecological Footprint to Biocapacity (EF/BC) ratio in the Osaka Metropolitan area. 
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Figure 5. WI of each residential cluster. 

 

Figure 6. EF/BC ratio of each residential cluster. 

3.3. Statistical Relationship between WI and EF/BC Ratio 

The statistical causal relationship between WI and EF/BC ratio was clarified based on the results 

of regression analyses (stepwise selection method) in Section 2.4 (Table 1). Table 1 shows only the 

results of the variables adopted in the stepwise selection method. As a result, Table 1 shows that 

causal relationships differ depending on the type of residential cluster. For example, it was found 

that WI negatively affects the EF/BC ratio in the sprawl cluster (B = −40.410). This result means that, 

in the sprawl cluster, increasing WI decreases the amount of excess environmental load. Alternately, 

Table 1 shows the residential clusters in which WI positively affects the EF/BC ratio. These are inner-

city clusters (B = 2.474), non-residential cluster (B = 0.220), old new-town cluster (B = 303.373), and 

rural cluster (B = 3.591). Among them, the old new-town cluster has a profound influence (B = 

303.373). The result means that, in the old new-town cluster, increasing WI increases the amount of 

excess environmental load. Finally, Table 1 shows the residential clusters in which WI did not affect 

the EF/BC ratio. These are business center clusters, mining industry clusters, dense clusters, public 

housing clusters, agriculture clusters, high-rise residential clusters, mountain clusters, and suburban 

agriculture clusters. 
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Table 1. Statistical Relationship between WI and EF/BC ratio. 

Type of Cluster 
Explanatory 

Variable 

Regression  

Coefficient (B) 

Standard 

Error 
p-Value 

Inter-city cluster 
WI 2.474 0.864 0.004 

(Constant) 27.159 0.904 0.000 

Business center cluster - - - - 

Mining industry cluster - - - - 

Dense cluster - - - - 

Public housing cluster - - - - 

Non-residential cluster 
WI 0.220 0.053 0.000 

(Constant) 2.544 0.062 0.000 

Agriculture cluster - - - - 

Sprawl cluster 
WI -40.410 17.510 0.021 

(Constant) 44.735 16.956 0.008 

High-rise residential cluster - - - - 

Mountain cluster - - - - 

Old new-town cluster 
WI 303.373 34.361 0.000 

(Constant) 73.952 43.848 0.092 

Suburban agriculture cluster - - - - 

Rural cluster 
WI 3.591 1.532 0.020 

(Constant) 31.081 2.108 0.000 

“-” are the variables that were not adopted in the stepwise selection method. 

4. Discussion 

The conclusion of this study clarified the effect of walkability on urban sustainability depending 

on the types of residential clusters in the Osaka Metropolitan fringe area. Specifically, it was found 

that WI negatively affected the EF/BC ratio in the sprawl cluster. This means that, in the sprawl 

cluster, improving WI contributes to improving urban sustainability. The negative causality is an 

interesting result, since both the WI component and the EF component have data related to 

population, such as household density. The results dictate the points made by Speck [17], who noted 

qualitatively that improving walkability contributes to urban sustainability. The result also suggests 

that, in the sprawl cluster, active efforts to improve WI can contribute to the realization of SDGs, 

which is Goal 11: “Make cities and human settlements inclusive, safe, resilient and sustainable”. In 

other words, the burden on the environment will be reduced by creating walkable living 

neighborhoods where the elderly can live independently in Japan. Besides, the walkable living 

neighborhood design is expected to be more collaborative and effective than redevelopment with 

clearances. Therefore, the design of a walkable living neighborhood is expected to be a way to 

simultaneously improve the quality of life of its residents and urban sustainability. For example, it is 

possible to propose methods of attracting commercial land or public facility land to vacant lands that 

are diffusely found in the sprawl cluster. Coughenour [34] also suggests the need for urban designs 

that incorporate the characteristics of sprawl, such as access to transit, which has a positive impact 

on active transport. In addition, improvement of WI is expected to be an effective method in sprawl 

urban areas where most residents are older adults, because improving WI contributes to maintaining 

the health of residents. 

