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Abstract: This article presents a methodological foundation to design and experimentally test a Model
Predictive Controller (MPC) to be applied in renewable source-based microgrids with hydrogen
as backup. The Model Predictive Controller has been developed with the aim to guarantee the
best energy distribution while the microgrid operation is optimized considering both technical and
economic parameters. As a differentiating element, this proposal provides a solution to the problem of
energy management in real systems, addressing technological challenges such as charge management
in topologies with direct battery connection, or loss of performance associated with equipment
degradation or the required dynamics in the operation of hydrogen systems. That is, the proposed
Model Predictive Controller achieves the optimization of microgrid operation both in the short and
in the long-term basis. For this purpose, a generalized multi-objective function has been defined
that considers the energy demand, operating costs, system performance as well as the suffered
and accumulated degradation by microgrid elements throughout their lifespan. The generality in
the definition of the model and cost function, allows multi-objective optimization problems to be
raised depending on the application, topology or design criteria to be considered. For this purpose,
a heuristic methodology based on artificial intelligence techniques is presented for the tuning of
the controller parameters. The Model Predictive Controller has been validated by simulation and
experimental tests in a case study, where the performance of the microgrid under energy excess and
deficit situations has been tested, considering the constrains defined by the degradation of the systems
that make up the microgrid. The designed controller always made it possible to guarantee both the
power balance and the optimal energy distribution between systems according to the predefined
priority and accumulated degradation, while guaranteeing the maximum operating voltage of the
system with a margin of error less than 1%. The simulation and experimental results for the case
study showed the validity of the controller and the design methodology used.

Keywords: model predictive control; energy management system; renewable source-based smart
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1. Introduction

In general, a smart grid is a concept that comprises an efficient way to manage electricity that uses
different technologies and tools to optimize the production and distribution of electricity, pursuing the
balance between producers and consumers [1,2].

Specifically, in the case of renewable source-based microgrids with hydrogen as backup (Figure 1
shows the general architecture of a hydrogen-based microgrid), the intelligent management system
must be responsible not only for satisfying the load at all times, optimizing production and distribution
but it must accomplish pivotal goals in the case of hydrogen systems as lifespan, degradation, costs,
operating time and losses [3,4].
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The energy management system (EMS) provides a wide variety of control solutions from simple
heuristic strategies based on the hysteresis operation mode [5–7], methods focused on artificial
intelligence by the use of fuzzy logic [8–11], as well as complex control algorithms aimed at optimizing
multi-objective functions [12–14]. In the latter cited category, the use of techniques based on Model
Predictive Control (MPC) theory has been gaining relevance in recent years, due to its simplicity and
good performance [15–17].

MPC theory is a multivariable control method which is based on an optimization function, so if a
suitable model plant is available, MPC theory drives the predicted plant output to the desired reference
as close as possible, taking into account the constraints supported by the plant [18,19].

It is possible to find in the scientific literature configurations of microgrid with similar structure
to that presented in Figure 1, where the MPC controller is based on a simplified LTI model of the
plant. In these cases, the controller function is to determine the energy distribution of the microgrid,
taking into account exclusively the power balance and predefined set points for the energy storage
system [17,20–25]. Then, these solutions present a very simple proposal because it obviates the
influence of economic cost, operating efficiency, equipment degradation, as well as criteria associated
with battery charge/discharge management.

By contrast, other works based on the economic optimization of the microgrid have been presented.
For this purpose, a cost function that includes economic terms associated with the grid energy flow
and the operation and maintenance cost of the systems is proposed. In these works, no actions are
carried out with the objective of establishing technical optimization criteria.

Therefore, in References [18,26] an MPC controller is used based on simplified LTI models which
seeks to maximize the economic performance of the microgrid. For this, the behavior of the microgrid
is validated through simulations in a residential application for different annual generation and
consumption profiles. Variants of previous MPC controllers are shown in Reference [27]. This paper
presents an MPC controller based on evolutionary algorithms, which starts from a complex nonlinear
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model of the microgrid and proposes an objective function that minimizes its operating costs in
economic terms. Unlike previous work, Reference [28] presents an objective function which takes
into account the microgrid operating costs based on equipment depreciation costs. The cost function
includes terms associated with the amortization of the systems, without addressing specific solutions
based on the technical criteria presented. This work was validated through experimentation in
a residential application. Finally, in References [29–32], strategies based on MILP (Mixed Integer
Linear Programming) and MIQP (Mixed Integer Quadratic Programming) theory are presented.
These solutions are used to solve the optimization problem posed using a hybrid model, which makes
use of discrete variables to define operating cycles of batteries and hydrogen system, without considering
technical optimization criteria. The results were validated through experimentation and simulation in
residential applications.

In the last instance, there are different solutions in the scientific literature in which the objective
function allows optimizing not only the operating cost, but also the equipment lifetime. These solutions
present a more complex multi-objective optimization problem based on system cost functions and
MIQP, dependent on the current operating parameters of the system.

