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S1. Processing Options Literature Overview 

At an industrial scale, GY processing options may be classified into two main categories and 

several alternatives. Protein concentration may be increased either before or after milk fermentation. 

Protein concentration post-fermentation may be increased using mechanical separators (i.e. 

centrifugation (CE)) or a membrane of ultrafiltration (UF). Protein concentration may also be 

increased before fermentation through milk fortification with protein ingredients (FO), milk pre-

concentration with UF or a combination of microfiltration (MF) and UF (Jørgensen et al., 2019). UF 

concentration prior to fermentation has the added benefit of generating neutral pH milk permeate 

with no fermentation residue (galactose and metabolites). It also has the potential to be used directly 

as ingredients in other food products (Jørgensen et al., 2019; Shamsia and El-Ghannam, 2012). 

However, the preconcentration of milk modifies the kinetics of fermentation, acidity and sensory 

properties of the final GY product (Damin et al., 2009; Paredes Valencia et al., 2018). On the other 

hand, fortifying milk with proteins before fermentation avoids the production of whey at the 

processing site. Several fortification alternatives with different protein ingredients are proposed in 

the literature, using milk protein concentrate (MPC), milk casein concentrate (MCC), whey protein 

concentrate (WPC) (Bong and Moraru, 2014; Jørgensen et al., 2019; Uduwerella et al., 2018), 

hydrocolloids or a combination of WPC with pectin (Gyawali and Ibrahim, 2018, 2016). The level of 

concentration, type and formulation of the protein ingredient can affect GY sensory properties (Desai 

et al., 2013). Some manufacturers also combine pre-concentration before fermentation by UF or FO 

and final concentration after fermentation by CE to reduce the amount of acid whey produced 

without overly altering the typical sensory characteristics of GY (Jørgensen et al., 2019; Uduwerella 

et al., 2017). CE after fermentation is the traditional way of making GY and is recommended by 

purists, since it provides GY with its authentic texture and taste. An attempt to use UF instead of CE 

after fermentation was reported by (Paredes Valencia et al., 2018). This alternative reduces the 

amount of energy input and space taken up in the plant as compared to CE equipment. However, it 

presents other technical challenges. The filtration membrane is susceptible to fouling due to the high 

viscosity of the fermented milk, which affects processing yields and costs. In addition, the mechanical 

pressure exerted on the fermented milk as it passes through the UF membrane can damage the gel 

structure and sensory properties of the finished product. In fact, there is no simple answer to 

determine the best approach to produce GY. The processing method influences the volume and 

composition of the by-product generated, as well as the composition and sensory properties of GY 

(Desai et al., 2013; Jørgensen et al., 2019; Paredes Valencia et al., 2018; Tamime et al., 2014; Tong, 2013). 

It may also impact production yields, resources, utilities consumption such as energy, water, 

chemicals at the manufacturing plant and the capital 3 cost of the processing equipment (Bong and 

Moraru, 2014; Jørgensen et al., 2019; Tong, 2013). There are actually many parameters to be 

considered. Manufacturers may balance the trade-offs between cost and quality differently 

depending on their strategic positioning and technical constraints. 

S2. Description of the three processing technologies: CE, FO, UF 

S2.1. Centrifugation (CE) 

The raw milk is received at the plant and stored at 4°C in insulated tanks for one hour. It is then 

heated to 55°C and sent to a nozzle separator to be skimmed. The skimming operation separates the 
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cream from the other milk solids. Then, the skimmed milk is routed to a heat exchanger, heated to 

90°C for five minutes then cooled to 42°C. This heat treatment has two functions: it destroys the 

pathogen microorganisms and denatures the whey proteins. Whey protein denaturation is a critical 

step in gel formation, since it gives the yogurt its final texture. Optionally, some manufacturers also 

include a homogenization process at this step to improve the final texture. The milk is then routed to 

isothermal fermentation tanks inoculated with a starter culture and maintained between at 40–45°C 

for five hours until the cultured milk reaches a pH of 4.5. The fermented milk resulting from this 

operation is centrifugated with nozzle separators to concentrate the yogurt solid contents to 15% and 

proteins to 10% by separating the aqueous part of the acid whey. The concentrated yogurt is then 

cooled to 15°C in thirty seconds with a tubular heat exchanger that stabilizes the pH and sent to the 

packaging area. 