Additionally, it was found that WI has a positive effect on the EF/BC ratio in the inner-city, non-

residential, old new-town, and rural clusters. Among them, in the old new-town cluster, WI has a 

strong positive effect on the EF/BC ratio. The findings also suggest that, in the old new-town cluster, 

improving WI may reduce urban sustainability. The result is a different result than what urban 

planners intuitively felt. In addition, urban planners involved in walkable design needs to face the 
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inconvenient results. Therefore, the results are novel conclusions elucidated by this study, which was 

analyzed quantitatively data analysis rather than qualitatively. 

In future research, it is crucial to clarify the reasons why different causal relationships occurred 

depending on the types of residential clusters. The reason is that walkability varies according to the 

types of residential clusters [35]. Specifically, one possible reason is the relationship between WI and 

EF/BC ratio. Figures 5 and 6 show that the sprawl cluster has high WI and low EF/BC ratio and the 

old new-town cluster has low WI and high EF/BC ratio. To elucidate the factors, Appendix C show 

the mean values of ����������
� , ���������

� , ��������
� , ����������

� , ��������
� , and ���  in each cluster. 

Appendix C shows that life-related ��������
�  was higher in the old new-town cluster than in the 

sprawl cluster. Among the ��������
� , the ��������.

�  related to traffic behavior may have influenced 

the results with the different causal relationship, though detailed investigations are needed in the 

future, using improved sustainability indicators that take into account micro-scale sustainability as 

well as macro-scale sustainability. ��������.
�  is calculated based on household types and the number 

of cars used. Therefore, ��������.
�  tends to be affected by the social attributes of each residence cluster. 

For example, sprawl cluster is populated by people of diverse social attributes. On the other hand, 

the old new-town cluster is populated by high-income workers, who use multiple private vehicles 

rather than walking. Besides, Kato, et al. [1] suggested that the sprawl cluster is a walkable area. The 

transportation behaviors of residents in the sprawl cluster are epitomized by walking and cycling. 

That is because the sprawl clusters are a maze of narrow streets, and it is more convenient for walking 

and cycling than to drive a car or take public transportation [36]. Kato, et al. [36] clarified that 

residents walk with confidence because narrow roads have a lower risk of car accidents in the sprawl 

cluster. Additionally, Kato, et al. [1] indicated that the old new-town cluster is not a walkable area 

because the old new-town cluster was located on the hillside in the mountains. Therefore, the modes 

of transportation used by residents in the old new-town cluster primarily include driving by car. In 

addition, older adults living in the old new-town cluster have difficulty changing from driving cars 

to walking. However, the residents of the old new-town cluster and the residents of the sprawl 

cluster, will experience typical health decline associated with aging in Japan [32]. For example, 

residents are expected to have trouble driving vehicles ultimately. Therefore, the old new-town 

cluster must realize an independent life by approaches different from the improvement of WI based 

on the existing concept. For example, some advanced old new-town cluster considers using 

technologies for Society 5.0, such as automated driving technology [37]. The old new-town cluster is 

likely to be able to take advantage of these technologies because of their well-equipped infrastructure. 

Therefore, in the old new-town cluster, the results suggest the likelihood of improving urban 

sustainability by approaches other than improving WI. In other words, it is a different approach than 

WI, which is composed of net residential density, density of street connectivity, and land use mix. 

This is because there may be a different concept of the Walkability, which is “relevant to residential 

environments that promote walking or cycling with safety, comfort, and the attractions of daily life 

[1]”. 

In Japan, the Japanese MLIT actively recommends efforts to improve walkability [8]. That is 

because the Japanese MLIT has tried to re-design cities based on walkable living neighborhoods 

where people can live within walking distance to prepare for the inevitable population decline in the 

future. This study clarified the effectiveness of ongoing efforts to improve walkability in sprawl 

clusters. In developed countries where sprawl clusters are located over large areas in the 

metropolitan area, efforts to improve walkability are expected to be an effective method. Especially 

in developed countries such as China, which are expected to face aging problems next to Japan, 

improving walkability could be an effective method because it would also contribute to the older 

adults’ health. Zhang [38] clarified built environments to improve the walking activity of the elderly 

in the Zhongshan Metropolitan area. This result contributes to advancing the understanding of 

environmental sustainability in order to serve as a bridge between academic and practitioner 

communities and guide policy and management practice to achieve environmental sustainability. 

However, some residential clusters, such as the old new-town clusters, have found that the 

improvement of walkability may negatively affect urban sustainability. For these residential clusters, 
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this study suggests a need to improve urban sustainability through approaches other than enhancing 

Walkability. Alternatively, in developing countries where the population will continue to grow, it is 

better to consider the possibility of not building suburban residential areas in hilly areas. That is 

because it will be challenging to maintain residential areas like the old new-town cluster in Japan. 