In the papers presented in References [12,33–37], the optimization problem is based on complex
particular cost functions for all systems, defining an objective function that integrates the economic
costs associated with the use of the electrical grid, as well as the equipment’s amortization costs.
The proposed energy management problem is based on cost minimization, as well as the maintenance
of certain levels of energy in the energy storage systems, posing a tracking problem. These solutions are
based on determining the degradation of the equipment in terms of operating cycles and changes in the
power set point for each discretization period, without considering the historical state of the system.

Based on the literature review, most of the solutions reviewed are based on simple LTI, MILP or
MIQP models, which only include the model of the energy state of the system in terms of battery SOC,
as well as the level of hydrogen stored. The use of these types of solutions can have a negative impact
on the prediction capability of the controller, and therefore on the system’s behavior [38–40].

Based on the application of the different proposals, most of the works focus their studies and
validations on simulations [18,25–27,30–33], presenting great difficulties in real applications in terms
of generation, demand, equipment performance, safety criteria, etc. In this sense, attending to the
safety and management of batteries, no scientific work proposes solutions considering battery charge
management beyond the limitation of the battery SOC, which may be insufficient in terms of efficiency
and safety in real battery operation.

Similarly, the solutions that include the degradation of the systems, are based solely on the
short term [12,28,33–37,41]. That is, the equipment degradation in each sample time is evaluated,
without considering the system’s past history. Therefore, the controller bases its operation on the
assumption that the devices’ performance remains constant throughout their lifetime, and therefore,
the reduction of efficiency and nominal power in accordance with the accumulated degradation are
not considered. Based on this assumption, the controller design will not be suitable for long-term
optimization purposes.

Finally, most of the reviewed works present particular solutions according to the topology,
and application. This particularity makes difficult to extrapolate the methodology proposed in each
paper to any other configuration that differs from the used model in each case.

To respond to the gaps found in the literature review, this paper presents a generalized formulation
for the design of MPC controllers applied to renewable energy microgrids with hydrogen as energy
vector. According to the controller design, a simple and effective cause–effect tuning methodology
enables the adaptation of the controller’s parameters according to the objectives, topology and
application of the microgrid. The proposed solution makes use of the model presented in Reference [42],
which integrates and defines all the technical and economic parameters necessary in the output vector
for its correct and direct application in the proposed cost function. The use of an LPV (Linear Parameter
Variant) type model allows to have a linear model of the system in each sampling period, solving
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the need of applying non-linear/hybrid control techniques, which are characterized by a higher
computational complexity and cost.

To guarantee the correct application in real systems, the proposed algorithm is hybridized
with artificial intelligence techniques (Fuzzy Logic) to provide a safe solution to the battery charge
management in topologies with direct battery connection (Figure 1). Similarly, the tuning methodology
proposed in conjunction with the LPV model used allows the system to make the optimal energy
distribution considering the associated degradation and loss of performance of the energy storage
equipment. All this will have a positive impact on the lifetime of the system.

Table 1 shows the novelty of this work highlighting its main contributions regarding previous
scientific works.

The paper is organized as follows: Section 2 presents the fundamentals of the developed MPC
controller, and the tuning guideline. Below, Section 3 solves a real case study to demonstrate the good
performance of the designed MPC controller (both by simulation and experimentally). The results are
discussed in Section 4 and, finally, conclusions are addressed in Section 5.
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Table 1. Main contribution of the authors’ proposal regarding most relevant previous scientific works.

Reference EMS Criteria Device Degradation Model Approach Battery Management Criteria MPC Solution Short/Long Term

[17,20–25] Power balance No Predefined singles
points No

LTI
Particularized to topology

and objectives
Short term

[18,26–32] Power balance,
Economic No Single working points No

LTI and MILP, MIQP
Particularized to topology

and objectives
Short term

[12,33–37]
Power balance,

Economic based on
degradation

Yes
without past history Single working points No

MIQP
Particularized to topology

and objectives
Short term

Authors’s proposal Power balance,
Economic, Technical

Yes
considering past

history

Model parameter
variant

SOC, Voltage, Degradation,
Power variation LPV Generalized + Fuzzy Logic Short/Long term
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2. MPC Controller. Structure and Design Guidelines

2.1. MPC Controller Structure

The design of the MPC controller, is based on the availability of a good microgrid model. In fact,
this Linear Parameter Variant (LPV) discrete state–space model was developed by the authors in
Reference [42] and it is reproduced again in (1). In Reference [42], the way to obtain all the state vector
coordinates, as well as the control matrices parameters, is carefully explained.

SOC(k + 1)
HL(k + 1)
Vbat(k + 1)
Csys(k + 1)
Dbat(k + 1)
DH2(k + 1)
Loss(k + 1)
PH2(k + 1)
Pgrid(k + 1)
Pnet(k + 1)



=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

SV(k) 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





SOC(k)
HL(k)
Vbat(k)
Csys(k)
Dbat(k)
DH2(k)
Loss(k)
PH2(k)
Pgrid(k)
Pnet(k)



+



S1(k) 0 0
0 rels(k) orr f c(k) 0

VP(k) 0 0
C1(k) C2(k) or−C3(k) C4(k)
D1(k) 0 0

0 D2(k) or−D3(k) 0
L1(k) L2(k) or− L3(k) L4(k)

0 1 0
0 0 1
1 1 1




Pbat(k)
PH2(k)
Pgrid (k)