S2.2. Fortification (FO) 

The fortification process includes an additional step between the skimming and heat treatment 

operations as compared to the CE option. The solid milk protein concentrate (MPC) powder is first 

rehydrated with water to 24% (w/w) concentration and mixed with the skimmed milk in order to 

reach 4.2% (w/w) proteins in the fortified skimmed milk. Liquid or solid milk protein concentrate 

(MPC) with different concentrations may be used in the fortification process. In this study, MPCs are 

manufactured by concentrating skimmed milk at 20% proteins (w/w) by diafiltration. Liquid MPCs 

are transported as is to the dairy plant and mixed directly into the skimmed milk. Powders require 

the additional operations of evaporation, spray-drying and packing before transportation and a 

rehydration step at the GY plant. We used MPC 80 powder concentrated at 80% proteins (w/w) 

sourced from the USA as the FO reference option and assessed two sourcing alternatives, diafiltered 

milk from the USA and diafiltered milk from Québec, resulting in three FO alternatives. 

S2.3. Ultrafiltration (UF) 

This option differs from CE in three main areas: (1) the protein concentration by UF is performed 

right after the milk skimming and before the fermentation process. The UF process separates the milk 

molecules according to their sizes through a membrane under pressure. The skimmed milk is 

concentrated to a volumetric concentration factor of (VCF) 3.1X using a 30 KDa molecular weight 

spiral polyester membrane at a transmembrane pressure of 5.51.105 Pa at 55°C. Most of the lactose 

and minerals permeate through the membrane in the aqueous phase constituting the permeate (or 

sweet whey), whereas the proteins are retained in the retentate and concentrated up to 10% (w/w). 

The pre-concentrated milk from the retentate is then routed to the heat treatment and fermentation 4 

operation (2). The volume of milk treated during these subsequent operations is lower as compared 

to CE due to the pre-concentration step (3). The inoculation time is increased to eight hours as 

compared to the CE fermentation process due to the lower lactose/protein ratio in the 

preconcentrated milk, which modifies the fermentation kinetics and increases the buffering capacity. 

S3. Process simulation data and results 

The simulation modelling was based on generic high-capacity lines processing 20,000 L h−1 of 

raw milk for 16 h a day with one cycle of clean-in-place (CIP) per day and producing GY with 10% 

protein and 0% fat in the operating conditions specified in tables 1 to 5. The simulation accounted for 

heat regeneration and water recirculation. Such systems are generally implemented in factory to 

optimize cooling and heating energy and water consumption. Natural gas consumption was based 

on boiler requirements to produce steam for the heat exchangers and CIP system. CIP modeling was 

based on a generic calculation methodology accounting for the quantity of milk processed between 

each cycle and number of unit processes (Yee et al., 2013). All material (chemicals, tap water, 

wastewater) and energy flows (electricity, natural gas) determined by the simulation are reported in 

the inventory. Based on discussions with the manufacturers, the refrigerant losses were assumed to 

be negligible and not considered in the simulation. Packaging, final product cooling and storage 
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operations, general utilities consumption and L and W of products were not part of the simulation 

but are included in the inventory based on literature data, as described in the main manuscript. 

Table 1. Input parameters for CE, FO and UF. 

 

S3.1. Centrifugation (CE) 

Table S2. Centrifugation simulation results (Benoit and Houssard, 2017). 
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Table S2. (continued and end). 