For the realization of Goal 11 (Make cities and human settlements inclusive, safe, resilient, and 

sustainable) in SDGs, measures according to the characteristics of residential clusters should be tried. 

Such attempts will explore plausible alternatives for the future, potentially aiding community 

planners in constructing living spaces that are designed to improve and maintain the health of 

residents. 
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(Grant number 19K23558). 
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Appendix A 

Table A1. Content Composition Ratio Rki of Each Indicator for Each Residential Cluster. 
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N 1937 5472 728 672 889 7403 297 4998 628 7251 2546 2914 1033 

Urbanized area ratio (%) 84.5 86.2 45.1 77.1 72.4 55.2 23.6 66.2 61.8 40.7 59.1 21.3 24.9 

Average distance from the center (km) 19.3 34.5 59.9 31.2 26.7 43.9 71.6 38.2 25.9 56.1 26.7 63.1 52.1 

Pop. under 15 years old (%) 0.06 0.01 0.03 0.06 0.05 0.00 0.04 0.02 0.09 0.01 0.03 0.01 0.10 

Pop. between 16 and 64 years old (%) 0.09 0.02 0.04 0.09 0.08 0.00 0.06 0.03 0.12 0.01 0.05 0.02 0.14 

Pop. over 65 years old (%) 0.10 0.02 0.04 0.07 0.12 0.00 0.09 0.04 0.11 0.01 0.05 0.03 0.15 

Pop. of Foreigners (%) 0.09 0.02 0.02 0.04 0.07 0.00 0.01 0.02 0.03 0.00 0.01 0.00 0.05 

Pop. who live in their own house (%) 0.09 0.02 0.04 0.07 0.05 0.00 0.07 0.03 0.13 0.01 0.05 0.02 0.15 

Pop. who live in public housing (%) 0.01 0.00 0.00 0.01 0.12 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 

Pop. who live in private rented houses (%) 0.10 0.02 0.02 0.10 0.02 0.00 0.02 0.03 0.05 0.00 0.02 0.00 0.07 

Pop. who live in houses for employees (%) 0.02 0.00 0.01 0.08 0.01 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.02 

Pop. who live in shared houses (%) 0.08 0.02 0.02 0.05 0.03 0.00 0.04 0.03 0.06 0.01 0.03 0.01 0.09 

HHs who live outside of houses (%) 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

HHs who live in detached houses (%) 0.07 0.02 0.05 0.05 0.03 0.00 0.10 0.04 0.09 0.02 0.06 0.03 0.19 

HHs who live in traditional nagaya-houses (%) 0.08 0.01 0.02 0.03 0.02 0.00 0.02 0.03 0.02 0.00 0.01 0.00 0.07 

HHs who live in apartment houses (%) 0.08 0.02 0.02 0.08 0.10 0.00 0.01 0.02 0.08 0.00 0.02 0.00 0.04 

HHs who live in 1- or 2- stories building (%) 0.05 0.02 0.04 0.07 0.02 0.00 0.04 0.05 0.05 0.00 0.03 0.01 0.16 

HHs who live in 3- to 5- stories building (%) 0.05 0.01 0.01 0.07 0.11 0.00 0.01 0.02 0.05 0.00 0.01 0.00 0.03 

HHs who live in 6- to 10- stories building (%) 0.06 0.01 0.01 0.06 0.04 0.00 0.00 0.01 0.05 0.00 0.01 0.00 0.02 

HHs who live in 11- or more stories building (%) 0.03 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 

Pop. who work in agriculture and forestry (%) 0.00 0.00 0.01 0.00 0.00 0.00 0.13 0.00 0.01 0.01 0.00 0.03 0.03 

Pop. who work in fishery (%) 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

Pop. who work in mining industry (%) 0.00 0.00 0.09 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01 

Pop. who work in construction industry (%) 0.08 0.01 0.04 0.06 0.07 0.00 0.07 0.04 0.09 0.01 0.04 0.02 0.15 

Pop. who work in manufacturing industry (%) 0.05 0.01 0.03 0.07 0.05 0.00 0.05 0.03 0.08 0.01 0.03 0.02 0.12 

