

Comparative Life Cycle Assessment of Five Greek Yogurt Production Systems: A Perspective beyond the Plant Boundaries

Catherine Houssard^{1*}, Dominique Maxime¹, Scott Benoit², Yves Pouliot² and Manuele Margni¹

- ¹ CIRAIG, Mathematical and Industrial Engineering Department, Polytechnique Montréal, Technological University, Montréal, (Qc), H3C 3A7, Canada; dominique.maxime@polymtl.ca (D.M.), manuele.margni@polymtl.ca (M.M.)
- ² Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval Québec, (QC), G1V 0A6, Canada; scott.benoit.1@ulaval.ca (S.B.), Yves.Pouliot@fsaa.ulaval.ca (Y.P.)
- * Correspondence: catherine.houssard@polymtl.ca (C.H.)

Table of contents

Table of contents	1
S1. Processing Options Literature Overview	2
S2. Description of the three processing technologies: CE, FO, UF	2
S2.1. Centrifugation (CE)	2
S2.2. Fortification (FO)	3
S2.3. Ultrafiltration (UF)	3
S3. Process simulation data and results	3
S3.1. Centrifugation (CE)	4
S3.2. Fortification (FO)	5
S3.3. Ultrafiltration (UF)	8
S4. Life Cycle Inventory: Key Parameters and Reference Flows	11
S5. MPC allocation factors	17
S6. Losses and wastage (L and W) literature overview	
S7. LCA detailed results	
S7.1. LCA Main Numerical Results	
S7.2. Midpoint Indicators Contributing to the Human Health and Ecosystem Quality Impact Categories	ories 20
S7.3. Other Factors Influencing the Performances of the Five GY Systems	22
S8. Complementary Sensitivity Analyses	22
S8.1. Key Parameters Local Sensitivity Analysis	22
S8.2. Detailed Sensitivity Analysis of Modelling and Methodological Choices	23

	S8.3. Influence of the MPC Drying Process and Transportation Distances	27
	S8.4. Potential CC Impact Reduction as a Function of Losses and Wastage (L and W), Energy Consumpt	ion
	at Plant and Packaging Parameters	29
S9.	References	30

S1. Processing Options Literature Overview

At an industrial scale, GY processing options may be classified into two main categories and several alternatives. Protein concentration may be increased either before or after milk fermentation. Protein concentration post-fermentation may be increased using mechanical separators (i.e. centrifugation (CE)) or a membrane of ultrafiltration (UF). Protein concentration may also be increased before fermentation through milk fortification with protein ingredients (FO), milk preconcentration with UF or a combination of microfiltration (MF) and UF (Jørgensen et al., 2019). UF concentration prior to fermentation has the added benefit of generating neutral pH milk permeate with no fermentation residue (galactose and metabolites). It also has the potential to be used directly as ingredients in other food products (Jørgensen et al., 2019; Shamsia and El-Ghannam, 2012). However, the preconcentration of milk modifies the kinetics of fermentation, acidity and sensory properties of the final GY product (Damin et al., 2009; Paredes Valencia et al., 2018). On the other hand, fortifying milk with proteins before fermentation avoids the production of whey at the processing site. Several fortification alternatives with different protein ingredients are proposed in the literature, using milk protein concentrate (MPC), milk casein concentrate (MCC), whey protein concentrate (WPC) (Bong and Moraru, 2014; Jørgensen et al., 2019; Uduwerella et al., 2018), hydrocolloids or a combination of WPC with pectin (Gyawali and Ibrahim, 2018, 2016). The level of concentration, type and formulation of the protein ingredient can affect GY sensory properties (Desai et al., 2013). Some manufacturers also combine pre-concentration before fermentation by UF or FO and final concentration after fermentation by CE to reduce the amount of acid whey produced without overly altering the typical sensory characteristics of GY (Jørgensen et al., 2019; Uduwerella et al., 2017). CE after fermentation is the traditional way of making GY and is recommended by purists, since it provides GY with its authentic texture and taste. An attempt to use UF instead of CE after fermentation was reported by (Paredes Valencia et al., 2018). This alternative reduces the amount of energy input and space taken up in the plant as compared to CE equipment. However, it presents other technical challenges. The filtration membrane is susceptible to fouling due to the high viscosity of the fermented milk, which affects processing yields and costs. In addition, the mechanical pressure exerted on the fermented milk as it passes through the UF membrane can damage the gel structure and sensory properties of the finished product. In fact, there is no simple answer to determine the best approach to produce GY. The processing method influences the volume and composition of the by-product generated, as well as the composition and sensory properties of GY (Desai et al., 2013; Jørgensen et al., 2019; Paredes Valencia et al., 2018; Tamime et al., 2014; Tong, 2013). It may also impact production yields, resources, utilities consumption such as energy, water, chemicals at the manufacturing plant and the capital 3 cost of the processing equipment (Bong and Moraru, 2014; Jørgensen et al., 2019; Tong, 2013). There are actually many parameters to be considered. Manufacturers may balance the trade-offs between cost and quality differently depending on their strategic positioning and technical constraints.

S2. Description of the three processing technologies: CE, FO, UF

S2.1. Centrifugation (CE)

The raw milk is received at the plant and stored at 4°C in insulated tanks for one hour. It is then heated to 55°C and sent to a nozzle separator to be skimmed. The skimming operation separates the

cream from the other milk solids. Then, the skimmed milk is routed to a heat exchanger, heated to 90°C for five minutes then cooled to 42°C. This heat treatment has two functions: it destroys the pathogen microorganisms and denatures the whey proteins. Whey protein denaturation is a critical step in gel formation, since it gives the yogurt its final texture. Optionally, some manufacturers also include a homogenization process at this step to improve the final texture. The milk is then routed to isothermal fermentation tanks inoculated with a starter culture and maintained between at 40–45°C for five hours until the cultured milk reaches a pH of 4.5. The fermented milk resulting from this operation is centrifugated with nozzle separators to concentrate the yogurt solid contents to 15% and proteins to 10% by separating the aqueous part of the acid whey. The concentrated yogurt is then cooled to 15°C in thirty seconds with a tubular heat exchanger that stabilizes the pH and sent to the packaging area.

S2.2. Fortification (FO)

The fortification process includes an additional step between the skimming and heat treatment operations as compared to the CE option. The solid milk protein concentrate (MPC) powder is first rehydrated with water to 24% (w/w) concentration and mixed with the skimmed milk in order to reach 4.2% (w/w) proteins in the fortified skimmed milk. Liquid or solid milk protein concentrate (MPC) with different concentrations may be used in the fortification process. In this study, MPCs are manufactured by concentrating skimmed milk at 20% proteins (w/w) by diafiltration. Liquid MPCs are transported as is to the dairy plant and mixed directly into the skimmed milk. Powders require the additional operations of evaporation, spray-drying and packing before transportation and a rehydration step at the GY plant. We used MPC 80 powder concentrated at 80% proteins (w/w) sourced from the USA as the FO reference option and assessed two sourcing alternatives, diafiltered milk from the USA and diafiltered milk from Québec, resulting in three FO alternatives.

S2.3. Ultrafiltration (UF)

This option differs from CE in three main areas: (1) the protein concentration by UF is performed right after the milk skimming and before the fermentation process. The UF process separates the milk molecules according to their sizes through a membrane under pressure. The skimmed milk is concentrated to a volumetric concentration factor of (VCF) 3.1X using a 30 KDa molecular weight spiral polyester membrane at a transmembrane pressure of 5.51.105 Pa at 55°C. Most of the lactose and minerals permeate through the membrane in the aqueous phase constituting the permeate (or sweet whey), whereas the proteins are retained in the retentate and concentrated up to 10% (w/w). The pre-concentrated milk from the retentate is then routed to the heat treatment and fermentation 4 operation (2). The volume of milk treated during these subsequent operations is lower as compared to CE due to the pre-concentration step (3). The inoculation time is increased to eight hours as compared to the CE fermentation process due to the lower lactose/protein ratio in the preconcentrated milk, which modifies the fermentation kinetics and increases the buffering capacity.

S3. Process simulation data and results

The simulation modelling was based on generic high-capacity lines processing 20,000 L h⁻¹ of raw milk for 16 h a day with one cycle of clean-in-place (CIP) per day and producing GY with 10% protein and 0% fat in the operating conditions specified in tables 1 to 5. The simulation accounted for heat regeneration and water recirculation. Such systems are generally implemented in factory to optimize cooling and heating energy and water consumption. Natural gas consumption was based on boiler requirements to produce steam for the heat exchangers and CIP system. CIP modeling was based on a generic calculation methodology accounting for the quantity of milk processed between each cycle and number of unit processes (Yee et al., 2013). All material (chemicals, tap water, wastewater) and energy flows (electricity, natural gas) determined by the simulation are reported in the inventory. Based on discussions with the manufacturers, the refrigerant losses were assumed to be negligible and not considered in the simulation. Packaging, final product cooling and storage

operations, general utilities consumption and L and W of products were not part of the simulation but are included in the inventory based on literature data, as described in the main manuscript.

t parameters								
Transformation	m3.h-1	20	Raw milk composition					
Time	h	16	Fat	%	3.97	Density	kg.m-3	1
Raw milk amount	m3	320	Protein	%	3.27	Viscosity	Pa.s	0.
Tank volume	m3	15	Lactose	%	4.81			
Tank number	-	21.3	Minerals, salt	%	0.75			
			Т°С	°C	4			
Boiler :								
Natural gas boiler; steam at 5 bar	rs and 150 °C;	ratio (natural gas/	steam) = 0.0765 m3/kg; yield betw	veen 62 and 7	78 % => 0.07 to 0.12	m3 NG/kg steam (at 9-11 bars)		
Consumption : NG: 3751 MJ/h;								
Heat ecchangers :								
3 sections; plate specifications : o	dimension: 1.6	x0.45 m; thickness	: 0.7 mm; inter-space : 3 mm					
Consumption : Water (closed-loo	op):434L;							
Cooling system :								
glycoled water (closed-loop) : 280	D L; R717 : 120	L						
CP : calculation based on the ger	neric model of	Yee.W.C.etall	Manual for the Fluid Milk Process N	Model and Sir	mulator 2013 no	1-31		
9.2 kg of water / ton of milk input /p	mocess unit / da	v						
0,005 kg acid cleaning agent / ton of	fmilk input /pro	cess unit / day						
0.013 kg alcaline cleaning agent / to	on of milk input	/process unit / dav						
6 Wh eletricity / ton of milk input /pr	rocess unit / day	,						
1.1 kg Steam / ton of milk input /pro	ocess unit / dav							

Table 1. Input parameters for CE, FO and UF.

S3.1. Centrifugation (CE)

Table S2. Centrifugation simulation results (Benoit and Houssard, 2017).

antion and storage								
ption and storage								
Tank diameter	m	2.50	Filling flow rate	m3.h-1	20			
Tank volume	m3	20	Hyp: Bottom filling					
Tank height	m	4.07						
			Theo. consumption per fillin	Wh	736			
Tank number	-	2	pump yield	%	95			
			motor yield	%	95			
			Comnsumption per filling	Wh	816			
ting								
Milk flow rate	m3.h-1	20.00	Milk pressure	Pa	1.51E+05			
Milk T°C at discharge	°C	55	Power	W	839			
Heat transfer surface	m2	217	pump yield	%	95			
Duration	5	61	motor yield	%	95			
Mass flow	kg.s-1	5.76	Comnsumption of milk per ho	Wh	930			
Density (55°C)	kg.m-3	1017						
nming								
						Skimmed milk		
Skimmer nb	-	2	Power	W	9716	Fat	96	0.049
Milk Input flow rate	m3.h-1	10.20	Mecanic yield	%	0.9	Lactose	%	5.019
Cream flow rate	m3.h-1	1.06	Comnsumption per hour	Wh	10796	Protein	%	3.409
Skimmed milk flow rate	kg.m-3	9.14	(per skimmer)			Minerals, salt	%	0.785
Cream density at 55°C	m3.h-1	967				Cream		
Skim M density at 55°C	kg.m-3	1023				Fat	%	40.005
Cream flow rate	kg.s-1	0.28				Lactose	%	3.019
Skimmed milk flow rate	kg.s-1	2.60				Protein	%	2.045
						Minerals, salt	%	0.479

Table S2. (continued and end).

Fermentation								
http://www.360dairy.com/yogurt	-fermentation	-tank.html						
Tank Volume	m3	10	Theo. consumption per fillin	Wh	448			
Tank diameter	m	1.8	pump yield	%	95			
Tank height	m	3.93	motor yield	%	95			
Tank Nb	-	10	Comnsumption per filling	Wh	496			
Hyp: 2 hours of cleaning between	n fermentation	1						
Fermentation duration	h	5	Tank stiring + flushing	Wh	448			
ferment Concentration	kg.m-3	0.012	Hyp: brassage par passage da	ns un or	ifice			
ferments mass (/h)	kg	0.223	pipe diameter	m	0.050			
			orifice diameter	m	0.015			
entrifugation								
-						GY		
Yogourt flow rate	m3.h-1	9.08	Power	W	45000	Fat	%	0.04
Separator nb	-	2	Consumption	Wh	45000	Lactose	%	4.66
Density	kg.m-3	1030	(per separator)			Prote in	%	10.00
Yogourt mass flow	kg.s-1	2.60				Minerals, salt	%	0.73
protein rejection rate	%	6.01%						
GY flow rate	kg.s-1	0.83				Whey		
	m3.h-1	2.91				Fat	%	0.04
Density	kg.m-3	1030				Lactose	%	5.17
Whey flow rate	kg.s-1	1.77				Prote in	%	0.30
	m3.h-1	6.24				Minerals, salt	%	0.81
Whey density	kg.m-3	1020						
(per separator)								
inal Cooling								
GY flow rate	m3.h-1	5.81	Glycoled water pressure	Pa	6.44E+05	Refrigered unit power	W	1364
Mass flow	kg.s-1	1.66	GY pressure	Pa	6.74E+05	yie ld	%	9
Density	kg.m-3	1030	Waterpower	W	2683	Conso per hour	Wh	1436
GY av. Viscosity	Pa.s	0.05	GY power	W	1088			
Propylen glycol at 50%			pump yield	%	95			
T°C at input	°C	12	motor yield	%	95			
Mass flow	kg.s-1	4.306	Consumption per hour (water	Wh	2973			
	m3.h-1	15.00	Consumption per hour (GY)	Wh	1206			
T°C at discharge	°C	23						
Gr I'C at discharge	۰ <i>۲</i>	15						
Heat transfer surface	m2	8.7						
Annular exchanger intern diame	m	0.027						
Annular exchanger extern diame	m	0.048						
Length	m	101						
Duration	S	30						
Р								
Water mass	kg	24423						
Acid dertergent mass	kg	13						
Alcalin detergent mass	kg	35					ļ	
Electricity	Wh	15928						
Steam mass	kg	2920						
Natueal gas volume	m3	223						
(total per day)								

S3.2. Fortification (FO)

Simulation results differ from CE due to the additional operations of MPC powder rehydration and mixing before thermal treatment. More operations are also included in the CIP system. The change in the flow rate after fortification modifies the parameters from the heat exchanger and cooling systems.

Table 3. Fortification simulation results (Benoit and Houssard, 2017).