 

 

 

S3.2. Fortification (FO) 

Simulation results differ from CE due to the additional operations of MPC powder rehydration 

and mixing before thermal treatment. More operations are also included in the CIP system. The 

change in the flow rate after fortification modifies the parameters from the heat exchanger and 

cooling systems. 

  



Sustainability 2020, 12 6 of 32 

Sustainability 2020, 12 www.mdpi.com/journal/sustainability 

Table 3. Fortification simulation results (Benoit and Houssard, 2017). 
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Table S3. (continued). 
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Table S3. (continued and end). 

 

S3.3. Ultrafiltration (UF) 

Simulation results differ from CE due to the additional ultrafiltration operation before the 

fermentation and removal of the centrifugation process. The significant change in flow rate after 

ultrafiltration modified the parameters from the heat exchanger and cooling systems. 

Table 4. Ultrafiltration simulation results (Benoit and Houssard, 2017). 
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Table S4. (continued). 
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Table S4. (continued and end). 

 

Note explaining the difference between UF and CE for steam and natural gas consumption: The 

regenerative design of the heat exchangers (Figure S1) uses the hot skimmed-milk circulating in the 

system after thermal treatment at 90 °C to pre-heat the raw milk up to 55°C before skimming. The 

upper flow rate of the hot skimmed milk (18.56 m3 h−1) for CE improves heat exchange with the cold 

raw milk section before skimming as compared to the outgoing hot concentrated skimmed milk (5.90 

m3 h−1) from the thermal treatment section for UF. 

 

Figure 1. CE, FO and UF Heat exchanger design: cooling and heating regeneration system. 
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S4. Life Cycle Inventory: Key Parameters and Reference Flows 

Table S5. LCA key parameters and reference flows. 
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S5. MPC allocation factors 

Table 6. MPC production systems in the USA or Québec: mass and economic allocation factors at 

each point of substitution. 

Allocation 

factor (AF) 

 

Mass allocation  Economic allocation 

  Cream 
S. 

milk 
Permeate Retentate  Cream 

S. 

milk 
Permeate Retentate 

Raw milk production and its transportation (SB1) 

 USA 35%  23% 42%  50%  2% 47% 

 Qc 35%  23% 42%  57%  15% 28% 

Reception, storage, pasteurization & skimming (SB2) 

 USA 35% 65%    50% 50%   

 Qc 35% 65%    57% 43%   

Ultrafiltration and diafiltration (SB2) 

 USA   35% 65%    5% 95% 

 

 
Qc   35% 65%    34% 66% 

Spray-drying (*), packing (*) and transportation (SB2) 

 USA    100%     100% 

 Qc    100%     100% 

CIP           

 USA 35%  23% 42%  50%  2% 47% 

 Qc 35%  23% 42%  57%  15% 28% 

The economic allocations are based on milk component prices in the USA: 

• USA class IV (proteins: 3.98 USD.kg−1; fat 5.35 USD.kg−1; lactose 0.12 USD.kg−1) 

• Québec class 7 (proteins: 1.58 CAD.kg−1; fat 7.24 CAD.kg−1; lactose 1.58 CAD.kg−1) in 

2017. 

To facilitate comparison, results with economic allocations were based on USA prices for MPC 

from the USA and Québec or Québec but not a mix of USA prices for MPC USA and Québec prices 

for MPC Québec.
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S6. Losses and wastage (L and W) literature overview 

Table S7. Compiled data on dairy product losses and wastage (L and W). 