+



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




v1(k)
v2(k)
v3(k)





SOC(k)
HL(k)
Vbat(k)
Csys(k)
Dbat(k)
DH2(k)
Loss(k)
PH2(k)
Pgrid(k)
Pnet(k)



=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





SOC(k)
HL(k)
Vbat(k)
Csys(k)
Dbat(k)
DH2(k)
Loss(k)
PH2(k)
Pgrid(k)
Pnet(k)



+



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0




dSOC(k)
dHL(k)
dVbat(k)



(1)

The meaning of the state and output vector coordinates are as follows: battery SOC (SOC),
hydrogen level (HL), battery voltage (Vbat), operating costs (Csys), battery degradation (Dbat), H2 system
degradation (DH2), microgrid operating losses (Loss), H2 system power (PH2), power exchanged with
the electrical grid (Pgrid), and net power of the microgrid (Pnet), i.e., according to Figure 1, available
renewable power minus that consumed by loads and losses.

Regarding the control vector, its first coordinate is the battery power (Pbat) and the following two
the state vector coordinates PH2 and Pgrid. Finally, v and d vectors represent the model and output
disturbances respectively.

Model (1) is not static but is continually changing based on the microgrid state. Regarding the
latter (see Figure 1), the used signs criterion is that the delivered power to the DC bus is negative while
the consumed one is positive.
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Based on the above, the general architecture of the MPC controller is shown in Figure 2.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 28 
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In practice, to carry out the MPC control strategy, it is necessary to define the constraints related
to the physical limits of the microgrid. Therefore, to illustrate the procedure and without any loss
of generality, the microgrid and MPC controller topology presented in Figures 1 and 2, respectively,
will be used. This one, modelled on (1), will be subjected to the constraints gathered in (2):

SOCmin ≤ SOC ≤ SOCmax
HLmin ≤ HL ≤ HLmax

Vbatmin ≤ Vbat ≤ Vbatmax
Csys ≥ 0
Dbat ≥ 0
DH2 ≥ 0
Loss ≥ 0

−Pmaxbatdisc
≤ Pbat ≤ Pmaxbatchar

−Pmax f c ≤ PH2 ≤ Pmaxels
−Pmaxgridin ≤ Pgrid ≤ Pmaxgridout

Pnetmin ≤ Pnet ≤ Pnetmax
−∆Pmaxbat_disc ≤ ∆Pbat ≤ ∆Pmaxbatchar

−∆Pmax f c ≤ ∆PH2 ≤ ∆Pmaxels
−∆Pmaxgridin ≤ ∆Pgrid ≤ ∆Pmaxgridout

(2)

To match the constraints shown in (2) with those of the standard form Pz ≤ δ, the problem
is reduced to three inequalities: future control action constraints (∆Pbat, ∆PH2, ∆Pgrid); plant input
constraints (Pbat, PH2, Pgrid, Pnet); and plant output constraints (SOC, HL, Vbat, Csys, Dbat, DH2, LOSS).

The limit values SOCmin, SOCmax, HLmin, HLmax, Vbatmin and Vbatmax are associated with the
minimum and maximum operating values defined by the safe operating margins of batteries and
hydrogen-based storage systems. On the other hand, restrictions on operating powers are defined as
the maximum power values (Pbat, PH2 and Pgrid) and variation in the power setpoint (∆Pbat, ∆PH2 and
∆Pgrid) according to the sign criteria (the criterion defined regarding Figure 1, following the state-space
discrete model (1) was that the delivered power had to be negative and the consumed power positive):
In the case of batteries, the minimum and maximum value will be given by the maximum charging
and discharging powers of the battery bank (Pmaxbatdisc

, ∆Pmaxbat_disc and Pmaxbatchar
, ∆Pmaxbatchar

respectively), for the hydrogen system, the minimum and maximum value will be given by the nominal
powers of the fuel cell and electrolyzer (Pmaxfc, ∆Pmaxfc and Pmaxels, ∆Pmaxels, respectively) and related
to the use of the electricity grid, the minimum and maximum value will be given by the maximum
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values for the purchase/sale of energy to the grid (Pmaxgridin , ∆Pmaxgridin and Pmaxgridout , ∆Pmaxgridout ,
respectively).

2.2. MPC Cost Function. Guidelines for Parameter Tuning

The optimization problem to be solved at each time over the microgrid model can be included
into the general expression of the cost function as (3).

Jk = α1(k)(SOC(k) − SOCr(k))
2 + α2(k)(HL(k) −HLr(k))

2 + α3(k)
(
Vbat(k) −Vbatr(k)

)2
+

α4(k)C2
sys(k) + α5(k)D2

bat(k) + α6(k)D2
H2(k) + α7(k)Loss2(k) + α8(k)P2

H2(k) + α9(k)P2
grid+

α10(k)(Pnet(k) − Pnetr(k))
2 + λ1(k)∆P2

bat(k) + λ2(k)∆P2
H2(k) + λ3(k)∆P2

grid(k)

(3)

where at sampling time k, αi are weighting factors corresponding to outputs deviations; and λi to the
control efforts, and SOCr(k), HLr(k) and Vbatr(k) are the reference values or desired values associated
with the battery state of charge, hydrogen level and bus voltage, respectively.