Reception and storage									
Tank diameter	m	2.50	Filling flow rate	m3.h-1	20				
Tank volume	m3	20	Hyp: Bottom filling						
Tank height	m	4.07							
			Theo. consumption per fillin	Wh	736				
Tank number	-	2	pump yield	%	95				
			motor yield	%	95				
			Comnsumption per filling	Wh	816				
Heating									
Milk flow rate	m3.h-1	20.00	Milk pressure	Pa	1.57E+05				
Milk T ^o C at discharge	°C	55	Power	W	872				
Heat transfer surface	m2	201	pump yield	%	95				
Duration	5	56	motor yield	%	95				
Mass flow	kg.s-1	5.76	Comnsumption of milk per ho	Wh	966				
Density (55°C)	kg.m-3	1017							
Skimming									
						Skimmed milk			
Skimmer nb	-	2	Power	W	9716	Fat	%	0.04%	
			Mecanic yield	%	0.9	Lactose	%	5.01%	
Milk Input flow rate	m3.h-1	10.20	Comnsumption per hour	Wh	10796	Protein	%	3.40%	
Cream flow rate	m3.h-1	1.06	(per skimmer)			Minerals, salt	%	0.78%	
Skimmed milk flow rate	m3.h-1	9.14				Cream			
Cream density at 55°C	kg.m-3	967				Fat	%	40.00%	
Skim M density at 55°C	kg.m-3	1023				Lactose	%	3.01%	
Cream flow rate	kg.s-1	0.28				Protein	%	2.04%	
Skimmed milk flow rate	kg.s-1	2.60				Minerals, salt	%	0.47%	
Protein rehydratation									
						MPC			
MPC Concentration	%	30%	Tank diameter	m	1.80	Fat	%	1.60%	
		0.05	Tank volume	m3	12	Lactose	%	4.60%	
MPC flow rate	kg.s-1	0.06	lank height	m	4./2	Protein	%	81.30%	
Water flow rate	kg.s-1	0.14	Tank nb	-	2	Minerals, salt	%	6.80%	
		44750				MPC mixed	~	0.400	
Mass / day (Rehydrated MPC)		11/50	Theorical Conso per filling	Wh	166	Fat	96	0.48%	
Mass / day (MPC)	kg	3507.84	pump yield	%	95	Lactose	%	1.38%	
Density at 55°C	kg.m-3	1077	motor yield	%	95	Protein	%	24.39%	
Volume / day	m3	10.91	Conso par tilling	wn	184	Minerals, sait	96	2.04%	
Viscosity at 55°C	P0.5-1	0.003	Av. Conso per hour	wn	167.308614				
			Agitation duration	h	20				
			Agitation duration	11	20				
			Hyp : agitation mobile with a	ixiai fiow	0.45				
			Nobile diameter	m	0.45				
			Peripheral Velocity	tr min.ª	212				
			Rotation velocity	u.mm-1	212				
			Viold	VV 9/	52/5				
			Conso / tack / 20.h	70 14/h	95				
			Av Conso per beur	Wh	EEC 2				
			Av. Conso per hour	WTI	2222				
		1							

Table S3. (continued).

Rehy	drated MPC Mixing									
				Standardized milk						
	Skimmed milk flow rate	m3 h-1	18 29	Fat	%	0.06%	Power	W	527	
		ka s-1	5 20	Lactose	%	4 87%	pump vield	96	95	
	Hydrated MPC flow rate	kg.5-1	0.20	Protein	96	4 20%	motor vield	96	95	
	Standardized milk flow rate	kg.5-1	5.40	Minerals salt	92	0.83%	Compsumption per hour	W/b	58/	
	Deposity at 55%	kg. m-2	10.25	Willicials, sait	70	0.0376	contristingtion per riou	ww.n	504	
	Chandradian direith flaur anta	ky.m-J	1025							
	Standardized milk flow rate	m3.n-1	18.97							
Ineri	nai treatment									
				-						
	Milk input flow rate	m3.h-1	18.97	Pressure	Pa	6.37E+05	Natural gas	m3.h-1	99.7	
	Milk T°C at discharge	°C	90	Power	W	3356	Pump power (cal)	W	5.90E+03	(côté eau-ch
	Density at 90°C	kg.m-3	1009	pump yield	%	95	pump yield	%	95	
	Mass flow	kg.s-1	5.40	motor yield	%	95	motor yield	%	95	
	Heat transfer surface	m2	209	Consumption per hour	Wh	3719	Consumption per hour	Wh	6539	
	Duration	5	60							
	Holding time	5	300							
Cooli	ng									
	Milk flow rate	m3.h-1	19.27	Pressure	Pa	2.67E+05				
	Milk av viscositv	Pas	0.01	Power	W	142.9				
	Density 42°C	ka m-3	1030	nump vield	%	95				
	Mass flow	kas-1	5.40	motor vield	96	95				
	Milk T ^o C at discharge	×9.51	12	Consumption per bour	10/b	1583				
	Heat transfer surface		151	consumption per nour	win	1565				
	Preat transfer surface	m2	151							
	Duration	5	45							
	WITK flow rate at discharge	m3.n-1	18.88							
Ferm	entation									
	http://www.360dairy.com/yogu	rt-fermentation	n-tank.html							
	Tank Volume	m3	10	Theo. consumption per fillin	Wh	449				
	Tank diameter	m	1.8	pump yield	%	95				
	Tank height	m	3.93	motor yield	%	95				
	Tank Nb	-	12	Comnsumption per filling	Wh	498				
	Hyp: 2 hours of cleaning between	en fermentatio	n							
	Fermentation duration	h	6	Tank stiring + flushing	Wh	491				
	ferment Concentration	kg.m-3	0.012	Hyp: brassage par passage da	ins un or	ifice				
	ferments mass (/h)	ka	0.231	pipe diameter	m	0.050				
	, _ , , , , , , , , , , , , , , , , , ,			orifice diameter	m	0.015				
C	te									
Centr	Ingation						CY.			
				-			Gr			
	rogourt flow rate	m3.n-1	9.44	Power	W	45000	Fat	%	0.06%	
	Separator nb	-	2	Consumption	Wh	45000	Lactose	%	4.56%	
	Density	kg.m-3	1030	(per separator)			Protein	%	10.00%	
	Yogourt mass flow	kg.s-1	2.70				Minerals, salt	%	0.78%	
L	protein rejection rate	%	7.01%						83.85%	
	GY flow rate	kg.s-1	1.08				Whey			
		m3.h-1	3.79				Fat	%	0.06%	
	Density	kg.m-3	1030				Lactose	%	5.07%	
	Whey flow rate	kg.s-1	1.62				Protein	%	0.48%	
		m3.h-1	5.70				Minerals, salt	%	0.86%	
	Whey density	kg.m-3	1020						93.52%	
	(per separator)									
1	1					· · · ·		1		

I Cooling								
GY flow rate	m3 h-1	7 58	Givcoled water pressure	Pa	1.05F+0.6	Refrigered unit power	w	175.89
Mass flow	ka s-1	2.17	GY pressure	Pa	1.08E+06	vield	%	95
Density	ka.m-3	1030	Water power	W	5265	Conso per hour	Wh	18515
GY av. Viscosity	Pas	0.05	GY power	W	2281			
Propylen alycol at 50%			pump vield	%	95			
T°C at input	°C	12	motor vield	%	95			
Mass flow	ka s-1	4.306	Consumption per hour (wate	Wh	5834			
	m3.h-1	18.00	Consumption per hour (GY)	Wh	2527			
T°C at discharge	°C	24						
GY T℃ at discharge	°C	15						
Heat transfer surface	m2	10.3						
Annular exchanger intern diame	m	0.027						
Annular exchanger extern diame	m	0.048						
Length	m	120						
Duration	5	29.7						
Water mass	ka	305.20						
Acid dertergent mass	ka	17						
Alcalin detergent mass	ka	43						
Electricity	Wh	19910						
Steam mass	ka	3650						
Natueal gas volume	m3	279						
(total per day)								

Table S3. (continued and end).

S3.3. Ultrafiltration (UF)

Simulation results differ from CE due to the additional ultrafiltration operation before the fermentation and removal of the centrifugation process. The significant change in flow rate after ultrafiltration modified the parameters from the heat exchanger and cooling systems.

Table 4. Ultrafiltration simulation results (Benoit and Houssard, 2017).

Reception and sto	rage							
Tank diamete	r m	2.50	Filling flow rate	m3.h-1	20			
Tank volume	m3	20	Hyp: Bottom filling					
Tank height	m	4.07						
			Theo. consumption per fillin	Wh	736			
Tank number	-	2	pump yield	96	95			
			motor yield	%	95			
			Comnsumption per filling	Wh	816			
Heating								
Milk flow rate	m3.h-1	20.00	Milk pressure	Pa	2.46E+05			
Milk T°C at d	scharge °C	55	Power	W	1367			
Heattransfer	surface m2	151	pump yield	96	95			
Duration	5	43.9	motor yield	%	95			
Mass flow	kg.s-1	5.76	Comnsumption of milk per h	Wh	1514			
Density (55°C) kg.m-3	1017						
Skimming								
						Skimmed milk		
Skimmer nb	-	2	Power	W	9716	Fat	96	0.04%
(per skimmer) =>		Mecanic yield	%	0.9	Lactose	%	5.01%
Milk Input flo	w rate m3.h-1	10.20	Comnsumption per hour	Wh	10796	Protein	%	3.40%
Cream flow r	ate m3.h-1	1.06	(per skimmer)			Minerals, salt	%	0.78%
Skimmed mill	flow rate m3.h-1	9.14				Cream		
Cream densit	yat 55°C kg.m-3	967				Fat	96	40.00%
Skim M densi	ty at 55°C kg.m-3	1023				Lactose	96	3.01%
Cream flow r	ate kg.s-1	0.28				Protein	%	2.04%
Skimmed mill	flow rate kg.s-1	2.60				Minerals, salt	96	0.47%

Table S4. (continued).

Ultrafiltration									
							Retentate		
MWCO	kD a	30		Protein reptention rate (Pn)	92	96.5%	Fat	92	0.12%
Caracathialmana	KD U	30		Protein rentention rate (Kp)	70	50.5%	l a trac	/0	0.12/6
Spacerthickness	mii	46					Lactose	%	4.65%
TMP	Pa	5.51E+05		Power	W	5598	Protein	%	10.00%
FiltrationT ^o C	°C	55		pump yield	%	95	Minerals, salt	%	0.73%
Av permeation flow	m3.h-1.m-2	0.0123		motor vield	%	95			
ECV.	_	3 10		Compsumption per hour	14/b	6203	Dermeste		
		5.10		communities per nour	vvn	0203	Fernicate		
Retentate flow rate	kg.s-1	1.71					Fat	%	0.00%
	m3.h-1	5.90					Lactose	%	5.18%
Retentate density at 55°C	kg.m-3	1041					Protein	%	0.18%
Permeate flow rate	ka s-1	3.49					Minerals salt	94	0.81%
remeate now rate	ng.5 1	12.20					Winterois, soit		0.01/0
	m5.n-1	12.59							
Permeate density at 55°C	kg.m-3	1014							
Membrane surface	m2	1007							
Thermal treatment									
Milk input flow rate	m3 h-1	5.90		Pressure	Da	5 33E±05	Natural das	m3h-1	121.4
will man used	1113.11-1	5.50			FU	J.JJLT0J			121.4
Milk T*C at discharge	°С	90		Power	W	874	Pump power(cal)	W	4.89E+03
Density at 90°C	kg.m-3	1026		pump yield	%	95	pump yield	%	95
Mass flow	kg.s-1	1.71		motor yield	%	95	motor yield	%	95
Heat transfer surface	m2	171		Consumption per hour	W/h	968	Consumption per bour	Wh	5419
Duration		150		consumption per nour		500	consumption per nour		5415
Duration	3	139							
Holding time	5	300							
Cooling									
Milk flow, rate	m2 h 1	E 00		Procesure	Da	1 255 (05			
WIIK NOW Tate	1113.11-1	3.33		Flessule	FU	1.556405			
Milk av. viscosity	Pa.s	0.01		Power	W	225			
Milk T°C at discharge	°C	42		pump yield	%	95			
Density 42°C	ka.m-3	1045		motor vield	%	95			
Mass flow	ka s-1	1 71		Consumption per hour	Wh	249			
	Ng.5 1			consumption per nour		213			
Heat transfer surface	1112	/5							
Duration	5	20							
Milk flow rate at discharge	m3.h-1	5.88							
Fermentation									
Fermientation								·	
Lu (/ 2001 : /									
http://www.360dairy.com/yo	gurt-termenta	tion-tank.ntml							
Tank Volume	m3	6		Theo. consumption per fillin	Wh	91			
Tank diameter	m	1.8		pump yield	%	95			
Tank beight	m	2 36		motor vield	96	95			
Tank Ne		2.50		Conservation and filling	14/6	101			
Tank ND	_	8		Comnsumption per filling	wn	101			
Hyp: 2 hours of cleaning betw	veen fermenta	tion							
Fermentation duration	h	8		Tank stiring + flushing	Wh	174			
ferment Concentration	ka m-3	0.012		Hyp: brassage par passage da	ns un or	fice			
ferments mass (/b)	ka	0.070		nine diameter		0.050			
Terments mass (/n)	хg	0.070		pipe diameter	m	0.030			
				ornice drameter	m	0.015			
Final Cooling									
GY flow rate	m3.h-1	5.88		Glycoled water pressure	Pa	6.57E+05	Refrigered unit power	W	13767
Mass flow	ka.s-1	1.71		GY pressure	Pa	6.87E+05	vield	96	95
Density	ka m-3	1030	1045	Water power	14/	2738	Conso per bour	W/b	14497
CV and Manager		0.05	1010	CV		2750	conso per nour		11152
GY av. VISCOSITY	PO.S	0.05		Gr power	w	1122			
Propylen glycol at 50%				pump yield	%	95			
T°C at input	°C	12		motor yield	%	95			
Mass flow	kg.s-1	4.019		Consumption per hour (water	Wh	3033			
	m3.h-1	15.00		Consumption per hour (GY)	Wh	1743		-	
T°C at discharge	°7	15.00		(di)					
	L	25							
I C sortie YG	A-								
GY T°C at discharge	°C	15							
Heat transfer surface	m2	8.7							
Annular exchanger intern dia	m	0.027							
Annular exchanger extern dia	m	0.049							
		0.048							
Length	m	103							
Duration	5	30.6							

Table S4.	(continued and end).
-----------	----------------------

ap							
Water mass	kg	24423					
Acid dertergent mass	kg	13					
Alcalin detergent mass	kg	35					
Electricity	Wh	15928					
Steam mass	kg	2920					
Natueal gas volume	m3	223					
(total per day)							

Note explaining the difference between UF and CE for steam and natural gas consumption: The regenerative design of the heat exchangers (Figure S1) uses the hot skimmed-milk circulating in the system after thermal treatment at 90 °C to pre-heat the raw milk up to 55°C before skimming. The upper flow rate of the hot skimmed milk (18.56 m³ h⁻¹) for CE improves heat exchange with the cold raw milk section before skimming as compared to the outgoing hot concentrated skimmed milk (5.90 m³ h⁻¹) from the thermal treatment section for UF.