        Value chain stage   

Source  Region Product 
Unit

s 

Production 

& 

transportat

ion 

Manufactur

ing 

Distributi

on 

Consumpt

ion 
Total 

Burek (2018) USA Fluid milk 
% 

(kg) 
  1.20% 12.00% 20-35 % _ 

Parfitt (2016) UK Dairy  
% 

(kg) 
_ 3.50% _ _ _ 

AAFC (2015) Canada Dairy  
% 

(kg) 
    11.00% 21.00% _ 

Bareille (2015) France  Yogurt 
% 

(kg) 
3.20% 2 à 4 % _ _ _ 

González-García 

(2013) 
Portugal Yogurt 

% 

(kg) 
      10.00% _ 

Thoma (2013a) USA Fluid milk 
% 

(kg) 
_  12.00% 20.00% _ 

Gunders (2012) 

USA, 

Canada, 

Australia, 

New 

Zealand 

Milk 
% 

(kg) 
3.25% 0.50% 0.25% 17.00% 

20.00

% 

Buzby and Hyman, 

(2013) 
USA 

Fluid milk %($) _ _ 12.00% 18.00% _ 

Other dairy 

product 
%($) _ _ 8.00% 14.00% _ 

Abdulla (2012) Canada Dairy products 
% 

(kg) 
_ _ _ _ 

27.57

% 

FAO (2011) 

North 

America 

and 

Oceania 

Milk 
% 

(kg) 
4.00% 1.20% 0.50% 15.00% 

20.70

% 

Mena (2011) 
UK and 

Spain 

Milk 
% 

(kg) 
_ _ 1-3% _ _ 

yogurt 
% 

(kg) 
_ _ >7% _ _ 

Flysjö (2011) Denmark butter 
% 

(kg) 
_ 1.00% _ 10.00% _ 

Alonso (2010) Spain yogurt 
% 

(kg) 
_ 1.00% _ _ _ 

Berlin and Sonesson 

(2008) 
Sweden yogurt 

% 

(kg) 
_ 5.00% _ _ _ 

Kantor (1997) USA 

Fluid milk 
% 

(kg) 
_ _ 2.00% 30.00% NA 

Other dairy 

product 

% 

(kg) 
_ _ 2.00% 30.00% NA 

  Lower estimate 
% 

(kg) 
3.20% 0.50% 0.25% 10.00% 

13.95

% 

  Upper estimate 
% 

(kg) 
4.00% 5.00% 12.00% 30.00% 

51.00

% 

    Average 
% 

(kg) 
3.48% 3% (*) 5.47% 20.33% 

29.29

% 

Note: Data in grey are not included in the average. (*) includes only data from yogurt. 

S7. LCA detailed results 

S7.1. LCA Main Numerical Results 

Method: IMPACTWorld + (Default_Recommended_Endpoint 1.41) V1.41/IMPACT World + 

(Stepwise 2006 values) and IMPACTWorld + (Default_Recommended_Midpoint 1.23) V1.23 
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Indicators: damage assessment for HH and EQ; characterization midpoint for CC short term and 

FEU. Climate change contribution to HH and EQ endpoint indicators was purposely removed to 

avoid double counting. 

General legend: CE: centrifugation; FO-P-US: fortification by MPC powder from the USA; FO-

L-US: fortification by liquid MPC from the USA; FO-L-Qc: fortification by liquid MPC from Québec. 

Table S8. Cradle-to-grave LCA results with mass allocation. 

 

Table S9. LCA results from plant manufacturing to final disposal (excluding raw milk and MPC); 

mass allocation. 
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Table S10. US raw milk versus Québec cow milk; FU: 1 kg of raw milk. 

 

Datasets: ecoinvent 3.4: cow milk {CA-QC} milk production, from cow | Alloc Rec, U for Québec and 

Thoma (2007-2008) milk, at the farm, /US U System for the USA. 

S7.2. Midpoint Indicators Contributing to the Human Health and Ecosystem Quality Impact Categories 

Table S11. Cradle-to-grave impact indicators at midpoint; FU: 1kg of GY consumed; mass 

allocation. 

 

Table S12. Cradle-to-grave HH impacts characterization at endpoint; FU: 1kg of GY consumed; mass 

allocation. 