Once the objective function to be minimized has been defined in (3), and the constraints from (2)
have also been considered, it is necessary to calculate the values for the weighting factors αi and λi,
as well as the control and the prediction horizons Nu and Np, respectively, to obtain a desired system
response on the short- and long-term basis [40,43].

The huge knowledge that authors have of the microgrid [42] allows the establishment of the
following set of cause–effect relationships that help the parameters tuning process. Although it is a
heuristic process, it is very intuitive and efficient, as will be seen in the different test that will be carried
out. Table 2 summarizes the cause–effect relationships of each weighting factor on the performance of
the microgrid MPC controller.

2.2.1. Short-Term Optimization

In the short-term operation, the aim is to guarantee the power balance, maximizing renewable
utilization, while it is implemented a proper battery charging protocol, considering the role of each
ESS and its response time horizon. Then, the parameters to be taken into account are control and
prediction horizons Nu and Np, and from the objective function (3) are: the weighting factors related to
the battery (α1, α3); hydrogen level (α2), general losses (α7), H2 system operation (α8), power balance
(α10) and the control law effort (λ1, λ2, λ3). Additionally, the weighting factor α9 related to Pgrid should
be included in case of grid-connected topologies.

In the first instance, the selection of the control and prediction horizons Nu and Np, respectively,
are intimately linked to the system dynamics and the closed loop stability. In the case of a fast-dynamic
system, it is unnecessary to use high control and prediction horizons because it must reach shortly its
permanent regime, and the subsequent temporal evaluation is needless. In contrast, for a slow dynamic
system, the use of a relatively high control and prediction horizons is necessary to evaluate the system
performance throughout its transient response. In this case, it is advisable to use medium control and
prediction horizons, due to the need to include the constraints of the control signal variation, which will
impose a slower system dynamic. If these constraints are very strict, it can cause the multi-objective
problem to become unfeasible. To find a reasonable solution, it is recommended to increase the control
and prediction horizons so that the controller can evaluate the new transient response impose by
the constraints.

On the other hand, the weighting factors of the reference tracking error (α1, α2, α3, α10) enable the
controller to prioritize its objectives according to the current state of the microgrid. The main objective
of short-term optimization is always to safeguard the power balance. For this reason, the weighting
factor associated with the net power tracking error (α10) must have a high value (it represents a strong
constraint), so any difference between Pnet and Pnetr should be strongly penalized.

Weighting factors α1 and α2 are related to ESS, so they must guarantee the following: α1 is
responsible for maintaining an optimum battery SOC; and α2 preserves an optimum HL. Therefore,
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both weighing factors need to have high values because the MPC controller must respond quickly
if there is an increasing error in the tracking reference. However, the key is the ratio between both,
which defines the optimal energy distribution between batteries and H2 storage system.

In this sense, in special applications, where it is required to maintain a certain level of hydrogen,
α2 must be considered a high value. In these circumstances, electrolyzer and fuel cell will operate
when the hydrogen level is lower or higher than the reference level respectively, independently of the
power balance and energy requirements. On the other hand, in cases when hydrogen production is
not crucial, but maintaining a desired reference hydrogen level is interesting, α2 will have a low value,
and the use of H2 system will depend mainly on the battery SOC and the current energy situation.

Finally, the weighting factor α3 regulates the battery charge voltage control necessary to ensure
a safe and efficient charging process. High values of this parameter will only make sense when
the battery voltage reaches a high level and there is an excess of energy. For all other situations,
this parameter must have a low value to avoid indiscriminate use of the remaining elements to impose
the reference charge voltage. Hence, α3 must be adapted according to the energy situation. A way to
tuning α3 can be solved using a fuzzy controller (see Section 3.2).

Considering the micro grid operation, the term in (3) related to operating power of H2 system,
α8, must be low. In this sense, a reduced value of the parameter α8, will favour the use of the H2
storage system when the battery bank cannot cope with the energy imbalance. On the other hand,
the weighting factor α7, linked to total Loss must be small, in this way, the losses in the microgrid must
not determine its operation.

Considering the grid exchange energy flow, the weighting factor α9 will be determined by the
interaction between the microgrid and the electrical grid. Then, it is possible to define as many cases as
possibilities, depending on the system topology, regulatory framework, etc. Thus, isolated topologies
or when it is necessary to prioritize the use of the renewable resources instead of the electrical grid,
α9 must be represented by a high value. The purchase/sale of energy is penalized to the detriment of
a more intensive use of the battery and H2 system. By contrast, if bidirectional energy exchange is
allowed, the weighting factor α9 should be reduced. Certainly, hybrid solutions can be implemented,
where the energy exchange is only penalized in one direction.

Finally, the weighting factor of the control vector, λ1, λ2 and λ3, allows the MPC controller to
define the desired dynamics of the microgrid penalizing major variations of the operating point in
systems that work better under low dynamic operation, i.e., electrolyser and fuel cell.