Figure 1. CE, FO and UF Heat exchanger design: cooling and heating regeneration system.

11 of 32

S4. Life Cycle Inventory: Key Parameters and Reference Flows

RADLE TO	D GRAVE INVENTORY - INTERM	EDIATE FLOWS for a line t	treating 20,	000 l.h-	1 of raw milk									
	Functional unit : 1 kg of yogu	rt consumed												
	(Flows are calculated before lo	sses and watage and co-pr	oducts all oc	ation)										
Life	Operation		Key	parame	eters and data sources		Ref	erence flo	ws per funtio	nal unit		Comments		
cycle steps		Data	Quantity	Unit	Source	Data used from ecoinvent 3.4	Flow	Quantity (CE)	Quantity (FO)	Quantity (UF)	Unit			
Supply cl	nain ingredients													
-	Raw Milk production in Quebec	Cow milk production in Quebec	1.00	kg	- Average of FAO (2011),	ecoinvent 3.4 : Cow milk {CA-QC} milk production, from cow Alloc Rec, U	Raw milk Op	3.59E+00	2.83E+00	3.50E+00	kg	This dataset represents the production of conventional milk from dairy cows, in Qubbec (Canada), in Quo0-2011. The module includes the consumption of feed, and the operation of cattle housing systems for the management of the dairy herd and the production of cow milk. The functional unit is 1kg of rat and Protein Corrected Mik (FPCM) raw milk from Québec dairy farms. The FPCM correction is made for a conversion o a 4.0% frat and 3.3% true protein content, following the equation		
	Raw milk (Qc) transportation to	Losses & wastage at farm Average distrance of transport	3.50	96	(2015) PLQ (2016) : Annual report	- Transport, freight, lorry 16-32 metric	Transport	6.54E-01	5.16E-01	6.37E-01	t.km	provided by the International Dairy Federation (IDF): FPCM (kg/yr) = Production (kg/yr) x [0.1226 x Fat% + 0.0776 x Protein% + 0.2534]. Live animals (culled cows and calves) sold for slaughterhing are by-		
	plant	from farm to plant in Qc	182.00	km		ton, EURO5 {RoW} Cut-off, U						products, as well as solid and liquid manure.		
	MPC production	Cow milk production in USA or Op for 1 Kg MPC 80 in powder Raw milk Losses & wastage at	16.50	kg	Thoma (2013) Average of FAO (2011),	farm, national average/US U System or : Cow milk {CA-QC} milk oroduction.from.cow AllocRec.U	MPC Powder	-	2.92E-02	_	kg	Milk data from USA are based on the same scope and functional unit than Qc milk with data collected during years 2007-2008. More details are available on Thoma (2013); MPC quantity required are based on		
		rarm Paking material (for 1 kg MPC	3.50	90	Gunders (2012), Bareille	Kraft naner, unbleached (GLO)	Kraft naner (for					Benoit & Houss and simulation (2017)		
		80)	0.01	kg	Internal calculation	market for Cut-off, U	MPC powder)	-	2.92E-04	-	Kg			
		Electricity processing (for 1 kg				Electricity, medium voltage {US}	Electricity (for MPC		8.87E-03		kW h			
gredients		Natural gas (for 1 kg MPC 80)	19.51	MJ		Heat, district or industrial, natural gas {WECC, US only} heat and power co-generation, natural gas, conventional power plant, 100MW electrical Cut-off, U	Natural gas (for MPC powder)	-	2.32E+00	-	м			
hain in		Tap water (for 1 kg MPC 80)	0.68	kg		Tap water {RoW} tap water production, direct fil tration treatment Cut-off, U	Tap water(for MPC powder)	-	1.99E-04	-	Kg			
ipply d		Water deionis ed	7.40	kg	Simulation, Benoit & Houssard (2017) + Yee	Simulation, Benoit & Houssard (2017) + Yee	Simulation, Benoit & Houssard (2017) + Yee	Water, deionised, from tap water, at user {RoW} production Cut-off, U	Water deionised (for MPC powder)		6.57E-02	-	Kg	
ъ З		Nitric acid	4.12E-04	kg	(2013) + Prasad (2005)	Nitric acid, without water, in 50% solution state {GLO} market for Cut-off, U	Nitric Acid (for MPC powder)	-	9.56E-04	-	Kg			
		Sodium hydroxide	1.07E-03	kg		Sodium hydroxide, with out water, in 50% solution state {GLO} market for Cut-off, U	Sodi um hydroxi de (for MPC powder)	-	2.13E-07	-	Kg			
		Other chemicals	1.81E-11	kg		Chemical factory, organics {GLO} market for Cut-off, U	Other chemicals (for MPC powder)		1.19E-12	-	Kg			
		Wastewater treatment	1.10E-03	m 3				Modified to USA_Wastewater from potato starch production {CA-QC} treatment of, capacity 1.1E10l/year Alloc Rec, U	Wate water treatment	-	3.22E-05	-	m 3	
	Raw milk ordiafiltered milk regional transportation (USA-USA or Qc-Qc)	Average distrance of transport from farm to plant (Qcor USA)	182.00	km	Estimate based on Qc	Transport, freight, lorry 16-32 metric ton, EUROS {RoW} Cut-off, U	Transport	-	8.77E-02	-	t.km			
	MPC transportation from USA to Qc Manufacturing plant	MPC powder	1500.00	km	Estimate based on av. distance from Wisconsin state (US) to Montreal (Qc)	Transport, freight, lorry 16-32 metric ton, EUROS {RER} Cut-off, U	Transport	-	4.38E-02	-	t.km			
	MPC transportation from USA to Qc Manufacturing plant	MPCliquid	1500.00	km	Estimae based on av. distance from Wisconsin state (US) to Montreal (Qc)	Transport, freight, lorry with refrigeration machine, 7.5-16 ton, EURO5, R134a refrigerant, cooling {GLO} Cut-off, U	Transport	-	1.78E-01	-	t.km			

Table S5. LCA key parameters and reference flows.

	Life	Operation		Key	Key parameters and data sources		Re	ference flow	ws per funtio	n al u nit		Comments	
	cycle steps		Data	Quantity	Unit	Source	Data used from ecoinvent 3.4	Flow	Quantity (CE)	Quantity (FO)	Quantity (UF)	Unit	
	Supply d	hain primary packaging											
		PP Polypropylene container	PP contain er siz e	500.00	g	Manufacturers Survey, Houssard (2017-2018)	-	Total PP containers	1.77E-02	1.77E-02	1.77E-02	kg	Major part of GY production in Quebec & Ontario is sold in 500 ml container (of 612 ml / 500 g product capacity) mostly thermoformed, but thermoformed pack of 100 g in PS are growing. For the purpose of this study only bulk container of 612 ml are included.
			Weight	17.50	g	Manufacturers Survey, Houssard (2017-2018)	Polypropylene, granulate {GLO} market for Cut-off, U	Thermoformed PP containers	1.51E-02	1.51E-02	1.51E-02	kg	
			Rate of thermoformed PP containers	85.00	96	Manufacturers Survey, Houssard (2017-2018) + Plastipak interview (2014)	Modified_Thermoforming of plastic sheets {CA} processing Alloc Rec, U	Injected PP containers	2.55E-03	2.55E-03	2.55E-03	kg	
			Rate of injected PP containers	15.00	96	Manufacturers Survey, Houssard (2017-2018) + Plastipak interview (2014)	Injection moulding {CA-QC} injection moulding Cut-off, U	The rmo forming process	3.76E-02	3.76E-02	3.76E-02	kg	incuding thermoformed PS containers and PP containers
			Rate of PP containers on total (PS+PP)	50.00	%	Manufacturers Survey, Houssard (2017-2018) + ecoinvent 3.4 documentation, yogurt production, from cow mil k CA-QC	-	Injection process	2.94E-03	2.94E-03	2.94E-03	kg	Including injection of HDPE lids
			Injection process yield	99.40	96	e coin vent documentation	Injection moulding {CA-QC} injection moulding Cut-off, U						
			Thermoformed process yield	94.60	96	ecoinvent documentation	Modified_Thermoforming of plastic sheets {CA} processing Alloc Rec, U						
	ging		Pastic waste at plant	0.0040	kg/kg of GY	Gonzalez-Garcia (2013)	-						Plastic waste at plant is attributed at 50 % to PP containers and 50 % to PS containers
	Packa		PP Recycling rate	14.70	96	Recyc-Québec (2017); Recyc- Québec (2015)	-						Recycling rate is deducted from raw material quantity based on end of life recycling methodology. PP is recycled but PS is not recycled in current Quebec facilities.
		PS Polystyrene container	PS container size	100.00	g	Manufacturers Survey,							
oply chain - Primar	ly chain - Prima		Weight	3.49	g	Calculated based on ecoinvent 3.3 documentation, yogurt production, from cow milk CA-QC+ Manufacturers Survey, Houssard (2017- 2018); direct weighting Li berté container = 4 g	Polystyrene, general purpose {GLO} marketfor Cut-off, U	Thermoformed PS containers	2.04E-02	2.04E-02	2.04E-02	kg	containers are thermoformed on line at milk processor plant
	Supp		Rate of thermoformed PS containers	100.00	96	Manufacturers Survey, Houssard (2017-2018)	Modified_Thermoforming of plastic sheets {CA} processing Alloc Rec, U	Thermoforming process	2.04E-02	2.04E-02	2.04E-02	kg	
			Rate of PS containers on total (PS + PP)	50.00	96	Manufacturers Survey, Houssard (2017-2018)							There is a swich in trend towards individual containers in PS to high volumes 500 g and + PP containers. Current estimation is tested in the sensibility analyses.
		Sealing	Weight of PET Seal for 500 g PP container	0.50	g	Extrapolated from Keolei an (2004)	Polyethylene terephthalate, granulate, amorphous {GLO} market for Cut-off, U	PET seal	5.12E-04	5.12E-04	5.12E-04	kg	
			Extrusion process yield	97.60	96	ecoinvent documentation	Extrusion, plastic film {CA-QC} production Cut-off, U	Extrusion process	7.68E-03	7.68E-03	7.68E-03	Kg	Including extrusion of HDPE lids and PET seals
			Weight of laminated paper Seal for 100 g PS container	0.24	g	Manufacturers Survey, Houssard (2017-2018)	Proxy Paper, melamine impregnated {GLO} market for Cut-off, U	Laminated paper seal	1.20E-03	1.20E-03	1.20E-03	kg	
		LId HDPE	Weight of Lid for 500 g PP container	7.00	g	Manufacturers Survey, Houssard (2017-2018)	Polyethylene, high density, granulate {GLO} market for Cut-off, U	HD PE Lid	7.17E-03	7.17E-03	7.17E-03	kg	
		Card board	Average Weight for 100 g container wraping (4 or 8 packs) Cardboard waste at plant	22.68	g g/kg YG	Extrapolated from Keolei an (2004); direct measure : Liberté GY 4 paks : 19 g Gonzalez-Garcia (2013)	Solid bleached board {CA-QC} production Qut-off, U	Card board	5.73E-03	5.73E-03	5.73E-03	kg	Estimated average of 6 containers per pack. 73 % is recycled. Recycled material is credited with the cut-off mdeling and not included here.
	Sunnly cl	hain secondary nackaging					-						
H	- up piy ti	and a contrary packoging				Manufacturers Survey,							
	kaging	Corrugated board	Weight for 6 packs of 500 g countainer per tray	95.00	g	Houssard (2017-2018) + Estimation based on Keoleian (2004) per Interpolation	Corrugated board box {CA-QC} production Cut-off, U	Corrugated board	1.33E-02	1.33E-02	1.33E-02	kg	Nix of trays (6*500 g) and boxes (24*100g) recycled at 73 % (0.79*0.0.925). Recycled material is credited with the cut-off mdeling and not included here.
	a	Wood pallet	Weight	18.14	Kg			1					
	- 2ry F		Number of reused Number of 500 g countainer per	300.00	times u	Keoleian (2004)	EUR-flat pallet {GLO} market for Cut-off, U	Wood Pallet	1.41E-04	1.41E-04	1.41E-04	kg	
	<u>.</u>		Number of 100 g container per p	4500.00	u		Palashidana Kasadan da 11						4
	S. cha	Stretch Wrap film (LLDPE)	LLDPE Weight per pallet	331.00	g	Keoleian (2004)	granulate {GLO} marketfor Cut-off, U	LLD PE	7.88E-04	7.88E-04	7.88E-04	kg	Recycling and losses included in PP and PS containers.
			Extrusion process yield	97.60	96	ecoinvent documentation	production Cut-off, U	Extrusion process	7.88E-04	7.88E-04	7.88E-04	kg	