 

Table S13. Cradle-to-grave EQ impacts characterization at endpoint; FU: 1 kg of GY consumed; mass 

allocation. 
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Table S14. Raw milk HH impacts characterization; average US raw milk versus Québec cow milk; 

FU: 1 kg of raw milk. 
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Table S15. Raw milk EQ impacts characterization; average US raw milk versus Québec cow milk; FU: 

1 kg of raw milk. 

 

S7.3. Other Factors Influencing the Performances of the Five GY Systems 

UF has a 6% and 2% higher impact than CE in the FEU and CC impact categories, respectively, 

from cradle to grave (Table S8). This is partially attributable to the higher natural gas consumption 

of the heat exchangers at the plant (Table S9). FO-L-QC has 6% to 8% more impacts than CE and -2% 

to 7% more impacts than UF across all the impact categories (Table S8). This is mainly due to the 

largest amount of total raw milk required and, to a lesser extent, the transportation of MPC to the GY 

plant. The characterization of damages (Tables S10, S14 and S15) reveals two times more EQ impacts 

in the USA than Québec for land transformation and territorial acidification. In the HH category, 

particulate matter formation and human toxicity have 2.2 and 2.12 times more impacts in the USA 

than Québec, respectively, due to a higher level of maize crop and maize drying operations in the 

USA. The 19% discrepancy with respect to CC impacts is a combination of methane (CH4), oxide 

nitrous (N2O) and carbon dioxide (CO2) emissions from enteric fermentation, manure storage, soil 

fertilization and, to a lesser extent, crop production and farming energy consumption. The lower 

amplitude of CC (19%) compared to the FEU discrepancy (56%) between the USA and Québec may 

be explained by the higher nitrous oxide emissions caused by the more humid climate in Québec. A 

sensitivity analysis based on data collected by Thoma at farms and the regional level in USA (Thoma 

et al., 2013b) reveals notable gaps between regions, resulting in significant variations in CC scores 

(respectively +2.5% in northeast; + 26% in southeast; + 10% in upper Midwest; + 30% in southwest 

and high plains; + 25% on west coast) between Québec and the studied USA regions. 

S8. Complementary Sensitivity Analyses 

S8.1. Key Parameters Local Sensitivity Analysis 

A local sensitivity analysis was performed. A total of 69 key parameters correlated to 93 

calculated parameters were tested for the four impact categories. Results are illustrated in Figure S2. 

Sensitive parameters are consistent across categories. The findings show that the LCA results for each 

scenario are sensitive to parameters linked to the yield of the separation processes. These parameters 

(skimmed milk output, GY protein content, skimmed milk protein content, protein retention 

coefficient, etc.) influence the quantity of raw milk required at the input. Furthermore, the allocation 

factors attributed to coproducts significantly influence the magnitude of the impacts attributed to 
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GY. The results are also sensitive to L and W and somewhat sensitive to the packaging parameters 

(PS versus PP rate, and plastic materials weight), recycled rates and transportation operations for 

milk production, distribution and consumption. 

S8.2. Detailed Sensitivity Analysis of Modelling and Methodological Choices 

These analyses compare the environmental performances of the five studied scenarios 

based on the following modelling and methodological factors: 

• Impact method: Impact World + results are compared to ReCiPe (E) results. 

• Functional unit: 1kg of GY consumed is compared to 1 kg of milk treated in input. 

• Allocation rule: mass allocation on dry matter is compared to economic allocation. 

• Allocation factor: permeate from UF treated as waste (0% allocation) is compared to 

the valorization of milk components from UF permeate based on average Québec 

class VII prices in 2017. 

• Protein yield of each technology: variation of the protein retention coefficient of CE, 

FO and UF are modified (± 0.01). 

• Five milk sourcing regions are tested for the MPC from the USA (R1: north east; R2: 

southeast; R3: upper Midwest; R4: southwest plus high plains; R5: west coast). 