Then, a reduced value of the weighting factor related to the battery power, λ1, is recommended
(λ1 > 0 to guarantee the convexity of the objective function). The battery must present fast response
dynamics versus transients. In contrast, the H2 system requires a more conservative operation, so, λ2,
will have a medium-high value. The weighting factor associated with the use of the external electrical
grid, λ3, will depend on its role and the priority of the economic term in the cost function.

2.2.2. Long-Term Optimization

The weighting factors of the long-term optimization (α4, α5, α6) seek to maximize the microgrid’s
performance while prolonging its useful lifespan. The optimization should respond to the objective of
cost minimization (α4C2

sys) and the minimization of the battery and H2 system degradation (α5D2
bat

and α6D2
H2).

Based on these objectives, the weighting factor α4 determines the weight of the economic objective
in the ESS. Therefore, this parameter should have a high value when the microgrid is designed to
provide maximum economic benefits.
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Table 2. Cause–effect relationship between control parameters and microgrid response.

Parameter Means ↑ Increase
↓ Decrease Effect

Nu, Np Prediction and control horizons

↑

• Facilitates solvability of the optimization problem in the presence of slow
dynamics and constrains.

• Increase computational cost.

↓

• Hinders solvability of the optimization problem, especially in operating
conditions close to design constraints.

• Reduce computational cost.

α1 Weighting of the tracking error of SOC setpoint

↑

• H2 system and grid operation is defined based on SOC.
• Very high values force the H2 system and grid to operate exclusively

based on SOC setpoint and not on the energy situation.
• Reduces battery degradation and increases its lifespan.

↓

• Indiscriminate battery use.
• H2 system and grid operation is defined exclusively by SOC limits.
• Increases battery degradation.

α2 Weighting of the tracking error of HL setpoint
↑

• The operation of the H2 system conditions the microgrid.
• H2 system operates based on HL setpoint, independently from the

energy situation.

↓ • The use of the H2 system is determined by other objectives.

α3 Weighting of the tracking error of Vbat setpoint

↑

• Maximum battery voltage ensured.
• H2 system and grid will be compelled to guarantee the voltage setpoint.

The microgrid is reduced to a mere battery charge controller.
• Controlled battery voltage ensures low battery degradation, high

performance and secure operation.

↓

• Maximum battery voltage not ensured.
• High voltage causes excessive battery degradation, low performance and

risk situation.

α4
Weighting of system operating costs (Csys). Influence of

the economic objective

↑

• The energy distribution in the use of ESS and grid meets
economic criteria.

• The operating cost decreases.

↓

• The selection of the equipment and its operating power barely meets
economic criteria.

• The operating cost increases.



Sustainability 2020, 12, 8969 11 of 28

Table 2. Cont.

Parameter Means ↑ Increase
↓ Decrease Effect

α5
Weighting of battery degradation (Dbat). Technical

objective, increases lifespan.

↑

• Batteries are strongly penalized.
• H2 system and/or grid as a short-term storage system is required.
• Increased H2 system degradation and reduced lifespan.

↓
• The use of batteries is indiscriminate, reduced use of H2 system.
• Increased battery degradation and reduced lifespan.

α6
Weighting of H2 system degradation (DH2). Technical

objective: increases lifespan

↑
• Reduced H2 system degradation.
• The use of the H2 system is strongly penalized.

↓
• Increased H2 system degradation.
• The use of H2 system is indiscriminate, reduced use of batteries.

α7
Weighting of operating losses. Technical objective:

increases operating efficiency

↑

• High penalty on equipment with low efficiency (H2 system).
• The grid acts as the main long-term ESS.
• Higher efficiency operation.

↓

• Reduced penalty on equipment with low efficiency (H2 system).
• The H2 system acts as the main long-term ESS.
• Lower efficiency operation.

α8
Weighting factor of operation set point of H2 system,

PH2 (control signal)

↑

• Reduced use of H2 system.
• The grid acts as the main long-term ESS.
• High grid dependence.

↓

• Prioritization of H2 system.
• H2 system acts as the main long-term ESS.
• Low grid dependence.

α9 Weighting of the control signal Pgrid

↑

• Prioritization of H2 system and, to a lesser extent, batteries.
• The H2 system acts as the main long-term ESS.
• Low grid dependence.

↓

• Reduced use of H2 system and batteries.
• The grid acts as the main long-term ESS.
• High grid dependence.

α10 Weighting of the tracking error of Pnet set point Pnetr

↑
• Reduced (null) Pnet tracking error.
• The power balance is guaranteed from controller response.

↓
• High Pnet tracking error.
• The power balance is not guaranteed.
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Table 2. Cont.

Parameter Means ↑ Increase
↓ Decrease Effect

λ1 Defines battery dynamics. Penalizes ∆Pbat

↑

• High limitation of ∆Pbat. Slow dynamic response versus transients.
• H2 system or grid must deal with transients in the power balance.
• Degradation increase and lower efficiency operation of H2 system.

↓

• Reduced limitation of ∆Pbat. Fast dynamic response versus transients.
• H2 system or grid operates in conditions of slow dynamics.
• More efficient and conservative operation of H2 system.

λ2 Defines H2 system dynamics. Penalizes ∆PH2

↑

• High limitation of ∆PH2. Slow dynamic response versus transients.
• Battery or grid must deal with transients in the power balance.
• More efficient and conservative operation of H2 system.