	Life	Operation		Ke	v param	eters and data sources		Re	ference flo	ws per funtio	nal unit		Comments
	cycle	openduon			., param	Course of the co	Determination and second a d		Quantity	Quantity	Quantity		connents
	steps		Data	Quantity	Unit	Source	Data used from econvent 3.4	Flow	(CE)	(FO)	(UF)	Unit	
	GY plant	processing											
			Electricity consumption at			Simulation Benoit &							
		Milk filling & storage at 4 C	20000 .h-1	816	Wh	Houssard (2017)							Simulation is based on a line running at 20000 h-1 (raw milk input)
			Raw milkflow at input	20,000	l.h-1	Houssard (2017-2018)	Electricity modium voltage (CA CC)						eq. to treating 20747 kg.h-1 of milk (based on a density of 1037 g.l-1 at 4
			0			Amiot (2010) Science et	market for Cut-off. U	Electricity	1.36E-04	1.07E-04	1.33E-04	kW h	°c.
-			Milkdensityat4°C	1,037	kg. -1	technologie du lait							Raw milk is stored into 2 insulated silos of 10 m3 filled by the buttom
			FO:GYoutput	7,597	kg.h-1	Simulation Benoit &							to avoid an incorporation in milk, with stays around 1 nour in site.
			UF : GY output	6,145	kg.h-1	Houss ard (2017)							
		Heating raw milk at 55°C	CE : electricy consumption	930	Wh								Raw milk is heated from 4 to 55 °C in a heat exchanger of 217 m2 in 61s.
						Simulation Benoit &	Electricity, medium voltage {CA-OC}						all along the process line (skimming heating, thermal treatment and
-			FO : electricy consumption	966	wn	Houssard (2017)	market for Cut-off, U	Electricity	1.55E-04	1.27E-04	2.46E-04	kW h	fermentation). Natural gas consumption for all the heating processes
			UF : electricy consumption	1514	Wh								is attributed to the heating treatment process only. There is no need
		chi mania a	- 1-1	40.705	are b			Electricity	3.61E-03	2 8/F-03	3.515-03	k\A/b	Tor external neating source in between 4 and 55°C (neat exchanged with 2 skimmers with a capacity of 10 m3 b-1 of milk at entrance and 1.05
		Skimming	Number of skimmer	2	u vvn	Simulation Benoit &	Electricity, medium voltage {CA-QC}	Skimmed milk	3.13E+00	2.46E+00	3.04E+00	kg	m3.h-1 of cream at discharge each are used. Simulation results provide
			Skimmed milk	9354	kg.h-1	Houss ard (2017)	market for Cut-off, U	Cream	3.41E-01	2.69E-01	3.32E-01	kg	a good fat yield : Only 0.04 % of fat remained in skimmed milk after
			Cream	1020	kg.h-1								skimming.
		Protein rehydratation (FO-P-US only)	FO-P-US : electricy				Electricity, medium voltage {CA-QC}	Electricity FO-P-US		7.53E-04		kW h	
			consumption	5720	Wh	Simulation Benoit &	market for Cut-off, U	-	-		-		The milk protein concentrate (MPC) powder is first rehydrated with
						Houssard (2017)	Adapted to Qc-CA from - Water,			c			milk in order to reach 4,2% (w/w) proteins in the fortified skimmed
			PO-P-05 : Water consumption	512	ke		(CH) production Alloc Rec. U	FO-P-US	-	0.752-02	-	ĸg	milk. When the MPC comes in liquid form instead of power, the first
			FO : electricity consumption			Simulation Benoit &	Electricity, medium voltage {CA-QC}	Electricity FO-L-US		7 685 05		back	step of rehydration is avoided resluting in water and energy savings.
_		Mixing (FOonly)	(mixing only)	584	Wh	Houss ard (2017)	market for Cut-off, U	& Qc	-	7.082-03	-	K VV II	
			UF : electricy consumption			circulation Densit R	Electricity, medium voltage {CA-QC}	Electricity	_	-	1.01E-03	kW h	molecular weight spiral PES membrane under a transmembrane
		Ultrafiltration	Retentate output	6203	ke ke	Houss ard (2017)	market for cut-on, o	Retentate output			1.00F+00	Kg	pressure of 5,5125 Pa at at 55 C
			Permeate output (whey)	12563	kg			Wheyoutput	_		2.04E+00	Kg	
		Thermal treatment at 90°C for 5	CE : electricy consumption		wh								
-		minutes f	FO i electricus ensumetion	8608	sarb		Electricity, medium voltage {CA-QC} market for Cut-off	Electricity	1.44E-03	1.35E-03	1.04E-03	kW h	
			UF : electricy consumption	6387	wh	Simulation Benoit &	market for p catori, o						The heat exchanger is part of the regeneration system (see figure in CE,
	g		CE: natural gas consumption			Houssard (2017)	117) Heat, district or industrial, natural gas {CA-QC} market for Cut-off, U						FO, UF Simulation). All natural gas consummed on the line for water beating is included in this operation. The boiler makes steam water at
_	SS			99	m3.h-1			Natural gas	6.18E-01	4.90E-01	7.37E-01	MU	5 barand 150 °C (ratio NG/Steam = 0.0765 m3.kg-1). Zero water/steam
	ő		UF: natural gas consumption	99./	m3.h-1								loss has been considered at the boiler.
	2		Natural gas converted rate in			Office National de							
_	÷		MJ	37.3	MU.m3	l'énergie du Canada (2018))						
	<u>n</u>												Homogeneisation process has been simulated only for the CF option
	•	Homogeneisation at 65 ⁰ C & 170-200				Simulation Benoit &	Electricity, medium voltage {CA-QC}	PC}	1 745 07			KIAKB	Homogenisation is usually done before thermal treatment when
_		bars (optional)	Cooling at 65°C electricy cons.	1,824	Wh	Houssard (2017)	market for Cut-off, U	clectrony	1.746-02	-	-	Kev II	partial skimming is operated and at this step (between thermal
			Hommogeneisation electricy	101,812	Wh								treatment and fermentation) when a full skimming is operated.
		Cooling at 43°C	CE: electricy consumption	1470	wh							-	
		cooling at 42 c	FO : electricy consumption	1583	Wh	Simulation Benoit &	Electricity, medium voltage {CA-QC}	Electricity	2.47E-04	2.08E-04	4.05E-05	kW h	The heat exchanger is part of the regeneration system. Heat exchange with cold milk at 4°C in this section.
			UF : electricy consumption	249	Wh	110033810 (2017)	market for catori, o						
		Fermentation at 42°C for 5 to 8	CE : electricy consumption										Fermentation is done by batch of 5 to 8 hours. 1 hour of CIP is included
-		nours	EQ : electricy consumption	1/18	wh	Simulation Benoit &	Electricity, medium voltage {CA-QC}	The statistics	2.075.04	3 455 04	4 305 05	haarb	between 2 batchs. Tank stiring is not included. Stiring is done at pump
						Houssard (2017)	market for Cut-off, U	Liectrony	2.070-04	2.402-04	4.390-03	K VV II	Cooling water to maintain tank temperature is not included at this step
			UF : electricy consumption	270	Wh								(all waterflows are supposed to be recirculated).
		0	electricy consumption per			GEA Technical sheet -	Electricity, medium voltage {CA-QC}	Electricity	1.51E-02	1.18E-02		kWh	
		Centrifugation at 35 - 40°C	s eparator	45000	Wh	Separator KDE 45-02-076	market for Cut-off, U				-		-
			Nb ofseparators	2	u	Separator KDE 45-02-076		GYoutput	1.00E+00	1.00E+00	-	kg	
						Manufacturers Survey,							GY concentration is done using 2 separators. GY mathematical model
			CE : protein rejection rate		~	Houssard (2017-2018) -> 0,	3	Wheyoutput	2.13E+00	1.56E+00	-	kg	been collected directlyfrom the manufacturer (GEA) and the GY
				5.6	96	% proteins in whey Manufacturers Supey							manufacturers. Rejection rate are calculated based on % proteins in
			FO : protein rejection rate			Houssard (2017-2018)->							whey (0.3 % in CE and 0.48 % in FO). Final results reported here are
				8.4	96	0.48 % proteins in whey							datasheets.
			CE : GY output	5,979	kg ka	Calculation - Mass balance	2 5						-
			CE: wheyoutput	12,729	kg	Calculation - Mass balance	5 5						
			FO : whey output	11,845	kg	Calculation - Mass balance	2						
			CE : electricy consumption										Cooling is done as quick as possible (30 s) to reduce the bactoria
		cooling at 15°C	EQ : electricy consumption	18,545	wh								activity and to stabilize the pH. The concentrated fermented milk is
				20,075		Simulation Benoit &	Electricity, medium voltage (CA-OC)						cooled in an annular heat exchanger of 8.7 m2 . The cooling circuit use
						Houssard (2017)	market for Cut-off, U	Electricity	3.10E-03	3.54E-03	3.05E-03	kW h	propylène glycol at 50 % in a closed loop. 289 kg of propylen glycol
			UF : electricy consumption										recommandation, there is no product loss. Therefore propylen glycol
													impacts are supposed negligeable and are not included.
				18,768	Wh								

	Life	Operation		Key parameters and data sources				Reference flows per funtional unit					Comments
	cycle					Source	Data used from ecoinvent 3.4	-1	Quantity	Quantity	Quantity		
+	steps		Data	Quantity	Unit			Flow	(CE)	(FO)	(UF)	Unit	
		C18	Number of hours of operation	15	b/d								
		CIP	CE and UF : Electricity	10	11/0								
			consumption perday	15,928	Wh/d		market for Cut-off, U						
			FO : Electricity consumption	19,910	Wh/d	cianulating Densit P		Electricity	1.67E-04	1.64 E-04	1.62E-04	kWh	
			CE & UF : Water consumption per day	24,423	kg/d	Houssard (2017) + Yee (2013)	Modified from {CH} - Water, deionised, from tap water, at user	Water	2.55E-01	2.51E-01	2.48E-01	kg	
			FO : Water consumption per	30,529	kg/d		{cA-dc} production Anockec, o	Natural gas	8.71E-02	8.57 E-02	8.48E-02	MJ	
			boiler	8,333	MJ/d		Heat, district or industrial , natural	Nitric Acid	1.39E-04	1.37E-04	1.35E-04	kg	
			50 - Noticel and factorillar	10,416			gas {CA-QC} market for Cut-off, U	Sodium					
			FO : Natural gas for boller		MJ/ d		Nitriescid without water in 50%	nyaroxyde	3.61E-04	3.55E-04	3.518-04	кg	
	ssing		CE and UF : Nitric Acid FO : Nitric acid	13	kg/d		solution state {GLO} market for Cut-off, U						
	roce						Sodium hydroxide, without water, in 50% solution state {GLO} market for						
	÷.		CE and OF . Sourcem nyuroxyde	42	kg/u		Cut-off, U						
	Plan	Packaging and storage at 4 ⁰ C	Electricity consumption	85,112	Wh	Calculation based on Prasad 2004,2005}	Electricity, medium voltage {CA-QC} market for Cut-off, U	Electricity	1.42E-02	1.42E-02	1.42E-02	kwh	Prasad (2004,2005) : packaging up to 12% of total energy cost and refrigeration and storage up to 18% of total energy cost. Since it is based on general data, identical flows are attributed to each option (not a factor of differenciation between options).
		General utilities	Plant ventilation and lighting	56,741	Wh	Calculation based on Prasad 2004,2005)	Electricity, medium voltage {CA-QC} market for Cut-off, U	El etri ci ty	9.49E-03	9.49E-03	9.49E-03	kWh	Prasad (2004,2005) : up to 19 % of total energy cost
			General water usage	17 586	ke h-1	Calculation based on	Tap water {CA-QC} market for Cut- off corrected	Tap water	2.94E+00	2.31E+00	2.86E+00	Кg	Difference of Gonzal ez-Garcia (2013) study and water consumption flow from CIP included in the simulation
				17,500	- ng 2	doniraler dans a (1915)	Proxy based on COD =2 kg/m3.						
		Wastewater treatment	CE & UF : Water treatment	19.11	m3 m3	Calculated based on CIP anfgeneral water flow.	Adapted Wastewater from {CH} Wastewater from potato starch production {CA-QC} treatment of,	Wastewater treatment	3.20E-03	2.57E-03	3.11E-03	m3	
		Plant solid wastes	Plastic per ton of yogurt	4.00	Kg/t	Gonzalez-Garcia (2013)	Waste plastic, mixture {RoW} treatment of waste plastic, mixture, sanitary landfill Cut-off, U	Platic Mix andfill disposal	4.00E-03	4.00 E-03	4.00E-03	Kg	
			Cardboard & paper per ton of yogurt	2.15	Kg/t	Gonzalez-Garcia (2013)	Waste paperboard {RoW} treatment of, sanitary landfill Cut-off, U or Paper {waste treatment} {GLO} recycling of paper Cut-off, U	Cardboard Iandfill dis posal	5.85E-04	5.85E-04	5.85E-04	Kg	
			Municipal Waste transportatio	100	km	Assumption	Municipal waste collection service by 21 metric ton lorry {RoW} processing Cut-off, U	Cardboard recycled	1.56E-03	1.56E-03	1.56E-03	Kg	
								Waste collection	6.15E-04	6.15E-04	6.15E-04	t.km	

	Life	Operation		Ke	y parame	eters and data sources		Re	ference flow	vs per funtio	nal un it		Comments
	cycle					Source	Data used from ecoinvent 3.4		Quantity	Quantity	Quantity		
	steps		Data	Quantity	Unit			Flow	(CE)	(FO)	(UF)	Unit	
	<u>Distribut</u>	ion Transportation	Average nb of km from plant to ditribution central and			Calculation based on average distances (round trip) between Ste- Hyacinthe and the major towns in Quebec regrouping 85 % of the	Transport, freight, lorry with refrigeration machine, 7.5-16 ton, EUROS, R134a refrigerant, cooling {GLO} market for Cut-off, U	Transportation in refrigerated truck	1.45E-01	1.45E-01	1.45E-01	t.km	Calculation based on av.distance between plant and cities regrouping
	tion	Refirgeration, lighting and air conditionning at retail	groceries Average time of refrigeration at retailer	145.00	km Kwh/t	Gonzalez-Garcia (2013)	Electricity, medium voltage {CA-QC} market for Cut-off, U	Electricity	1.86E-01	1.86E-01	1.86E-01	кWh	85 % of the population
_	istribut	Solid Waste	Plastic wrap to landfill	0.0008	kg/kg GY	Calculation based on secondary packaging quantity Calculation based on	Waste plastic, mixture {RoW} treatment of waste plastic, mixture, sanitary landfill Cut-off, U	Platicwaste	7.88E-04	7.88E-04	7.88E-04	kg	Plastic is assumed to be 100% landfill. % of plastic recycled is done on PP and PET containers.
	ā		Corrugated box landfill	0.0133	kg/kg GY	secondary packaging quantity	Paper (waste treatment) {GLO} recycling of paper Cut-off, U	Corrugated waste	1.33E-02	1.33E-02	1.33E-02	kg	
			Corrugated box recycling	0.0355	kg/kg GY	Calculation based on packaging and end-of-life section	Paper (waste treatment) {GLO} recycling of paper Cut-off, U	Corrugated recycling	3.55E-02	3.55E-02	3.55E-02	kg	Recycled corugated board is not included in secondary packaging flow. It is a credit due to the cut off modeling.
			Municipal Waste transportatio	100	km	Assumption	Municipal waste collection service by 21 metric ton lorry {RoW} processing Cut-off, U	Waste collection	4.95E-03	4.95E-03	4.95E-03	t.km	
	Consum	ption											
	Consumption	Transportation	Average nb of km in car (round trip) from grocery to household in Québec Number of kg of yogurt per household per year % of greek yogurt in grocery basket Average nher of trip in car to emcerv	4.75 4.60 0.0027	Km/trip kg/year %	calculation based on données de institut de la statisitique du Québec- Régions - Panorama des régions du Québec, edition Calculation based on http://www.groupeageco.c a/s1/; http://www.stat.gouv.qc.ca, statistiques/population- demographie/familles- menages/tableau_04.htm; Niels en (2017) https://www.inspq.qc.c a/site.s/de fault/file.s/pu blications/1766_resume .pdf; _http://www.groupeage co.ca/fsl/ Assumption	Transport, passenger car, medi um size, petrol, EURO 5 (RoW) transport, passenger car, medi um size, petrol, EURO 5 Cut-off, U	Transportation	1.45E-01	1.465-01	1.465-01	km	Calculation is as followed : Av. Round trip (4.75 km) * x Nb of trip per year (52) x% of dain is in grocery basket (15%) X% of yogut in dainies (10/110 = 0.06%) x% Mangket share of GY (20%) / x bo fk go f yogurt/p/wear (10 kg) x Market share of GY (20%) x Av. Nb of person/household (2.3 p). (*) Av. Round trip is based on distance median in meter to the nearest grocery store.
		plastic bag used for transportation Refirgeration + heating water Water for cleaning	Nb of platic bag per ton of yogu Eletricity per ton of yogurt	4.00	kg/t kWh/t	Hospido A, Vazquez ME, Cuevas A, Feijoo G, Moreira MT (2006) Environmental assessment of canned tuna manufacture with a life-cycle perspective. Resour conserv Recy 47:56-72 Gonzalez-Garcia (2013) Conzalez-Garcia (2013)	Polyethylene, high density, granulate (GLO) market for Cut-off, U and Extrusion, plastic film (CA-QC) production Cut-off, U Electricity, low voltage {CA-QC} market for Cut-off, U Tap water {CA-QC} market for Cut-	Pastic Eletricity	2.00E-03 5.47E-02	2.00E-03 5.47E-02	2.00E-03 5.47E-02	Kg KW h	Data is divided by 2 because pastig bag consumption has been reduced by 52 % in between 2007 and 2010 https://ici.radio- canada.ca/nouvelle/571093/reduction-sacs-quebec Gonzalez-Garcia has based its energy consumption calculation on the volume occupied per yogurt in the refrigerator.
		Waste water treatment	Tap water per ton of yogurt Waste water from cleaning	804.50	kg/t Kg/t	Gonzalez-Garcia (2013)	off, U corrected Wastewater, average {CA-QC} treatment of wastewater, average, capacity 4.7E10l /year Cut-off, U	Waste water treatment	8.05E-04	8.05E-04	8.05E-04	-~s m3	Spoon, cup and dishwashing are not considered - negligeable impacts