Conclusions on the comparative environmental performances of the five scenarios are not 

sensitive to the environmental impact method (IMPACT World+ versus ReCiPe (E)), technology yield 

(illustrated by the variation in the protein retention coefficient) or functional unit (1 kg of yogurt 

consumed versus 1 kg of milk treated). However, as summarized in Table S16, the conclusions change 

with respect to the allocation rule (mass versus economic), allocation factor (value attributed to the 

whey) and milk sourcing region. 
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Figure 2. Change in CC, FEU, HH and EQ impacts for (+/− 1%) change in input parameters for CE 

option. Parameters causing less than 0.01% change in the four impact categories (CC, HH, EQ, or FEU) 

are not represented in the figure. 
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Table S16. Change in scenario classification according to sensitivity analyses. 

-   
OBJECT 

  
CHANGE 

IMPACT 
CATEGORY 

CONCLUSION VS 
REFERENCE 

LCA RESULTS  
GENERAL 

CLASSIFICATION 

SE
N

SI
B

IL
IT

Y 
TO

 M
ET

H
O

D
O

LO
G

Y 

Reference NA 

CC 

NA 

CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

CE<UF<FO  
except for FEU 

FO alternatives vary 

HH 
CE<UF<FO-L-QC 
<FO-L-US<FO-P-

US 

EQ 
CE <UF<FO-L-QC 
<FO-L-US <FO-P-

US 

FEU 
CE<FO-L-QC <UF 
<FO-P-US <FO-L-

US 

      

Impact 
Method 

RECIPE (E) versus IMPACT 
WORD+ 

CC Unchanged 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

CE<UF<FO  
except for FEU 

FO alternatives vary 

HH Changed 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

EQ Changed 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

FEU Unchanged 
CE<FO-L-QC <UF 
<FO-P-US <FO-L-

US 

      

Functional 
unit 

1 kg of equivalent milk (MPC 
milk+ Qc raw milk input) vs 1 

kg GY at the output 

CC Unchanged 
CE<UF<FO-L-QC 
<FO-P-US=FO-L-

US 

CE<UF<FO-L-QC <FO-
P-US=FO-L-US 

HH Unchanged 
CE<UF<FO-L-QC 
<FO-L-US=FO-P-

US 

EQ Unchanged 
CE <UF<FO-L-QC 
<FO-L-US=FO-P-

US 

FEU Changed 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

      

Allocation 

Economic instead of mass 
allocation 

CC Changed 
UF<CE<FO-L-QC 
<FO-P-US<FO-L-

US 

Lowest: UF 

except for FEU 

others vary 

HH Changed 
UF<CE<FO-L-QC 
<FO-L-US<FO-P-

US 

EQ Changed 
UF<CE<FO-L-QC 
<FO-L-US <FO-P-

US 

FEU Changed 
CE<UF<FO-L-QC 
<FO-P-US <FO-L-

US 

     

Economic allocation with 
whey UF at 17.5 % instead of 

0 % 

CC Changed 
UF<CE<FO-L-QC 
<FO-P-US<FO-L-

US 

Lowest: UF 

others vary 

HH Changed 
UF<CE<FO-L-QC 
<FO-L-US<FO-P-

US 

EQ Changed 
UF<CE<FO-L-QC 
<FO-L-US <FO-P-

US 

FEU Changed 
UF=CE<FO-L-QC 
<FO-P-US <FO-L-

US 
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Table 16. (continued). 