Pop. who work in electricity, gas, and water supply (%) 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.03 0.00 0.01 0.00 0.03 
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Pop. who work in the information industry (%) 0.08 0.01 0.02 0.08 0.04 0.00 0.01 0.02 0.12 0.00 0.04 0.00 0.06 

Pop. who work in transport industry (%) 0.08 0.02 0.03 0.07 0.10 0.00 0.05 0.04 0.09 0.01 0.04 0.02 0.14 

Pop. who work in retail industry (%) 0.09 0.02 0.03 0.08 0.07 0.00 0.06 0.03 0.12 0.01 0.04 0.02 0.13 

Pop. who work in the financial industry (%) 0.06 0.01 0.02 0.08 0.04 0.00 0.03 0.02 0.12 0.00 0.04 0.01 0.08 

Pop. who work in real estate business (%) 0.09 0.02 0.03 0.08 0.06 0.00 0.02 0.03 0.12 0.01 0.04 0.01 0.08 

Pop. who work as researchers or professionals (%) 0.06 0.01 0.02 0.07 0.04 0.00 0.03 0.02 0.11 0.01 0.04 0.01 0.07 

Pop. who work in the service industry (%) 0.09 0.02 0.03 0.07 0.07 0.00 0.06 0.03 0.09 0.01 0.04 0.01 0.12 

Pop. who work in the entertainment industry (%) 0.06 0.01 0.02 0.05 0.05 0.00 0.04 0.02 0.07 0.01 0.03 0.01 0.09 

Pop. who work in education (%) 0.06 0.02 0.03 0.08 0.04 0.00 0.05 0.02 0.13 0.01 0.05 0.02 0.10 

Pop. who work in medical/welfare (%) 0.07 0.02 0.03 0.07 0.07 0.00 0.06 0.03 0.11 0.01 0.04 0.02 0.13 

Pop. who work in joint service industry (%) 0.05 0.01 0.05 0.06 0.05 0.00 0.18 0.03 0.09 0.02 0.04 0.05 0.18 

Pop. who work in other service industry (%) 0.09 0.02 0.04 0.08 0.10 0.00 0.06 0.04 0.11 0.01 0.04 0.02 0.14 

Pop. who work as civil servants (%) 0.02 0.00 0.01 0.05 0.01 0.00 0.02 0.01 0.04 0.00 0.01 0.01 0.04 

Pop. who work at home (%) 0.08 0.02 0.04 0.06 0.04 0.00 0.18 0.03 0.07 0.01 0.03 0.05 0.13 

Pop. who work in their own city (%) 0.06 0.01 0.04 0.07 0.06 0.00 0.07 0.03 0.07 0.01 0.03 0.02 0.14 

Pop. who work in other cities (%) 0.07 0.01 0.03 0.07 0.06 0.00 0.04 0.02 0.11 0.01 0.04 0.01 0.10 

Pop. who work in other wards of their own city (%) 0.07 0.01 0.01 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Pop. who work in other cities of their own prefecture (%) 0.03 0.00 0.02 0.07 0.05 0.00 0.05 0.03 0.09 0.01 0.04 0.01 0.12 

Pop. who work in other prefectures (%) 0.03 0.01 0.02 0.07 0.03 0.00 0.01 0.01 0.15 0.00 0.05 0.01 0.05 

Pop. who go to sch. in their own city (%) 0.04 0.01 0.02 0.06 0.04 0.00 0.04 0.02 0.07 0.01 0.03 0.01 0.09 

Pop. who go to sch. in other cities (%) 0.07 0.01 0.03 0.06 0.06 0.00 0.04 0.03 0.14 0.01 0.05 0.01 0.11 

Pop. who go to sch. in other wards of their own city (%) 0.07 0.02 0.01 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Pop. who go to sch. in other cities of own prefecture (%) 0.04 0.01 0.03 0.06 0.06 0.00 0.06 0.03 0.13 0.01 0.05 0.02 0.13 

Pop. who go to sch. in other prefectures (%) 0.04 0.01 0.02 0.06 0.03 0.00 0.03 0.02 0.16 0.01 0.05 0.01 0.08 

Pop. who had lived since birth (%) 0.07 0.02 0.05 0.06 0.05 0.00 0.13 0.04 0.10 0.02 0.04 0.05 0.17 

Pop. who had lived for 1 year (%) 0.06 0.02 0.02 0.10 0.05 0.00 0.03 0.03 0.07 0.00 0.03 0.01 0.08 