Life	Operation		Ke	y parame	eters and data sources		Re	ference flow	ws per funtio	onal unit		Comments
cycle					Source	Data used from ecoinvent 3.4		Quantity	Quantity	Quantity		
steps		Data	Quantity	Unit	Source	but to cu nom econivent or	Flow	(CE)	(FO)	(UF)	Unit	
Productf	inal disposal											
					Recyc-Quebec (2015) Bilan							
					de la gestion des matières							
	Recycling	Paper, Cardboard	79.00	%	résiduelles au Québec							
		Pastic recovered	16.00	%	Recyc-Quebec (2015)							
		Organic matter recovered	21.00	%	Recyc-Quebec (2015)							
E		Av. Reject rate	7.90	%	Recyc-Quebec (2015)							
SS		PS is not recycled in Quebec										
B	Final disposal	Landfill	96.72	%	Recyc-Quebec (2015)							Has been approximate to 100 % landfill
l dis					Recyc-Quebec (2017) Bilan de la gestion des matières							
ina		incinerator	3.28	%	résiduelles au Québec							
	Pastic bag final disposal				Calculation based on packaging and recycling	Mixed plastics (waste treatment) {GLO} recycling of mixed plastics	PET recycling	2.95E-04	2.95E-04	2.95E-04	kg	Data is divided by 2 because pastic bag consumption has been reduced by 52 % in between 2007 and 2010 https://ici.radio-
		Plastic bag recycling	0.5894	Kg/t	data	Cut-off, U						canada.ca/nouvelle/571093/reduction-sacs-quebec
		Plactic had to landfill	3 4105	Ka/t	Calculation based on packaging and recycling data	Waste plastic, mixture {RoW} treatment of waste plastic, mixture,	PP recycling	2.30E-03	2.30E-03	2.30E-03		Data is divided by 2 because pastic bag consumption has been reduced by 52 % in between 2007 and 2010 https://ici.radio- canada.c. nouvelle/571093/reduction-sacs-queber
			5,4100	1467 1	Calculation based on	Samary landing (caron, o	rr iccycing					
	GY containers disposal	Plastic recycling	0.0023	kg/kg GY	packaging and recycling data		PET waste	1.71E-03	1.71E-03	1.71E-03		
					Calculation based on packaging and recycling		Plastic waste	3.95E-02	3.95E-02	3.95E-02	kg	
		Plastic to landfill	0.0395	kg/kg GY	data							
					Calculation based on packaging and recycling		Cardboard recycling	1.38E-02	1.38E-02	1.38E-02	Kg	
		Cardboard recycling	0.0138	kg/kg GY	data							
					Calculation based on		Cardboard to					
					packaging and recycling		landfill	6.35E-03	6.35E-03	6.35E-03	kg	
		Cardboard to landfill	0.0053	kg/kg GY	data							

S5. MPC allocation factors

Table 6. MPC production systems in the USA or Québec: mass and economic allocation factors at each point of substitution.

Allocatio factor (A	on .F)		Mas	s allocation			Econo	mic allocatio	on
		Cream	S. milk	Permeate	Retentate	Cream	S. milk	Permeate	Retentate
			Raw m	ilk producti	on and its tra	insportatio	n (SB1)		
U	SA	35%		23%	42%	50%		2%	47%
Ç	Qc	35%		23%	42%	57%		15%	28%
		R	eceptio	n, storage, p	asteurizatior	n & skimm	ing (SB	2)	
U	SA	35%	65%			50%	50%		
Ç	Qc	35%	65%			57%	43%		
			τ	Jltrafiltratio	n and diafilt	ration (SB2	2)		
U	SA			35%	65%			5%	95%
Ç	Qc			35%	65%			34%	66%
		S	oray-dry	ying (*), pac	king (*) and	transportat	ion (SB	2)	
U	SA	-			100%	-			100%
Ç)c				100%				100%
CIP									
U	SA	35%		23%	42%	50%		2%	47%
Ç	Qc	35%		23%	42%	57%		15%	28%

The economic allocations are based on milk component prices in the USA:

• USA class IV (proteins: 3.98 USD.kg⁻¹; fat 5.35 USD.kg⁻¹; lactose 0.12 USD.kg⁻¹)

Québec class 7 (proteins: 1.58 CAD.kg⁻¹; fat 7.24 CAD.kg⁻¹; lactose 1.58 CAD.kg⁻¹) in 2017.

To facilitate comparison, results with economic allocations were based on USA prices for MPC from the USA and Québec or Québec but not a mix of USA prices for MPC USA and Québec prices for MPC Québec.

S6. Losses and wastage (L and W) literature overview

					Value cha	ue chain stage			
Source	Region	Product	Unit s	Production & transportat ion	Manufactur ing	Distributi on	Consumpt ion	Total	
Burek (2018)	USA	Fluid milk	% (kg)		1.20%	12.00%	20-35 %	-	
Parfitt (2016)	UK	Dairy	% (kg)	_	3.50%	-	-	-	
AAFC (2015)	Canada	Dairy	% (kg)			11.00%	21.00%	-	
Bareille (2015)	France	Yogurt	% (kg)	3.20%	2 à 4 %	-	_	-	
González-García (2013)	Portugal	Yogurt	% (kg)				10.00%	-	
Thoma (2013a)	USA	Fluid milk	% (kg)	_		12.00%	20.00%	_	
Gunders (2012)	USA, Canada, Australia, New Zealand	Milk	% (kg)	3.25%	0.50%	0.25%	17.00%	20.00 %	
Buzby and Hyman, (2013)	USA	Fluid milk Other dairy	%(\$) %(\$)	_	_	12.00% 8.00%	18.00% 14.00%	_	
Abdulla (2012)	Canada	product Dairy products	% (kg)	_	_	_	_	27.57	
FAO (2011)	North America and Oceania	Milk	(kg) (kg)	4.00%	1.20%	0.50%	15.00%	20.70 %	
Mena (2011)	UK and	Milk	% (kg)	-	-	1-3%	-	-	
× ,	Spain	yogurt	% (kg)	-	-	>7%	-	-	
Flysjö (2011)	Denmark	butter	% (kg)	_	1.00%	-	10.00%	_	
Alonso (2010)	Spain	yogurt	% (kg)	_	1.00%	_	-	-	
Berlin and Sonesson (2008)	Sweden	yogurt	% (kg)	_	5.00%	-	-	_	
		Fluid milk	% (kg)	_	_	2.00%	30.00%	NA	
Kantor (1997)	USA	Other dairy product	% (kg)	_	-	2.00%	30.00%	NA	
		Lower estimate	% (kg)	3.20%	0.50%	0.25%	10.00%	13.95 %	
		Upper estimate	(kg)	4.00%	5.00%	12.00%	30.00%	51.00 %	
		Average	% (kg)	3.48%	3% (*)	5.47%	20.33%	29.29 %	

Table S7. Compiled data on dairy product losses and wastage (L and W).

Note: Data in grey are not included in the average. (*) includes only data from yogurt.

S7. LCA detailed results

S7.1. LCA Main Numerical Results

Method: IMPACTWorld + (Default_Recommended_Endpoint 1.41) V1.41/IMPACT World + (Stepwise 2006 values) and IMPACTWorld + (Default_Recommended_Midpoint 1.23) V1.23 *Sustainability* 2020, 12 www.mdpi.com/journal/sustainability Indicators: damage assessment for HH and EQ; characterization midpoint for CC short term and FEU. Climate change contribution to HH and EQ endpoint indicators was purposely removed to avoid double counting.

General legend: CE: centrifugation; FO-P-US: fortification by MPC powder from the USA; FO-L-US: fortification by liquid MPC from the USA; FO-L-Qc: fortification by liquid MPC from Québec.

										Distribution &		
			Canadian	Proteins	Primary	Secondary				consumption	Final	Iotal
			Milk	(MPC)	Packaging	Packaging	GY Process	Distribution	Consumption	Losses	disposal	impact
		CE	1.62E+00	0	1.50E-01	1.19E-02	3.29E-02	6.85E-02	4.19E-02	5.61E-01	2.36E-02	2.51E+00
		FO-P-US	1.32E+00	5.77E-01	1.50E-01	1.19E-02	2.80E-02	6.85E-02	4.19E-02	6.40E-01	2.36E-02	2.86E+00
		FO-L-US	1.32E+00	5.95E-01	1.50E-01	1.19E-02	2.80E-02	6.85E-02	4.19E-02	6.45E-01	2.36E-02	2.88E+00
		FO-L-QC	1.32E+00	4.56E-01	1.50E-01	1.19E-02	2.80E-02	6.85E-02	4.19E-02	6.05E-01	2.36E-02	2.70E+00
Climate Change	kg CO 2 eq	UF	1.63E+00	0	1.50E-01	1.19E-02	6.59E-02	6.85E-02	4.19E-02	5.73E-01	2.36E-02	2.56E+00
			lið fills.	W 80	many/sodag	janshryPada	(477 Process)	Distribution	Representation	Hereiter	limal dispessal	J
		CE	2.48E-06	0	2.69E-07	2.31E-08	1.28E-08	2.84E-08	2.32E-08	8.41E-07	6.56E-08	3.74E-06
		FO-P-US	2.02E-06	7.57E-07	2.69E-07	2.31E-08	1.21E-08	2.84E-08	2.32E-08	9.26E-07	6.56E-08	4.13E-06
		FO-L-US	2.02E-06	7.54E-07	2.69E-07	2.31E-08	1.20E-08	2.84E-08	2.32E-08	9.26E-07	6.56E-08	4.12E-06
		FO-L-QC	2.02E-06	6.91E-07	2.69E-07	2.31E-08	1.20E-08	2.84E-08	2.32E-08	9.07E-07	6.56E-08	4.04E-06
Human Health	DALY	UF	2.49E-06	0	2.69E-07	2.31E-08	1.81E-08	2.84E-08	2.32E-08	8.46E-07	6.56E-08	3.77E-06
			18 . fill a	W 930	manyParkag	jandary) sadia	EW Property	Distribution	Il buried told	Heavesta	limal disposal	J
		CE	1.86E+00	0	1.37E-01	5.30E-02	2.80E-02	6.79E-02	3.66E-02	6.57E-01	9.83E-02	2.93E+00
		FO-P-US	1.51E+00	9.62E-01	1.37E-01	5.30E-02	2.63E-02	6.79E-02	3.66E-02	8.36E-01	9.83E-02	3.73E+00
		FO-L-US	1.51E+00	9.48E-01	1.37E-01	5.30E-02	2.61E-02	6.79E-02	3.66E-02	8.32E-01	9.83E-02	3.71E+00
Ecosystem		FO-L-QC	1.51E+00	5.17E-01	1.37E-01	5.30E-02	2.61E-02	6.79E-02	3.66E-02	7.07E-01	9.83E-02	3.15E+00
Quality	PDF*m2*yr	UF	1.86E+00	0	1.37E-01	5.30E-02	3.43E-02	6.79E-02	3.66E-02	6.62E-01	9.83E-02	2.95E+00
		CE	3.21E+00	0	4.02E+00	2.09E-01	4.95E-01	5.82E-01	7.11E-01	2.67E+00	1.17E-01	1.20E+01
		FO-P-US	2.61E+00	2.21E+00	4.02E+00	2.09E-01	4.18E-01	5.82E-01	7.11E-01	3.11E+00	1.17E-01	1.40E+01
Fossil and		FO-L-US	2.61E+00	2.43E+00	4.02E+00	2.09E-01	4.17E-01	5.82E-01	7.11E-01	3.18E+00	1.17E-01	1.43E+01
nuclear energy		FO-L-QC	2.61E+00	9.99E-01	4.02E+00	2.09E-01	4.17E-01	5.82E-01	7.11E-01	2.76E+00	1.17E-01	1.24E+01
use	MJ deprived	d UF	3.22E+00	0	4.02E+00	2.09E-01	1.03E+00	5.82E-01	7.11E-01	2.83E+00	1.17E-01	1.27E+01

Table S8. Cradle-to-grave LCA result	lts with mass allocation.
--------------------------------------	---------------------------

Table S9. LCA results from plant manufacturing to final disposal (excluding raw milk and MPC); mass allocation.