↓

• Reduced limitation of ∆PH2. Fast dynamic response versus transients.
• Battery or external grid operates in conditions of slow dynamics.
• Degradation increases and lower operation efficiency of H2 system.

λ3 Define grid dynamics. Penalizes ∆Pgrid

↑

• High limitation of ∆Pgrid. Slow dynamic response versus transients.
• H2 system or battery must deal with transients in the power balance.
• Degradation increases and lower operation efficiency of H2 system.

↓

• Reduced limitation of ∆Pgrid. Fast dynamic response versus transients.
• H2 system operates in conditions of slow dynamics.
• More efficient and conservative operation of H2 system.
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On the other hand, the weighting factors that represent the battery and H2 system degradation
(α5, α6), should not have fixed values but adapt according to the cumulative degradation in order to make
a more conservative use of the most degraded equipment. For this purpose, a linear function is proposed
(4), which allows calculating the updated weighting factor based on the accumulated degradation.

αx(k + 1) = a

∑i=k
i=0 Dx(i)
Dxmax

+ b (4)

where:
αx(k + 1): Degradation weighting factor of the element x at sampling time k + 1, with x = 5 (battery)

or 6 (H2 system).
Dx(i): Current degradation of the element x at sampling time i, with x = 5 (battery) or 6 (H2 system).
Dxmax : Maximum expected degradation of the element x, with x = 5 (battery), 6 (H2 system).
Expression (4) can be tailored to the case of the battery (5), electrolyzer (6) and fuel

cell (7), respectively.

α5(k + 1) = a1

∑i=k
i=0 Dbat(i)
Dbatmax

+ b1 (5)

α6_els(k + 1) = a2

∑i=k
i=0 Dels(i)
Delsmax

+ b2 (6)

α6_ f c(k + 1) = a3

∑i=k
i=0 D f c(i)

D f cmax

+ b3 (7)

Scalar coefficients, from a1 to b3, can be estimated through heuristic procedures based on
experimental tests.

3. Results

In order to validate the behavior of the proposed MPC controller and tuning methodology,
a case study is used that consists on the renewable source-based microgrid with hydrogen as backup,
made available for this research by our Research Group at the University of Huelva (UHU). In this
section, the microgrid is firstly described giving its technical characteristics. Next, the parameters
tuning calculation used in the MPC controller as well as the constraints considered will be justified.
Finally, simulations results corroborated with experimentation will show the performance of the
microgrid both on the short- and long-term basis. The software tool used to implement the state–space
model developed in Reference [30] and the MPC controller designed in Section 2 is Matlab®.

3.1. Description of the Renewable Source-Based Microgrid with Hydrogen as Backup

The renewable source-based microgrid with hydrogen as backup used in this paper is implemented
at the University of Huelva and is shown in Figure 3.
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Figure 3. Architecture of University of Huelva (UHU) renewable source-based microgrid with hydrogen
as backup.

In the first instance, the renewable generation is represented by a monocrystalline photovoltaic
(PV) array and the ESS is a lead-acid battery bank with direct connection to the DC bus. This connection
involves the use of a proper charging control protocol to guarantee a safe voltage operating range.
Additionally, the microgrid includes an H2 backup system, integrated by an alkaline electrolyzer,
a Proton-Exchange Membrane (PEM) fuel cell and a medium pressure hydrogen tank for hydrogen
storage. To enable bidirectional energy exchange between the electrical grid, there is a commercial
inverter, and a programmable DC source. The programmable DC load can be used to simulate the
load demand profile.

The technical characteristics of the different sub-systems are summarized in Table 3.

Table 3. Main parameters of the UHU microgrid.

Equipment Nominal Parameters

Photovoltaic panels Power: 5 kWp

Hydrogen storage Capacity: 5 Nm3

Alkaline Electrolyzer Production ratio: 1 Nm3/h, Pressure: 30 bar, Power: 5 kWe
Cost: 75,000 €. O&M Cost: 0.1 €/h. Delsmax : 10,000 h

PEM Fuel cell
Power: 2 kWe, Cells: 80. Cost: 8000 €. O&M Cost: 0.1 €/h.

D f cmax : 100 mV/cell. Fuel cell deg. Ratio: 10 µV/cell/h

Lead-acid battery Voltage: 34 × 12 V, Capacity: 100 Ah. Cost: 7650 €.
O&M Cost: 0.001 €/h. Dbatmax : 40 Ah. Bat deg. Ratio: 0.000676

Power inverter Power: 2.5 kW. Grid selling cost: −0.03 €/kWh

Programmable DC source Power: 15 kWp

Programmable load Power: 10 kWp

3.2. MPC Controller and Tuning Parameters

The MPC controller is based on the developed state–space model (1) and the developed theoretical
MPC foundation in Section 2.
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The weighting factors have been calculated following the design guidelines presented in Section 2.2.
To implement the proposed tuning methodology, all system outputs have been scaled at a rate of 0–1
based on the maximum and minimum limits established by the microgrid constraints (2).