Pop. who had lived for the past 5 years (%) 0.06 0.01 0.02 0.08 0.06 0.00 0.03 0.02 0.08 0.00 0.03 0.01 0.09 

Pop. who had lived for the past 10 years (%) 0.07 0.01 0.03 0.07 0.07 0.00 0.04 0.03 0.12 0.01 0.04 0.01 0.11 

Pop. who had lived for the past 20 years (%) 0.08 0.02 0.03 0.07 0.08 0.00 0.05 0.03 0.15 0.01 0.05 0.01 0.13 

Pop. who had lived for over 20 years (%) 0.07 0.02 0.04 0.05 0.08 0.00 0.08 0.03 0.09 0.01 0.05 0.02 0.15 

In Appendix A, each number is represented by a green to red graduation. Specifically, the red tab has 

higher numbers, and the green tab has lower numbers. 

Appendix B 

Appendix B.1. Cropland FP 

����������
�  means that cropland is necessary to grow crops for food and feed. The ����������

�  is 

composed of ���.����
� , which is cropland required for food/animal feed crop production and 

���.��������
� , which is cropland required for clothing and crop production, in Equations (A1)–(A8). 

These equations assume that the per capita consumption in the residential area is the same as that in 

Japan. 

����������
� = ���.����

� + ���.��������
�  (A1) 

���.����
� = �

���.�
�

���.�

��

����
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���.�
� = � ��

�

��

���

・��� (A3) 

���.� = ���
���

��� + ���
� × ���� + ��

���

��� + ���
� × ����� × �� (A4) 
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�
×
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�
×
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���.�

 (A8) 

where ���.�
�  represents the consumption of food i in the residential area k; ���.� is land productivity 

of food i (t/ha); ��
�  is the population of age group p (0–14 years/15–19 years/20–29 years/30–39 

years/40–49 years/50–59 years/60–69 years/70 years or older) in the residential area k by Japanese 

census data in 2015 [19]; ��� is the consumption of food i in age bracket p by the data of Japanese 

National Health and Nutrition Survey in 2015 [39] (t); ���  is the domestic production of food i by 

the data of Japanese crop statistics survey in 2015 [40] (t); ���  is the imported amount of food i by the 

Japanese trade statistics data in 2015 [41] (t); ���  is the domestic land productivity of food i by the 

data of Japanese crop statistics survey in 2015 [40] (t/ha); ���  is imported land productivity of food i 

(t/ha); �� is the percentage of the edible portion of food i by the data of Japanese food supply and 

demand table in 2015 [42] (%); ���� is import volume of food i from country a by the Japanese trade 

statistics data in 2015 [41] (t); ���� is land productivity in the country a of the imported food i by the 

FAO (The Food and Agriculture Organization) data in 2015 [43] (t/ha); �����  is the total amount of 

imported food i up to country a by the Japanese trade statistics data in 2015 [41] (t); a is the ranking 

of the countries that account for more than 80% of the total imports by the Japanese trade statistics 

data in 2015 [41]; ���.������
�  is cropland required for cotton yarn in residential area k (ha); ���.����

�  is 

cropland required for wool in residential area k (ha); ��  is the population in residential area k by 

Japanese census data in 2015 [19]; � is the population in Japan by Japanese census data in 2015 [19]; 

��� is annual domestic consumption of cotton yarn by the statistical data of the Japanese Chemical 

Fibers Association [44] (t); ���.� is land productivity of cotton yarn at import destination a by FAS [45] 

(t/ha); ���.� is import ratio at destination m by the Japanese trade statistics data in 2015 [41] (%); �� 

is annual domestic consumption of wool by the statistics data of Japanese Chemical Fibers 

Association [44] (t); � is the amount of wool that can be collected from one sheep by the Japanese 

Livestock Industry Association data [46] (t); � is the amount of barley required to raise one sheep by 

the Japanese Livestock Industry Association data [46] (t); and ���.� is land productivity of barley by 

the FAO data in 2015 [43] (t/ha). 

Appendix B.2. Grazing Land FP 

���������
�  means that grazing land is necessary to graze animals for meat and milk. ���������

�  is 

composed of ���.����
� , which is required for meat and milk production, and ���.����

� , which is 

required for wool production. ���.����
�  is calculated using the same method as ���.����

�  in Equation 

(A9). However, land productivity ��  is calculated by converting it into the amount of grass. In 

addition, ���.����
�  was calculated based on data from the Japanese Livestock Industry Association 

[46], assuming that a grassland area of 0.5 ha per 10 mature sheep is required for one year in Equation 

(A10). 