-   
OBJECT 

  
CHANGE 

IMPACT 
CATEGORY 

CONCLUSION VS 
REFERENCE 

LCA RESULTS  
GENERAL 

CLASSIFICATION 

          

SE
N

SI
B

IL
IT

Y 
TO

 K
EY

 P
A

R
A

M
ET

ER
S 

Protein 
retention 

coefficient 
Variation ± 0.01 

CC Unchanged 
CE < UF < FO-L-QC < 
FO-P-US < FO-L-US 

CE<UF<FO  
FO alternatives vary 

HH Unchanged 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

EQ Unchanged 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

FEU Unchanged 
CE < FO-L-QC < UF < 
FO-P-US < FO-L-US 

      

US region of 
milk sourcing 

R1 350 km vs 
national average 

1500 km 

CC Changed 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

FO-L-QC < FO-L-US < FO-
P-US 

HH Unchanged 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

 

EQ Unchanged 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

 

FEU Changed 
CE<FO-L-QC<UF 

<FO-L-US <FO-P-US 
 

     

R2 2000 km vs 
national average 

1500 km 

CC Unchanged 
CE<UF<FO-L-QC 

<FO-P-US<FO-L-US 

FO-L-QC <FO-P-US<FO-
L-US except for EQ 

HH Changed 
CE<UF<FO-L-QC 

<FO-P-US<FO-L-US 

EQ Unchanged 
CE <UF<FO-L-QC 

<FO-L-US <FO-P-US 

FEU Unchanged 
CE<FO-L-QC <UF 

<FO-P-US <FO-L-US 

     

R3 1500 km vs 
national average 

1500 km 

CC Unchanged 
CE<UF<FO-L-QC 

<FO-P-US<FO-L-US 

CE<UF<FO  
except for FEU 

FO alternatives vary 

HH Unchanged 
CE<UF<FO-L-QC 

<FO-L-US<FO-P-US 

EQ Unchanged 
CE <UF<FO-L-QC 

<FO-L-US <FO-P-US 

FEU Unchanged 
CE<FO-L-QC <UF 

<FO-P-US <FO-L-US 

     

R4 3000 km vs 
national average 

1500 km 

CC Unchanged 
CE < UF < FO-L-QC < 
FO-P-US < FO-L-US 

CE < UF < FO  
except for FEU 

FO alternatives vary 

HH Changed 
CE < UF < FO-L-QC < 
FO-P-US < FO-L-US 

EQ Unchanged 
CE < UF < FO-L-QC < 
FO-L-US < FO-P-US 

FEU Unchanged 
CE < FO-L-QC < UF < 
FO-P-US < FO-L-US 
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Table 16. (continued and end). 

-   
OBJECT 

  
CHANGE 

IMPACT 
CATEGORY 

CONCLUSION VS 
REFERENCE 

LCA RESULTS  
GENERAL 

CLASSIFICATION 

  

     

R5 5000 km vs 
national 

average 1500 
km 

CC Unchanged 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

FO-L-QC<FO-P-US 
<FO-L-US 

HH Changed 
CE<UF<FO-L-QC 
<FO-P-US<FO-L-

US 

EQ Changed 
CE <UF<FO-L-QC 
<FO-P-US <FO-L-

US 

FEU Unchanged 
CE<FO-L-QC <UF 
<FO-P-US <FO-L-

US 

   

 

S8.3. Influence of the MPC Drying Process and Transportation Distances 

The transportation of 1 ton of liquid MPC over 1500 km corresponds to 20 420 MJ deprived as 

compared to 75 600 MJ deprived for equivalent MPC drying. These results are consistent with the 

previous study by Depping et al., (2017) showing that liquid concentrates have a lower cumulative 

energy demand than powders for distances ≤ 1 000 km due to the high energy intensity of the spray 

drying operation. Focusing on CC impacts, the powder scenario (MPC-P-US-A) becomes more 

favorable than liquid MPC (MPC-L-US-A) for distances over 750 km (red dot in Figure S3) but with 

four times less kg transported (0.03 kg MPC powder versus 0.12 kg MPC liquid per kg of functional 

unit). 