In this case, the main objective of the microgrid is always to guarantee the power balance, from a
conservative and efficient use of the ESS, prioritizing the use of the microgrid’s resources, over the use
of the electrical grid. For this, the battery operation is defined as a short-medium term ESS, while the
H2 system will act as a long-term ESS.

Finally, the use of the external grid will be limited to ensure a more conservative use of electrolyzer
and fuel cell, while at the same time it is possible to obtain an economic profit with the sale of the
energy surplus.

Based on the above, a high value of the net power weighting factor (α10) was defined, to guarantee
the power balance in each sampling period. Similarly, a fuzzy logic controller has been proposed for
the calculation of the weighting factor of the battery voltage (α3), so that depending on the power
balance, the working voltage and the energy surplus, it allows control of the battery charging voltage
in accordance with the manufacturer’s specifications.

In order to define the operation of the ESS, a high value of the weighting factor of the battery
SOC (α1), and a reduced value of the weighting factor of the hydrogen level (α2) have been used.
With this, the use of H2 system is determined exclusively by the energy balance. Based on the above,
the operation around the SOC reference defines the role of batteries as a short- and medium-term
storage system, while the H2 system acts as a long-term storage system, operating under high and
reduced SOC situations.

To define the priority in the use of the equipment, H2 system vs. external grid, a very low value
of the weighting factor of H2 system (α8) has been opted against a high value of the weighting factor
of the grid (α9), in such a way that the use of the external grid is strongly penalized against the H2
system, promoting the use of system resources.

Attending to the economic term, in this case, the economic optimization is not the main objective
of the microgrid operation, and therefore a low-medium value of the operation cost weighting
factor (α4) has been considered. On the other hand, the degradation parameters for battery (α5),
electrolyser (α6els) and fuel cell (α6 f c) have been defined based on the linear function presented in
(5)–(7). In this case, considering the high cost associated with electrolyzer and fuel cell, the slopes of
their associated degradation functions (a2 and a3) are considerably higher than the battery degradation
(a1). Then, H2 system degradation is more penalized and allows a longer lifespan. Similar function for
electrolyzer and fuel cell has been chosen because they have similar operating characteristics.

Finally, to prioritize the use of the internal resources of the microgrid, the weighting factor
associated with the operating losses (α7) has been kept very low.

Based on the weighting factors of the control signal variation (λ1, λ2 and λ3), very small values
have been chosen. In this case, the use of the battery as a short-term storage system has been chosen,
acting against any transient in the microgrid, and that is why the weighting factor λ1, acquires the
lowest value. To maintain a safe and efficient operation of the electrolyser and fuel cell, a relatively high
weighting factor of λ2 has been chosen, which ensures a slow dynamic operation. Finally, to guarantee
the use of the battery in the first instance, as well as to preserve the slow dynamics of the H2 system,
the weighting factor of the grid power variation, λ3, has a value ten times lower than the parameter λ2.

The main parameters of the MPC controller are summarized in Table 4.
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Table 4. Controller parameters and weighting factors.

Parameter Value Parameter Value

Nu, Np 10 α7 0.01

α1 300 α8 0.01

α2 0.01 α9 20

α4 2 α10 5000

α5 4
∑i=k

i=0 Dbati
Dbatmax

+ 0.1
λ1 10−8

λ2 5 × 10−4

λ3 5 × 10−5

α6

 20
∑i=k

i=0 Delsi
Delsmax

+ 0.1, Pels > 0

20
∑i=k

i=0 D f ci
D f cmax

+ 0.1, P f c > 0

Ts 30 s

SOCre f 85%

HLre f 4 Nm3

Vbatre f 400 V

Pnet Pren − Pload

In order to fit the weighting factor of the battery voltage α3, a Mandani fuzzy controller was
implemented that enables the calculation of the optimal weighting factor to stablish the battery charging
voltage protocol. In this sense, due to the large number of parameters associated with the objective
function and therefore the controller, a heuristic process has been chosen for the design of the fuzzy
controller, which is based on multiple simulations and experimental test of the system under different
energy conditions.

The fuzzy rules have been designed in accordance with the battery charging control criteria.
According to the above, the parameter α3 will have a low value when the battery voltage is considerably
lower than the reference value or when the battery is under discharging process. On the other hand,
during the charging process, the value of the parameter α3 is calculated on the basis of the amount
of energy intended for the battery charging, as well as the relationship between the current battery
voltage and the reference value. In this respect, the fuzzy rules allow the calculation of the increase or
decrease of the α3 parameter to ensure a safe operating margin as well as a smooth charging process.

The proposed fuzzy controller has the effect that in adverse conditions (high battery voltage
and/or high charging power), the term associated to the battery voltage tracking problem is considered
a strong constraint in the proposed multi-objective problem, guaranteeing the optimal charge control,
thanks to the distribution of the energy surplus among the rest of the system equipment.

Table 5 and Figure 4 show, respectively, the inference matrix as well as the membership functions
and the output surface of the proposed fuzzy controller.

Table 5. Inference matrix of the fuzzy controller.