���������
� = ���.����

� + ���.����
�  (A9) 

���.����
� =

��

�
×

��

�
× 0.05 (A10)
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Appendix B.3. Forest Land FP 

��������
�  represents the forestland needed to obtain materials for use in paper production in the 

residential area k. ��������
�  is calculated in Equation (A11). 

��������
� =

��

�
× �� × �

��

��

�

���

 (A11)

where �� is the household consumption rate of paper (%); ��  is wood pulp chip demanded import 

destination l, which is calculated based on data from the White Paper on Forests and Forestry in Japan 

[47] (m3); �� is the growing stock amount of forest of destination for import l, which was calculated 

based on the FAO Global Forest Resources Assessment 2015 data [48] (m3/ha). l is the ranking of 

countries that account for more than 80% of total imports in Japan by the Japanese trade statistics 

data in 2015 [41]. 

Appendix B.4. Build-Up Land FP 

����������
�  means that build-up land is needed to conduct urban activity in the residential area 

k. ����������
�  is calculated in Equation (A12). 

����������
� = � ��

�

�

���

 (A12)

where ��
� is the area build-up of land use s in the residential area k, which is calculated from the data 

of the numerical map 5000 in Japan [28]; s is eight types of land uses (industrial land, residential land, 

commercial land, office land, road land, park, green space, and public facility land). 

Appendix B.5. Carbon FP 

��������
�  means that forestland needs to absorb CO2 from fossil fuels for household and private 

transport use in residential area k. ��������
�  consists of �������

� , which is forest land needed to absorb 

the CO2 emitted by the household sector in the residential area k, and ��������.
� , which is forest land 

needed to absorb the CO2 emitted by the transportation sector in the residential area k. �������
�  is 

calculated in the equation, and ��������.
�  is calculated using Equations (A13)–(A15). 

��������
� = �������

� + ��������.
�  (A13)

�������
� = � �

��� × ���
�

��

�

���

�

���

 (A14)

��������.
� = �

�∑ ∑ ��� × ���
�
���

�
��� � × ��

�

��

�

�

 (A15)

where ��� is CO2 emissions by households of house type m in the residential area k of city rank l, 

which was calculated from the data of the Statistical Survey of CO2 Emissions in the Home Sector in 

2017 [49] (t-CO2); ���
�  is the number of households of house type m in the residential area k of the 

city rank l by Japanese census data in 2015 [19]. �� is the CO2 absorption efficiency of forest land (t-

CO2/ha); l is three types of city rank: (1) cities with prefectural offices and ordinance-designated cities, 

(2) cities with a population of 50,000 or more, and (3) municipalities with a population of less than 

50,000); ��� is CO2 emissions by gasoline household type x and number of vehicles used y, which is 

calculated by the data of the Statistical Survey of CO2 Emissions in the Home Sector in 2017 [49] (t-

CO2); ���
�  is the ratio of the number of households to the number of vehicles used y in household 

type x in the residential area k ; ��
� is the number of households of household type x in the residential 

area k by Japanese census data in 2015 [19]; � is household types (single household and households 

of 2 or more people); and � is the number of cars used (0, 1, 2, 3, or more). 
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Appendix C 

Table A2. Mean Values of ��� and ��� in Each Eluster. 
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����������
� (ha) 90.1 21.1 55.7 84.6 90.4 4.7 55.2 39.9 108.1 13.2 52.0 25.7 101.1 

���������
� (ha) 4.7 1.1 2.9 4.5 4.6 0.2 2.8 2.1 5.8 0.7 2.7 1.3 5.4 

��������
� (ha) 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 

����������
� (ha) 250.0 211.6 214.1 223.7 225.8 180.7 236.7 199.5 213.7 160.1 186.2 164.0 221.7 

��������
� (ha) 5101.4 1247.6 3165.8 4618.5 4638.2 269.1 2752.7 2289.3 5363.1 752.3 2912.6 1317.1 5601.8 

���(ha) 256.4 233.0 254.8 239.0 230.9 211.3 630.2 206.7 230.1 235.3 218.8 480.8 275.9 
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