								Centrifugati					Distrib &		
			PP	PS	Other	Heat	CIP &	on/Ultrafilt					household	Final	Total
			containers	containers	Pakaging	exchangers	water	ration	Other process	Distribution	Household	Plant losses	losses	disposal	impact
		CE	3.78E-02	8.03E-02	3.15E-02	2.66E-02	3.23E-03	1.40E-04	2.41E-03	6.85E-02	4.19E-02	5.51E-02	5.06E-01	2.36E-02	8.77E-01
		FO-P-US	3.78E-02	8.03E-02	3.15E-02	2.19E-02	3.21E-03	1.14E-04	2.63E-03	6.85E-02	4.19E-02	6.33E-02	5.77E-01	2.36E-02	9.52E-01
		FO-L-US	3.78E-02	8.03E-02	3.15E-02	2.19E-02	3.21E-03	1.14E-04	2.60E-03	6.85E-02	4.19E-02	6.38E-02	5.82E-01	2.36E-02	9.57E-01
		FO-L-QC	3.78E-02	8.03E-02	3.15E-02	2.19E-02	3.21E-03	1.14E-04	2.60E-03	6.85E-02	4.19E-02	5.96E-02	5.46E-01	2.36E-02	9.17E-01
Climate Change	kg CO2 eq	UF	3.78E-02	8.03E-02	3.15E-02	5.99E-02	3.27E-03	9.74E-06	2.41E-03	6.85E-02	4.19E-02	5.63E-02	5.17E-01	2.36E-02	9.22E-01
			filment of neur	ത്രമാരിന്നാ	il militada	restreationse	ille & voore	ngsilen/Allinei	di di temperatana	lithenikeriker	liter orfadb	l'Aburi levares	District Wheel	ind disposed	
		CE	4.75E-08	1.53E-07	6.77E-08	4.29E-09	1.97E-09	4.47E-11	6.39E-09	2.84E-08	2.32E-08	8.59E-08	7.55E-07	6.56E-08	1.24E-06
		FO-P-US	4.75E-08	1.53E-07	6.77E-08	3.53E-09	1.91E-09	3.65E-11	6.54E-09	2.84E-08	2.32E-08	8.78E-08	8.39E-07	6.56E-08	1.32E-06
		FO-L-US	4.75E-08	1.53E-07	6.77E-08	3.53E-09	1.91E-09	3.65E-11	6.45E-09	2.84E-08	Distribution	8.66E-08	8.39E-07	6.56E-08	1.30E-06
		FO-L-QC	4.75E-08	1.53E-07	6.77E-08	3.53E-09	1.91E-09	3.65E-11	6.45E-09	2.84E-08	2.32E-08	8.49E-08	8.22E-07	6.56E-08	1.30E-06
Human Health	DALY	UF	4.75E-08	1.53E-07	6.77E-08	9.67E-09	1.99E-09	3.11E-12	6.39E-09	2.84E-08	2.32E-08	8.69E-08	7.59E-07	6.56E-08	1.25E-06
			filment of neur	ത്രമാരിന്നാ	il milistrad	rest ender ge	ille & voore	ngsikn/Alioni	di linn paconaa	 Kissikusikus 	liter odiadki	l'Abardi leteratio	District Wheel	ind cliquest	
		CE	1.96E-02	5.25E-02	6.54E-02	6.96E-03	2.94E-03	2.18E-03	1.19E-02	6.79E-02	3.66E-02	6.49E-02	5.92E-01	9.83E-02	1.02E+00
		FO-P-US	1.96E-02	5.25E-02	6.54E-02	5.76E-03	2.72E-03	1.78E-03	1.51E-02	6.79E-02	3.66E-02	7.46E-02	7.61E-01	9.83E-02	1.20E+00
		FO-L-US	1.96E-02	5.25E-02	6.54E-02	5.76E-03	2.72E-03	1.78E-03	1.49E-02	6.79E-02	3.66E-02	7.27E-02	7.59E-01	9.83E-02	1.20E+00
Ecosystem		FO-L-QC	1.96E-02	5.25E-02	6.54E-02	5.76E-03	2.72E-03	1.78E-03	1.49E-02	6.79E-02	3.66E-02	6.42E-02	6.43E-01	9.83E-02	1.07E+00
Quality	PDF*m2*y	r UF	1.96E-02	5.25E-02	6.54E-02	1.54E-02	2.97E-03	1.52E-04	1.19E-02	6.79E-02	3.66E-02	6.57E-02	5.96E-01	9.83E-02	1.03E+00
			- Kiraada haar	്ട് മാത്രമിന്നത	ii na finishad	inalizate di ange	創戶為 吸道的	ngsikn/Albei	(Girangaacaaaa	Filmilatika	liter odiadki	l'Alenci levanesa	Rissilk & level	iind ciiqead	
		CE	1.34E+00	1.86E+00	8.21E-01	4.32E-01	4.47E-02	9.01E-04	1.27E-02	5.82E-01	7.11E-01	2.40E-01	2.43E+00	1.17E-01	8.58E+00
		FO-P-US	1.34E+00	1.86E+00	8.21E-01	3.55E-01	4.52E-02	7.35E-04	1.43E-02	5.82E-01	7.11E-01	2.76E-01	2.84E+00	1.17E-01	8.96E+00
Fossil and		FO-L-US	1.34E+00	1.86E+00	8.21E-01	3.55E-01	4.52E-02	7.35E-04	1.39E-02	5.82E-01	7.11E-01	2.68E-01	2.91E+00	1.17E-01	9.02E+00
nuclear energy		FO-L-QC	1.34E+00	1.86E+00	8.21E-01	3.55E-01	4.52E-02	7.35E-04	1.39E-02	5.82E-01	7.11E-01	2.39E-01	2.52E+00	1.17E-01	8.60E+00
use	MJ de prive	d UF	1.34E+00	1.86E+00	8.21E-01	9.73E-01	4.52E-02	6.28E-05	1.27E-02	5.82E-01	7.11E-01	2.58E-01	2.57E+00	1.17E-01	9.29E+00

		Cow milk	Milk, at farm, national average/US	R5 : West	R4 : South west plus high plains	R3 : Upper Midwest	R2 : Southeast	R1 : Northeast
		{CA-QC}	Α	Coast USA	USA	USA	USA	USA
Climate Change	kg CO2 eq.	1.27E+00	1.58E+00	1.70E+00	1.81E+00	1.42E+00	1.73E+00	1.30E+00
Human health	DALY	1.97E-06	2.05E-06	3.08E-05	1.49E-05	5.31E-06	1.27E-05	6.25E-06
Ecosystem Quality	PDF*m2*yr	1.48E+00	2.69E+00	2.68E+00	4.82E+00	1.68E+00	1.96E+00	1.84E+00
Fossil and nuclear energy use	MJ deprived	2.20E+00	5.06E+00	5.73E+00	5.20E+00	4.56E+00	6.47E+00	4.17E+00

Table S10. US raw milk versus Québec cow milk; FU: 1 kg of raw milk.

Datasets: ecoinvent 3.4: cow milk {CA-QC} milk production, from cow | Alloc Rec, U for Québec and Thoma (2007-2008) milk, at the farm, /US U System for the USA.

S7.2. Midpoint Indicators Contributing to the Human Health and Ecosystem Quality Impact Categories

 Table S11. Cradle-to-grave impact indicators at midpoint; FU: 1kg of GY consumed; mass allocation.

Impact category	Unit	CE	FO-P-US	FO-L-US	FO-L-QC	UF
Climate change, short term	kg CO2 eq	2.51E+00	2.86E+00	2.88E+00	2.70E+00	2.56E+00
Climate change, long term	kg CO2 eq	1.64E+00	1.83E+00	1.85E+00	1.77E+00	1.69E+00
Land occupation, biodiversity	m2 arable la	1.72E+00	2.06E+00	2.06E+00	1.87E+00	1.73E+00
Land transformation, biodiversity	m2 arable la	2.69E-03	3.85E-03	3.84E-03	2.93E-03	2.70E-03
Fossil and nuclear energy use	MJ deprived	1.20E+01	1.40E+01	1.43E+01	1.24E+01	1.27E+01
Mineral resources use	kg deprived	5.95E-04	1.59E-03	1.60E-03	6.35E-04	5.98E-04
Water scarcity	m3 world-eq	9.36E-01	4.05E+00	4.05E+00	1.01E+00	9.39E-01
Freshwater acidification	kg SO2 eq	4.19E-03	5.77E-03	5.76E-03	4.50E-03	4.29E-03
Terrestrial acidification	kg SO2 eq	1.38E-02	1.95E-02	1.95E-02	1.50E-02	1.40E-02
Freshwater eutrophication	kg PO4 P-lim	1.23E-03	2.09E-03	2.08E-03	1.33E-03	1.23E-03
Marine eutrophication	kg N N-lim e	5.27E-04	1.73E-03	1.73E-03	5.66E-04	5.30E-04
Freshwater ecotoxicity	CTUe	9.65E+02	1.23E+03	1.19E+03	9.99E+02	9.71E+02
Particulate matter formation	kg PM2.5 eq	1.17E-06	1.62E-06	1.62E-06	1.26E-06	1.18E-06
Photochemical oxidant formation	kg NMVOC eq	3.87E-03	5.37E-03	5.44E-03	4.13E-03	3.95E-03
Human toxicity cancer	CTUh	9.62E-09	1.26E-08	1.22E-08	9.97E-09	9.69E-09
Human toxicity non cancer	CTUh	6.91E-08	8.34E-08	8.33E-08	7.21E-08	6.95E-08
Ionizing radiations	Bq C-14 eq	2.93E+00	3.50E+00	3.60E+00	3.12E+00	2.93E+00
Ozone Layer Depletion	kg CFC-11e	1.04E-07	1.14E-07	1.22E-07	1.10E-07	1.19E-07

Table S12. Cradle-to-grave HH impacts characterization at endpoint; FU: 1kg of GY consumed; mass allocation.

Unit	CE	FO-P-US	FO-L-US	FO-L-QC	UF
DALY	2.28E-06	2.14E-06	2.13E-06	2.47E-06	2.29E-06
DALY	1.17E-06	1.62E-06	1.62E-06	1.26E-06	1.18E-06
DALY	1.36E-10	1.92E-10	1.94E-10	1.45E-10	1.39E-10
DALY	1.10E-07	1.43E-07	1.39E-07	1.14E-07	1.11E-07
DALY	8.74E-10	1.31E-09	1.29E-09	9.18E-10	8.92E-10
DALY	1.52E-07	1.77E-07	1.77E-07	1.58E-07	1.53E-07
DALY	3.45E-08	4.77E-08	4.80E-08	3.64E-08	3.49E-08
DALY	6.04E-10	7.10E-10	7.32E-10	6.44E-10	6.05E-10
DALY	2.11E-10	2.34E-10	2.50E-10	2.24E-10	2.43E-10
	Unit DALY DALY DALY DALY DALY DALY DALY DALY	Unit CE DALY 2.28E-06 DALY 1.17E-06 DALY 1.36E-10 DALY 1.10E-07 DALY 8.74E-10 DALY 3.45E-08 DALY 6.04E-10 DALY 2.11E-10	Unit CE FO-P-US DALY 2.28E-06 2.14E-06 DALY 1.17E-06 1.62E-06 DALY 1.36E-10 1.92E-10 DALY 1.10E-07 1.43E-07 DALY 1.52E-07 1.77E-07 DALY 3.45E-08 4.77E-08 DALY 6.04E-10 7.10E-10 DALY 2.11E-10 2.34E-10	Unit CE FO-P-US FO-L-US DALY 2.28E-06 2.14E-06 2.13E-06 DALY 1.17E-06 1.62E-06 1.62E-06 DALY 1.36E-10 1.92E-10 1.94E-10 DALY 1.10E-07 1.43E-07 1.39E-07 DALY 8.74E-10 1.31E-09 1.29E-09 DALY 1.52E-07 1.77E-07 1.77E-07 DALY 3.45E-08 4.77E-08 4.80E-08 DALY 6.04E-10 7.10E-10 7.32E-10 DALY 2.11E-10 2.34E-10 2.50E-10	Unit CE FO-P-US FO-L-US FO-L-QS DALY 2.28E-06 2.14E-06 2.13E-06 2.47E-06 DALY 1.17E-06 1.62E-06 1.62E-06 1.26E-06 DALY 1.36E-10 1.92E-10 1.94E-10 1.45E-10 DALY 1.10E-07 1.43E-07 1.39E-07 1.14E-07 DALY 8.74E-10 1.31E-09 1.29E-09 9.18E-10 DALY 1.52E-07 1.77E-07 1.77E-07 1.58E-07 DALY 3.45E-08 4.77E-08 4.80E-08 3.64E-08 DALY 6.04E-10 7.10E-10 7.32E-10 6.44E-10 DALY 2.11E-10 2.34E-10 2.50E-10 2.24E-10

Table S13. Cradle-to-grave EQ impacts characterization at endpoint; FU: 1 kg of GY consumed; mass allocation.

	Unit	CE	FO-P-US	FO-L-US	FO-L-QC	UF
Marine acidification, short term	PDF.m2.yr	1.02E-02	1.22E-02	1.25E-02	1.08E-02	1.09E-02
Marine acidification, long term	PDF.m2.yr	9.44E-02	1.13E-01	1.15E-01	9.92E-02	1.00E-01
Land occupation, biodiversity	PDF.m2.yr	1.24E+00	1.48E+00	1.47E+00	1.35E+00	1.24E+00
Land transformation, biodiversity	PDF.m2.yr	8.16E-01	1.10E+00	1.10E+00	8.83E-01	8.18E-01
Water availability, freshwater ecosystem	PDF.m2.yr	1.16E-05	3.93E-05	3.93E-05	1.24E-05	1.16E-05
Water availability, terrestrial ecosyste	PDF.m2.yr	2.74E-04	2.89E-04	2.89E-04	2.98E-04	2.76E-04
Thermally polluted water	PDF.m2.yr	4.92E-07	4.93E-07	4.94E-07	5.16E-07	4.94E-07
Freshwater acidification	PDF.m2.yr	1.75E-02	2.46E-02	2.46E-02	1.90E-02	1.78E-02
Terrestrial acidification	PDF.m2.yr	1.96E-01	2.76E-01	2.76E-01	2.13E-01	1.98E-01
Freshwater eutrophication	PDF.m2.yr	3.89E-03	6.22E-03	6.23E-03	4.23E-03	3.91E-03
Marine eutrophication	PDF.m2.yr	6.61E-03	2.16E-02	2.16E-02	7.10E-03	6.65E-03
Freshwater ecotoxicity, short term	PDF.m2.yr	1.73E-03	4.29E-03	4.40E-03	1.83E-03	1.74E-03
Freshwater ecotoxicity, long term	PDF.m2.yr	5.49E-01	6.96E-01	6.77E-01	5.68E-01	5.53E-01
Ionizing radiation, ecosystem quality	PDF.m2.yr	4.70E-10	4.60E-10	4.87E-10	5.01E-10	4.70E-10

Table S14. Raw milk HH impacts characterization; average US raw milk versus Québec cow milk; FU: 1 kg of raw milk.

		Milk, at farm, national average/US	Cow milk
	Unit	Α	{CA-QC}
Water availability, human health	DALY	4.43E-07	7 1.26E-06
Particulate matter formation	DALY	1.42E-06	6.44E-07
Photochemical oxidant formation	DALY	1.55E-10	5.45E-11
Human toxicity cancer, short term	DALY	8.08E-08	2.63E-08
Human toxicity cancer, long term	DALY	9.40E-10	2.12E-10
Human toxicity non-cancer, short term	DALY	7.62E-08	3.84E-08
Human toxicity non-cancer, long term	DALY	3.02E-08	8.95E-09
Ionizing radiation, human health	DALY	2.66E-10) 1.93E-10
Ozone layer depletion	DALY	7.07E-11	6.05E-11

Table S15. Raw milk EQ impacts characterization; average US raw milk versus Québec cow m	ilk; FU:
1 kg of raw milk.	

		Milk, at farm, national	
		average/US	Cow milk
	Unit	Α	{CA-QC}
Marine acidification, short term	PDF.m2.yr	5.37E-03	2.83E-03
Marine acidification, long term	PDF.m2.yr	4.95E-02	2.61E-02
Land occupation, biodiversity	PDF.m2.yr	1.03E+00	7.45E-01
Land transformation, biodiversity	PDF.m2.yr	9.38E-01	4.53E-01
Water availability, freshwater ecosystem	PDF.m2.yr	6.53E-05	5.04E-06
Water availability, terrestrial ecosystem	PDF.m2.yr	1.41E-04	1.64E-04
Thermally polluted water	PDF.m2.yr	9.75E-08	1.56E-07
Freshwater acidification	PDF.m2.yr	2.18E-02	9.54E-03
Terrestrial acidification	PDF.m2.yr	2.52E-01	1.13E-01
Freshwater eutrophication	PDF.m2.yr	6.75E-03	2.30E-03
Marine eutrophication	PDF.m2.yr	3.58E-02	3.35E-03
Freshwater ecotoxicity, short term	PDF.m2.yr	5.75E-03	3.49E-04
Freshwater ecotoxicity, long term	PDF.m2.yr	3.48E-01	1.24E-01
lonizing radiation, ecosystem quality	PDF.m2.yr	4.22E-12	1.41E-10

S7.3. Other Factors Influencing the Performances of the Five GY Systems

UF has a 6% and 2% higher impact than CE in the FEU and CC impact categories, respectively, from cradle to grave (Table S8). This is partially attributable to the higher natural gas consumption of the heat exchangers at the plant (Table S9). FO-L-QC has 6% to 8% more impacts than CE and -2% to 7% more impacts than UF across all the impact categories (Table S8). This is mainly due to the largest amount of total raw milk required and, to a lesser extent, the transportation of MPC to the GY plant. The characterization of damages (Tables S10, S14 and S15) reveals two times more EQ impacts in the USA than Québec for land transformation and territorial acidification. In the HH category, particulate matter formation and human toxicity have 2.2 and 2.12 times more impacts in the USA than Québec, respectively, due to a higher level of maize crop and maize drying operations in the USA. The 19% discrepancy with respect to CC impacts is a combination of methane (CH4), oxide nitrous (N2O) and carbon dioxide (CO2) emissions from enteric fermentation, manure storage, soil fertilization and, to a lesser extent, crop production and farming energy consumption. The lower amplitude of CC (19%) compared to the FEU discrepancy (56%) between the USA and Québec may be explained by the higher nitrous oxide emissions caused by the more humid climate in Québec. A sensitivity analysis based on data collected by Thoma at farms and the regional level in USA (Thoma et al., 2013b) reveals notable gaps between regions, resulting in significant variations in CC scores (respectively +2.5% in northeast; + 26% in southeast; + 10% in upper Midwest; + 30% in southwest and high plains; + 25% on west coast) between Québec and the studied USA regions.