The milk sourcing region and type of MPC (powder versus liquid) are more sensitive parameters 

than the transportation distances. Indeed, MPC-L-US is still more impactful for a transportation 

distance reduced to 250 km than MPC-L-QC transported over 3 250 km. Selecting MPC with milk 

sourced from less impactful regions in the USA such as New York State in North East (R1) 

significantly reduces the gap with MPC-L-QC. In contrast, MPC (powder or liquid) from South West 

USA (R4) would be the worst scenario. Finally, producing liquid MPC at the GY plant in Québec (0 

km transportation) decreases the MPC-L-QC system impact by 2% but has a very limited influence 

on the total life cycle environmental performance of the FO-L-QC scenario. Table S17 provides the 

numerical gaps for each scenario. 



Sustainability 2020, 12 28 of 32 

Sustainability 2020, 12 www.mdpi.com/journal/sustainability 

Table 17. Numerical impact variation as a function of scenario; CE: centrifugation; UF: ultrafiltration; 

FO-L-QC: fortification with liquid MPC from Québec. FO-P-US-AV: fortification with MPC 80 

powder from USA with USA raw milk average; FO-L-US-AV: fortification liquid MPC from USA with 

USA raw milk average; FO-P-US -R1: fortification with MPC 80 powder from north east USA; FO-L-

US -R1: fortification with liquid MPC from north east USA (R2: southeast; R3: upper Midwest; R4: 

southwest plus high plains; R5: west coast). 

 

 

Figure 3. CC impacts variation as a function of transportation distance from MPC plant to GY plant 

for the three MPC sourcing alternatives scaled-up to the FU (1 kg of GY): MPC-P-US-A: 0.03 kg MPC 

80 powder from USA with USA raw milk average; 0.12 kg MPC-L-US -A: liquid MPC from USA with 
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USA raw milk average; 0.03 kg MPC-PUS -R1: MPC 80 powder from north east USA (R2: southeast; 

R3: upper Midwest; R4: southwest plus high plains; R5: west coast); 0.12 kg MPC-L-QC: liquid MPC 

from Québec. 

S8.4. Potential CC Impact Reduction as a Function of Losses and Wastage (L and W), Energy Consumption 

at Plant and Packaging Parameters 

A 1% reduction in L and W would decrease the CC impacts by 1.84E-2 eq. CO2, whereas a 1% 

reduction in energy consumption (electricity and natural gas) would decrease CC impacts by only 

0.03E-2 eq. CO2 at the manufacturing plant. To reduce CC impacts, a 1% L and W reduction at the GY 

plant (yellow dot) is more effective than a 10% reduction in energy consumption (Figure S4). Even 

higher impact mitigation potential may be explored by reducing L and W in distribution and 

consumption, which represent 20% of the life cycle impacts. 

Reducing the weight of single-serving PS containers or encouraging multi-serving PP containers 

could have a greater benefit on CC than efforts to reduce plant energy consumption. As highlighted 

in the dairy LCA literature, this finding confirms that manufacturers’ efforts to reduce weight or 

losses and improve the design or material selection of primary packaging components could reduce 

the product’s environmental impact. 

Simultaneously reducing PS weight and PS rate by 10% is only as effective as reducing the L and 

W by 1% at the plant. Therefore, efforts spent on reducing packaging environmental impacts must 

be qualified by the potential collateral effects on L and W. Indeed, switching to multi-serve PP 

containers instead of single serve PS containers may increase L and W in the household stage, 

resulting in a potential increase in the environmental burden. Packaging improvements may reduce 

the impacts of the GY system, especially in the CC and FEU categories, but packaging eco-design 

efforts must integrate the potential risk of additional product L and W in the value chain because any 

additional L and W offset the gains from packaging and are more damaging to the environment 

(Wikstrom et al., 2014). The further research required in this area is beyond the scope of this study. 

 

Figure 4. Potential CC impacts reduction as a function of key parameter reduction efforts (reduction 

of energy consumption at the plant (electricity and natural gas), L and W reduction at plant, at home 

and in the distribution stage, packaging improvement (PS weight reduction and PS versus PP rate 

reduction) for 1 kg of GY consumed based on the CE technology scenario. 
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