S8. Complementary Sensitivity Analyses

S8.1. Key Parameters Local Sensitivity Analysis

A local sensitivity analysis was performed. A total of 69 key parameters correlated to 93 calculated parameters were tested for the four impact categories. Results are illustrated in Figure S2. Sensitive parameters are consistent across categories. The findings show that the LCA results for each scenario are sensitive to parameters linked to the yield of the separation processes. These parameters (skimmed milk output, GY protein content, skimmed milk protein content, protein retention coefficient, etc.) influence the quantity of raw milk required at the input. Furthermore, the allocation factors attributed to coproducts significantly influence the magnitude of the impacts attributed to

GY. The results are also sensitive to L and W and somewhat sensitive to the packaging parameters (PS versus PP rate, and plastic materials weight), recycled rates and transportation operations for milk production, distribution and consumption.

S8.2. Detailed Sensitivity Analysis of Modelling and Methodological Choices

These analyses compare the environmental performances of the five studied scenarios based on the following modelling and methodological factors:

- Impact method: Impact World + results are compared to ReCiPe (E) results.
- Functional unit: 1kg of GY consumed is compared to 1 kg of milk treated in input.
- Allocation rule: mass allocation on dry matter is compared to economic allocation.
- Allocation factor: permeate from UF treated as waste (0% allocation) is compared to the valorization of milk components from UF permeate based on average Québec class VII prices in 2017.
- Protein yield of each technology: variation of the protein retention coefficient of CE, FO and UF are modified (± 0.01).
- Five milk sourcing regions are tested for the MPC from the USA (R1: north east; R2: southeast; R3: upper Midwest; R4: southwest plus high plains; R5: west coast).

Conclusions on the comparative environmental performances of the five scenarios are not sensitive to the environmental impact method (IMPACT World+ versus ReCiPe (E)), technology yield (illustrated by the variation in the protein retention coefficient) or functional unit (1 kg of yogurt consumed versus 1 kg of milk treated). However, as summarized in Table S16, the conclusions change with respect to the allocation rule (mass versus economic), allocation factor (value attributed to the whey) and milk sourcing region.

Figure 2. Change in CC, FEU, HH and EQ impacts for (+/- 1%) change in input parameters for CE option. Parameters causing less than 0.01% change in the four impact categories (CC, HH, EQ, or FEU) are not represented in the figure.

Table S16. Change in scenario classification according to sensitivity analyses.

-	OBJECT	CHANGE		CONCLUSION VS	LCA RESULTS	GENERAL
			CC	REFERENCE	CE <uf<fo-l-qc <fo-p-us<fo-l-< th=""><th>CLASSIFICATION</th></fo-p-us<fo-l-<></uf<fo-l-qc 	CLASSIFICATION
			нн		US CE <uf<fo-l-qc <fo-l-us<fo-p- US</fo-l-us<fo-p- </uf<fo-l-qc 	CE <uf<f0< td=""></uf<f0<>
	Reference	NA	EQ	NA	CE <uf<fo-l-qc <fo-l-us <fo-p-<br="">US</fo-l-us></uf<fo-l-qc 	except for FEU FO alternatives vary
			FEU		CE <fo-l-qc <uf<br=""><fo-p-us <fo-l-<br="">US</fo-p-us></fo-l-qc>	
			сс	Unchanged	CE <uf<fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </uf<fo-l-qc 	
	Impact	RECIPE (E) versus IMPACT	нн	Changed	CE <uf<fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </uf<fo-l-qc 	CE <uf<fo< td=""></uf<fo<>
	Method	WORD+	EQ	Changed	CE <uf<fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </uf<fo-l-qc 	FO alternatives vary
- DIOGY			FEU	Unchanged	CE <fo-l-qc <uf<br=""><fo-p-us <fo-l-<br="">US</fo-p-us></fo-l-qc>	
	Functional	1 kg of equivalent milk (MPC milk+ Qc raw milk input) vs 1 kg GY at the output	сс	Unchanged	CE <uf<fo-l-qc <fo-p-us=fo-l- US</fo-p-us=fo-l- </uf<fo-l-qc 	
METHOD			нн	Unchanged	<pre><fo-l-uc <="" <fo-l-us="FO-P-" pre="" us=""></fo-l-uc></pre>	CE <uf<fo-l-qc <fo-<="" td=""></uf<fo-l-qc>
ІВІЦТҮ ТС	unit		EQ	Unchanged	<pre>CE <uf<fo-l-qc <fo-l-us="FO-P-" pre="" us<=""></uf<fo-l-qc></pre>	P-05=F0-L-05
SENSI			FEU	Changed	CE <uf<fo-l-qc< b=""> <fo-p-us<fo-l- US</fo-p-us<fo-l- </uf<fo-l-qc<>	
			сс	Changed	UF<ce< b=""><fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </fo-l-qc </ce<>	
		Economic instead of mass allocation	U HH Changed <f ead of mass</f 		UF <ce<fo-l-qc <fo-l-us<fo-p- US</fo-l-us<fo-p- </ce<fo-l-qc 	Lowest: UF
			EQ	Changed	UF <ce<fo-l-qc <fo-l-us <fo-p-<br="">US</fo-l-us></ce<fo-l-qc 	others vary
	Allocation		FEU	Changed	CE <uf<fu-l-qc< b=""> <fo-p-us <fo-l-<br="">US</fo-p-us></uf<fu-l-qc<>	
	Anocation		сс	Changed	UF <ce<fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </ce<fo-l-qc 	
		Economic allocation with whey UF at 17.5 % instead of	нн	Changed	<pre><fo-l-us<fo-p- US</fo-l-us<fo-p- </pre>	Lowest: UF
		0 %	EQ	Changed	<pre>vFO-L-QC <fo-l-us <fo-p-="" pre="" us="" us<=""></fo-l-us></pre>	otners vary
			FEU	Changed	UF=CE <fo-l-qc <fo-p-us <fo-l-<br="">US</fo-p-us></fo-l-qc 	

-	OBJECT	CHANGE	IMPACT CATEGORY	CONCLUSION VS REFERENCE	LCA RESULTS	GENERAL CLASSIFICATION
			сс	Unchanged	CE < UF < FO-L-QC < FO-P-US < FO-L-US	
	Protein		нн	Unchanged	CE < UF < FO-L-QC < FO-L-US < FO-P-US	CE <uf<f0< td=""></uf<f0<>
	coefficient	Variation ± 0.01	EQ	Unchanged	CE < UF < FO-L-QC < FO-L-US < FO-P-US	FO alternatives vary
			FEU	Unchanged	CE < FO-L-QC < UF < FO-P-US < FO-L-US	
			сс	Changed	CE < UF < FO-L-QC < FO-L-US < FO-P-US	FO-L-QC < FO-L-US < FO- P-US
		R1 350 km vs	нн	Unchanged	CE < UF < FO-L-QC < FO-L-US < FO-P-US	
		1500 km	EQ	Unchanged	CE < UF < FO-L-QC < FO-L-US < FO-P-US	
			FEU	Changed	CE <fo-l-qc<uf <fo-l-us <fo-p-us<="" td=""><td></td></fo-l-us></fo-l-qc<uf 	
AETERS		R2 2000 km vs national average 1500 km	сс	Unchanged	CE <uf<fo-l-qc <fo-p-us<fo-l-us< td=""><td></td></fo-p-us<fo-l-us<></uf<fo-l-qc 	
PARAN			нн	Changed	CE <uf<fo-l-qc <FO-P-US<fo-l-us< b=""></fo-l-us<></uf<fo-l-qc 	FO-L-QC <fo-p-us<fo-< td=""></fo-p-us<fo-<>
o key I			EQ	Unchanged	CE <uf<fo-l-qc <fo-l-us <fo-p-us<="" td=""><td>L-US except for EQ</td></fo-l-us></uf<fo-l-qc 	L-US except for EQ
ארד אווודא ד			FEU	Unchanged	CE <fo-l-qc <uf<br=""><fo-p-us <fo-l-us<="" td=""><td></td></fo-p-us></fo-l-qc>	
SENSIE	US region of milk sourcing		сс	Unchanged	CE <uf<fo-l-qc <fo-p-us<fo-l-us< td=""><td></td></fo-p-us<fo-l-us<></uf<fo-l-qc 	
		R3 1500 km vs national average	НН	Unchanged	<pre><p< td=""><td>CE<uf<fo except for FEU</uf<fo </td></p<></pre>	CE <uf<fo except for FEU</uf<fo
		1500 km	EQ	Unchanged	CE <uf<fo-l-qc <fo-l-us <fo-p-us<="" td=""><td>FO alternatives vary</td></fo-l-us></uf<fo-l-qc 	FO alternatives vary
			FEU	Unchanged	CE <fo-l-qc <uf<br=""><fo-p-us <fo-l-us<="" td=""><td></td></fo-p-us></fo-l-qc>	
			сс	Unchanged	CE < UF < FO-L-QC < FO-P-US < FO-L-US	
		R4 3000 km vs	нн	Changed	CE < UF < FO-L-QC < FO-P-US < FO-L-US	CE < UF < FO
		1500 km	EQ	Unchanged	CE < UF < FO-L-QC < FO-L-US < FO-P-US	FO alternatives vary
			FEU	Unchanged	CE < FO-L-QC < UF < FO-P-US < FO-L-US	

Table 16. (continued).

- OBJE	ECT CHANGE	IMPACT CATEGORY	CONCLUSION VS REFERENCE	LCA RESULTS	GENERAL CLASSIFICATION
		сс	Unchanged	CE <uf<fo-l-qc <fo-p-us<fo-l- US</fo-p-us<fo-l- </uf<fo-l-qc 	
	R5 5000 km vs	нн	Changed	CE <uf<fo-l-qc <FO-P-US<fo-l-< b=""> US</fo-l-<></uf<fo-l-qc 	F0-1-00 4F0-P-11S
	average 1500 km	EQ	Changed	CE <uf<fo-l-qc <fo-p-us <fo-l-<br="">US</fo-p-us></uf<fo-l-qc 	<fo-l-us< td=""></fo-l-us<>
		FEU	Unchanged	CE <fo-l-qc <uf<br=""><fo-p-us <fo-l-<br="">US</fo-p-us></fo-l-qc>	

 Table 16. (continued and end).

S8.3. Influence of the MPC Drying Process and Transportation Distances

The transportation of 1 ton of liquid MPC over 1500 km corresponds to 20 420 MJ deprived as compared to 75 600 MJ deprived for equivalent MPC drying. These results are consistent with the previous study by Depping et al., (2017) showing that liquid concentrates have a lower cumulative energy demand than powders for distances \leq 1 000 km due to the high energy intensity of the spray drying operation. Focusing on CC impacts, the powder scenario (MPC-P-US-A) becomes more favorable than liquid MPC (MPC-L-US-A) for distances over 750 km (red dot in Figure S3) but with four times less kg transported (0.03 kg MPC powder versus 0.12 kg MPC liquid per kg of functional unit).

The milk sourcing region and type of MPC (powder versus liquid) are more sensitive parameters than the transportation distances. Indeed, MPC-L-US is still more impactful for a transportation distance reduced to 250 km than MPC-L-QC transported over 3 250 km. Selecting MPC with milk sourced from less impactful regions in the USA such as New York State in North East (R1) significantly reduces the gap with MPC-L-QC. In contrast, MPC (powder or liquid) from South West USA (R4) would be the worst scenario. Finally, producing liquid MPC at the GY plant in Québec (0 km transportation) decreases the MPC-L-QC system impact by 2% but has a very limited influence on the total life cycle environmental performance of the FO-L-QC scenario. **Table S17** provides the numerical gaps for each scenario.

Table 17. Numerical impact variation as a function of scenario; CE: centrifugation; UF: ultrafiltration; FO-L-QC: fortification with liquid MPC from Québec. FO-P-US-AV: fortification with MPC 80 powder from USA with USA raw milk average; FO-L-US-AV: fortification liquid MPC from USA with USA raw milk average; FO-P-US -R1: fortification with MPC 80 powder from north east USA; FO-L-US -R1: fortification with liquid MPC from north east USA (R2: southeast; R3: upper Midwest; R4: southwest plus high plains; R5: west coast).

	limate chan	ge		Human heal	th	Ec	osystem qu	ality	Fossil a	nd nuclear er	ir energy use	
Unit	kg CO2 e q	Delta with CE		DALY	Delta with CE		PDF.m2.yr	Delta with CE		MJ deprived	Delta with CE	
CE	2.51E+00	0.0%	CE	3.74E-06	0.0%	CE	2.93E+00	0.0%	CE	12.00496	0.0%	
UF	2.56E+00	2.1%	UF	3.77E-06	0.6%	UF	2.95E+00	0.7%	FO_L_QC	12.426219	3.5%	
FO_L_QC	2.70E+00	7.8%	FO_L_QC	4.04E-06	7.9%	FO_L_QC	3.15E+00	7.5%	UF	12.718108	5.9%	
FO_L_US R1	2.72E+00	8.5%	FO_L_US AV	4.12E-06	10.1%	FO_L_US R3	3.26E+00	11.1%	FO_L_US R1	13.378094	11.4%	
FO_P_USR1	2.73E+00	8.9%	FO_P_USAV	4.13E-06	10.2%	FO_P_US R3	3.28E+00	11.7%	FO_P_US R1	13.515249	12.6%	
FO_P_US R3	2.79E+00	11.1%	FO_L_US R3	5.57E-06	48.9%	FO_L_US R1	3.32E+00	13.1%	FO_P_US R3	13.769422	14.7%	
FO_L_US R3	2.81E+00	12.0%	FO_P_US R3	5.58E-06	49.0%	FO_P_US R1	3.35E+00	14.1%	FO_P_US AV	13.988385	16.5%	
FO_P_USAV	2.86E+00	14.0%	FO_L_US R1	5.98E-06	59.6%	FO_L_US R2	3.39E+00	15.4%	FO_L_US R3	14.048611	17.0%	
FO_L_USAV	2.88E+00	14.9%	FO_P_US R1	6.00E-06	60.1%	FO-P_US R2	3.40E+00	15.9%	FO_P_US R4	14.156732	17.9%	
FO-P_US R2	2.93E+00	16.8%	FO-P_US R2	8.90E-06	137.6%	FO_L_US AV	3.71E+00	26.5%	FO_L_US AV	14.267574	18.8%	
FO_P_US R5	2.93E+00	16.8%	FO_L_US R2	8.90E-06	137.7%	FO_P_US R5	3.73E+00	27.1%	FO_P_US R5	14.534375	21.1%	
FO_L_US R2	2.97E+00	18.2%	FO_P_US R4	9.85E-06	162.9%	FO_P_US AV	3.73E+00	27.1%	FO-P_US R2	14.655493	22.1%	
FO_P_US R4	2.97E+00	18.4%	FO_L_US R4	9.86E-06	163.4%	FO_L_US R5	3.74E+00	27.4%	FO_L_US R4	14.978978	24.8%	
FO_L_US R4	3.03E+00	21.0%	FO_P_US R5	1.69E-05	352.3%	FO_L_US R4	4.67E+00	59.3%	FO_L_US R2	15.115701	25.9%	
FO_L_US R5	3.05E+00	21.5%	FO_L_US R5	1.70E-05	353.5%	FO_P_US R4	4.68E+00	59.5%	FO_L_US R5	16.080697	34.0%	

Figure 3. CC impacts variation as a function of transportation distance from MPC plant to GY plant for the three MPC sourcing alternatives scaled-up to the FU (1 kg of GY): MPC-P-US-A: 0.03 kg MPC 80 powder from USA with USA raw milk average; 0.12 kg MPC-L-US -A: liquid MPC from USA with

USA raw milk average; 0.03 kg MPC-PUS -R1: MPC 80 powder from north east USA (R2: southeast; R3: upper Midwest; R4: southwest plus high plains; R5: west coast); 0.12 kg MPC-L-QC: liquid MPC from Québec.

S8.4. Potential CC Impact Reduction as a Function of Losses and Wastage (L and W), Energy Consumption at Plant and Packaging Parameters

A 1% reduction in L and W would decrease the CC impacts by 1.84E-2 eq. CO₂, whereas a 1% reduction in energy consumption (electricity and natural gas) would decrease CC impacts by only 0.03E-2 eq. CO₂ at the manufacturing plant. To reduce CC impacts, a 1% L and W reduction at the GY plant (yellow dot) is more effective than a 10% reduction in energy consumption (Figure S4). Even higher impact mitigation potential may be explored by reducing L and W in distribution and consumption, which represent 20% of the life cycle impacts.

Reducing the weight of single-serving PS containers or encouraging multi-serving PP containers could have a greater benefit on CC than efforts to reduce plant energy consumption. As highlighted in the dairy LCA literature, this finding confirms that manufacturers' efforts to reduce weight or losses and improve the design or material selection of primary packaging components could reduce the product's environmental impact.

Simultaneously reducing PS weight and PS rate by 10% is only as effective as reducing the L and W by 1% at the plant. Therefore, efforts spent on reducing packaging environmental impacts must be qualified by the potential collateral effects on L and W. Indeed, switching to multi-serve PP containers instead of single serve PS containers may increase L and W in the household stage, resulting in a potential increase in the environmental burden. Packaging improvements may reduce the impacts of the GY system, especially in the CC and FEU categories, but packaging eco-design efforts must integrate the potential risk of additional product L and W in the value chain because any additional L and W offset the gains from packaging and are more damaging to the environment (Wikstrom et al., 2014). The further research required in this area is beyond the scope of this study.

Figure 4. Potential CC impacts reduction as a function of key parameter reduction efforts (reduction of energy consumption at the plant (electricity and natural gas), L and W reduction at plant, at home and in the distribution stage, packaging improvement (PS weight reduction and PS versus PP rate reduction) for 1 kg of GY consumed based on the CE technology scenario.

S9. References

- 1. AAFC, 2015. An Overview of Canadian Food Loss and Waste Estimates. Webinars. Available online: https://www.brandonu.ca/rdi/files/2014/03/Abdel-Presentation2.pdf (accessed on 2 October 2020).
- 2. Abdulla, M.; Martin, R.; Gooch, M.; Jovel, E. The Importance of Quantifying Food Waste in Canada. *J. Agric. Food Syst. Community Dev.* **2013**, *3*, 137–151, doi:10.5304/jafscd.2013.032.018.
- 3. Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual yoghurt whey for lactic acid production. *Biomass-Bioenergy* **2010**, *34*, 931–938, doi:10.1016/j.biombioe.2010.01.041.
- Bareille, N.; Gésan-Guiziou, G.; Foucras, G.; Coudurier, B.; Randriamampita, B.; Peyraud, J.-L.; Agabriel, J.; Redlingshöfer, B. Les pertes alimentaires en filière laitière. *Innov. Agron.* 2015, 48, 143–160.
- 5. Berlin, J.; Sonesson, U. Minimising environmental impact by sequencing cultured dairy products: two case studies. *J. Clean. Prod.* **2008**, *16*, 483–498, doi:10.1016/j.jclepro.2006.10.001.
- 6. Bong, D.; Moraru, C. Use of micellar casein concentrate for Greek-style yogurt manufacturing: Effects on processing and product properties. *J. Dairy Sci.* **2014**, *97*, 1259–1269, doi:10.3168/jds.2013-7488.
- Burek, J.; Kim, D.; Nutter, D.; Selke, S.; Auras, R.; Cashman, S.; Sauer, B.; Thoma, G. Environmental Sustainability of Fluid Milk Delivery Systems in the United States. *J. Ind. Ecol.* 2017, 22, 180–195, doi:10.1111/jiec.12531.
- 8. Koester, U. Total and per capita value of food loss in the United States Comments. *Food Policy* **2013**, *41*, 63–64, doi:10.1016/j.foodpol.2013.04.003.
- Damin, M.R.; Alcantara, M.R.; Nunes, A.P.; Oliveira, M.N. Effects of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheological properties and structure of nonfat stirred yogurt. *LWT* 2009, *42*, 1744–1750, doi:10.1016/j.lwt.2009.03.019.
- Depping, V.; Grunow, M.; Van Middelaar, C.; Dumpler, J. Integrating environmental impact assessment into new product development and processing-technology selection: Milk concentrates as substitutes for milk powders. *J. Clean. Prod.* 2017, 149, 1–10, doi:10.1016/j.jclepro.2017.02.070.
- 11. Desai, N.; Shepard, L.; Drake, M. Sensory properties and drivers of liking for Greek yogurts. *J. Dairy Sci.* **2013**, *96*, 7454–7466, doi:10.3168/jds.2013-6973.
- FAO, 2011. Global food losses and food waste Extent, causes and prevention. Rome Agriculture Organization of United Nations. Food and Agriculture Organization of United Nations - Rural Infrastructure and Agro-Industries Division. Available online: http://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_a nd_Food_Waste.pdf (accessed on 2 October 2020).
- 13. Flysjö, A. Potential for improving the carbon footprint of butter and blend products. *J. Dairy Sci.* **2011**, *94*, 5833–5841, doi:10.3168/jds.2011-4545.
- 14. GEA Technical sheet KDE45-02-076 separator Available online: https://www.gea.com/en/productgroups/centrifugesseparation_equipment/centrifugal-separator/index.jsp (accessed on 2 October 2020).
- 15. González-García, S.; Castanheira, Érica G.; Dias, A.C.; Arroja, L. Environmental life cycle assessment of a dairy product: the yoghurt. *Int. J. Life Cycle Assess.* **2012**, *18*, 796–811, doi:10.1007/s11367-012-0522-8.
- 16. Gunders, D., 2012. Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill. Available online: https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill (accessed on 2 October 2020).
- 17. Gyawali, R.; Ibrahim, S.A. Addition of pectin and whey protein concentrate minimises the generation of acid whey in Greek-style yogurt. *J. Dairy Res.* **2018**, *85*, 238–242, doi:10.1017/s0022029918000109.

- Gyawali, R.; Ibrahim, S.A. Effects of hydrocolloids and processing conditions on acid whey production with reference to Greek yogurt. *Trends Food Sci. Technol.* 2016, 56, 61– 76, doi:10.1016/j.tifs.2016.07.013.
- Jørgensen, C.E.; Abrahamsen, R.K.; Rukke, E.-O.; Hoffmann, T.K.; Johansen, A.-G.; Skeie, S.B. Processing of high-protein yoghurt – A review. *Int. Dairy J.* 2019, *88*, 42–59, doi:10.1016/j.idairyj.2018.08.002.
- Kantor, L.S., Lipton, K., Manchester, A., Oliveira, V., 1997. Estimating and Addressing America's Food Losses. Available online: https://endhunger.org/docs_hunger/USDA-Jan97a.pdf (accessed on 2 October 2020).
- 21. Keoleian, G.A.; Phipps, A.W.; Dritz, T.; Brachfeld, D. Life cycle environmental performance and improvement of a yogurt product delivery system. *Packag. Technol. Sci.* **2004**, *17*, 85–103, doi:10.1002/pts.644.
- 22. Mena, C.; Adenso-Diaz, B.; Yurt, O. The causes of food waste in the supplier–retailer interface: Evidences from the UK and Spain. *Resour. Conserv. Recycl.* **2011**, *55*, 648–658, doi:10.1016/j.resconrec.2010.09.006.
- 23. Office National de l'énergie du Canada. Available online: https://apps.nebone.gc.ca/Conversion/conversion-tables.aspx?GoCTemplateCulture=fr-CA#s1ss2; (accessed on 12 March 2018).
- 24. Valencia, A.P.; Doyen, A.; Benoit, S.; Margni, M.; Pouliot, Y. Effect of Ultrafiltration of Milk Prior to Fermentation on Mass Balance and Process Efficiency in Greek-Style Yogurt Manufacture. *Foods* **2018**, *7*, 144, doi:10.3390/foods7090144.
- Parfitt, J., Woodham, S., Swan, E., Castella, T., Parry, A., 2016. WRAP Quantification of food surplus, waste and related materials in the grocery supply chain. Available online: http://www.refreshcoe.eu/wp-content/uploads/2017/06/WRAP-Quantification-of-foodsurplus-and-waste-May-2016-Final-Report-Summary.pdf (accessed on 2 October 2020).
- 26. PLQ. 2016. Les producteurs de lait du Québec. Bilan annuel 2016 Available online: https://lait.org/notre-organisation/rapport-annuel/ (accessed on 2 October 2020).
- 27. Prasad, P.; Pagan B. "Eco-Efficiency and Dairy Processing." Aust. J. Dairy Technol. 2006, 61, 231–37
- Prasad, Penny, et al. Eco-Efficiency for the Dairy Processing Industry The UNEP Working Group for Cleaner Production in the Food Industry. 2004. Available online: https://espace.library.uq.edu.au/data/UQ_40900/Ecoefficiency_manual_201_Pagan.pdf?Expires=1511960295&Signature=F2cmQrKZB6bXo ORFogjJOVC2a6i5O2m5fu3hW6od7Kz3sHR56ez6Xxm2FR2- (accessed on 2 October 2020).
- RECYC-QUÉBEC. Bilan 2015 de La gestion Des Matières Résiduelles au Québec. 2017, p. 39, Available online: https://www.recycquebec.gouv.qc.ca/sites/default/files/documents/bilan-gmr-2015.pdf. (accessed on 2 October 2020).
- RECYC-QUÉBEC. Bilan 20112 de La Gestion des Matières Résiduelles au Québec. 2015, p. 39, Available online: https://www.recycquebec.gouv.qc.ca/sites/default/files/documents/bilan-gmr-2015.pdf. (accessed on 12 March 2018).
- 31. Salesse, Rébecca, et al. Bilan GMR 2012 de La Gestion Des Matières Résiduelles Au Québec. 2012. Available online: https://www.recycquebec.gouv.qc.ca/sites/default/files/documents/bilan-gmr-2012.pdf (accessed on 2 October 2020).
- 32. Shamsia, S.M.; El-Ghannam, M.S. 2012. Manufacture of Labneh from Cow's Milk Using Ultrafiltration Retentate With or Without Addition of Permeate Concentrate Manufacture of Labneh from Cow's Milk Using Ultrafiltration Retentate With or Without Addition of Permeate Concentrate. *Alex. Sci. Exch. J.* 2012, 33, 26–33.

- Tamime, A.Y.; Hickey, M.; Muir, D.D. Strained fermented milks A review of existing legislative provisions, survey of nutritional labelling of commercial products in selected markets and terminology of products in some selected countries. *Int. J. Dairy Technol.* 2014, 67, 305–333, doi:10.1111/1471-0307.12147.
- 34. Thoma, G.; Popp, J.S.H.; Nutter, D.; Shonnard, D.R.; Ulrich, R.; Matlock, M.D.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. *Int. Dairy J.* **2013**, *31*, S3–S14, doi:10.1016/j.idairyj.2012.08.013.
- 35. Thoma, G.; Popp, J.; Shonnard, D.; Nutter, D.; Matlock, M.; Ulrich, R.K.; Kellogg, W.; Kim, D.S.; Neiderman, Z.; Kemper, N.; et al. Regional analysis of greenhouse gas emissions from USA dairy farms: A cradle to farm-gate assessment of the American dairy industry circa 2008. *Int. Dairy J.* 2013, *31*, S29–S40, doi:10.1016/j.idairyj.2012.09.010.
- Tomasula, P.; Yee, W.; McAloon, A.; Nutter, D.; Bonnaillie, L. Computer simulation of energy use, greenhouse gas emissions, and process economics of the fluid milk process. *J. Dairy Sci.* 2013, *96*, 3350–3368, doi:10.3168/jds.2012-6215.
- 37. Tong, P., 2013. Options for making Greek yogurt. Dairy Foods. Available online: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?referer=https://scholar.google. com/&httpsredir=1&article=1116&context=dsci_fac (accessed on 2 October 2020).
- 38. Uduwerella, G.; Chandrapala, J.; Vasiljevic, T. Preconcentration of yoghurt base by ultrafiltration for reduction in acid whey generation during Greek yoghurt manufacturing. *Int. J. Dairy Technol.* **2017**, *71*, 71–80, doi:10.1111/1471-0307.12393.
- 39. Uduwerella, G.; Chandrapala, J.; Vasiljevic, T. Minimising generation of acid whey during Greek yoghurt manufacturing. *J. Dairy Res.* **2017**, *84*, 346–354, doi:10.1017/s0022029917000279.
- 40. Wikström, F.; Williams, H.; Verghese, K.; Clune, S. The influence of packaging attributes on consumer behaviour in food-packaging life cycle assessment studies a neglected topic. *J. Clean. Prod.* **2014**, *73*, 100–108, doi:10.1016/j.jclepro.2013.10.042.
- 41. Yee, W.C., Mcaloon, A.J., Tomasula, P.M., 2013. Manual for the Fluid Milk Process Model and Simulator, Dairy process MANUAL VER3 pmt May 2013, Available online: https://www.ars.usda.gov/ARSUserFiles/80720515/Dairy%20process%20MANUAL%2 0VER3%20pmt%20May%202013.docx (accessed on 2 October 2020).

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).