Vbat

VL L M H VH

Pn
et

VL VL VL L M H

L VL L L M H

M L L M H VH

H L H H VH VH

VH M H H VH VH



Sustainability 2020, 12, 8969 17 of 28
Sustainability 2020, 12, x FOR PEER REVIEW 17 of 28 

  
(a) (b) 

 
 

(c) (d) 

Figure 4. (a) Battery bank voltage membership functions. (b) Microgrid net power membership 
functions. (c) Weighting factor 𝛼  membership functions. (d) Fuzzy controller output surface 

Finally, considering the size of the microgrid, its maximum power capability (Table 3) and the 
manufacturer’s recommendations, the multi-objective function is subjected to the following 
constraints, (8): 55% 𝑆𝑂𝐶 90% 2 Nm 𝐻𝐿 5 Nm  330 V 𝑉 430 V 𝐶 0 𝐷 0 𝐷 0 𝐿𝑜𝑠𝑠 0 −5000 W 𝑃 5000 W −2000 W 𝑃 5000 W −5000 W 𝑃 5000 W −5000 W 𝑃 5000 W −5000 W ∆𝑃 5000 W −500 W ∆𝑃 500 W 

(8)

3.3. Simulation and Experimental Tests 

To validate the design methodology of the MPC controller and tuning guidelines, the proposed 
algorithm has been evaluated both on the short- and long-term basis. Under simulation on the short-
term basis, the plant is checked for excess energy and deficit situations (Case I). In the long-term case, 
the response of the plant is analyzed when hydrogen-based subsystems suffer high degradation 

Figure 4. (a) Battery bank voltage membership functions. (b) Microgrid net power membership
functions. (c) Weighting factor α3 membership functions. (d) Fuzzy controller output surface.

Finally, considering the size of the microgrid, its maximum power capability (Table 3) and
the manufacturer’s recommendations, the multi-objective function is subjected to the following
constraints, (8):

55% ≤ SOC ≤ 90%
2 Nm3

≤ HL ≤ 5 Nm3

330 V ≤ Vbat ≤ 430 V
Csys ≥ 0
Dbat ≥ 0
DH2 ≥ 0
Loss ≥ 0

−5000 W ≤ Pbat ≤ 5000 W
−2000 W ≤ PH2 ≤ 5000 W
−5000 W ≤ Pgrid ≤ 5000 W
−5000 W ≤ Pnet ≤ 5000 W
−5000 W ≤ ∆Pbat ≤ 5000 W
−500 W ≤ ∆PH2 ≤ 500 W

(8)

3.3. Simulation and Experimental Tests

To validate the design methodology of the MPC controller and tuning guidelines, the proposed
algorithm has been evaluated both on the short- and long-term basis. Under simulation on the
short-term basis, the plant is checked for excess energy and deficit situations (Case I). In the long-term
case, the response of the plant is analyzed when hydrogen-based subsystems suffer high degradation
(Case II). Next, experimental testing is carried out considering energy excess and deficit cases
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(Cases III and IV). Due to the high cost of the equipment and the need for many tests across several
months or even years, experimental tests are not carried out in the long-term tests.

3.3.1. Case I. Simulation Test. Short-term Optimization. Energy Excess and Deficit

In this case, the aim is to validate the performance of the microgrid under conditions of high
excess energy and high deficit. This case represents the most unfavorable situation for the controller.
The initial conditions of the plant are defined by a battery SOC of 65% and a hydrogen level of 4.5
Nm3. An equivalent degradation (0%) is considered in all systems. The renewable generation and
load profile are shown in Figure 5a.
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3.3.2. Case II. Simulation Test. Long-term Optimization. High Electrolyzer and Fuel Cell Degradation

The objective of the simulations presented in Case II is to validate the tuning methodology of
the MPC controller parameters for long-term optimization. For this purpose, the controller and the
microgrid are subjected to situations of high hydrogen-based subsystems degradation.

In this case, a high degradation in H2 system is considered (75% of maximum degradation),
while the degradation associated to the battery is considered low (25% of maximum degradation).
The initial conditions of the system are like those used in Case I.

3.3.3. Case III. Experimental Test. Short-term Optimization. Excess Energy Situation

In this case, the plant has been subjected to an energy excess condition under a stored energy level
close to their higher limit. For this, two different tests have been carried out in which the microgrid
is studied against a situation of excess energy for a variable operation (1); and another low dynamic
operation with saturation in hydrogen production (2). The initial conditions of the microgrid are
defined by a battery SOC of 70% and 80%, and a hydrogen level of 4.5 Nm3 and 4.8 Nm3. An equivalent
degradation (10%) is considered in all systems.

3.3.4. Case IV. Experimental Test. Short-term Optimization. Energy Deficit Situation

Unlike the previous case, in this test the system has been subjected to an energy deficit condition
under a stored energy level close to their lower limit. The objective of this case study is to validate
the behavior of the MPC controller in the face of a limit discharge situation. The initial conditions of
the system are defined by a battery SOC of 57.5% and a hydrogen level of 3.6 Nm3. An equivalent
degradation (10%) is considered in all systems.

4. Discussion

Regardless of the case study, on energy excess situation, the battery deals firstly with excess
energy, due to the reduced value of the weighting factor of the control signal variation (λ1), until it
reaches the desired charging voltage (400 VDC). (Please see Figure 5a,b (t < 10 h) and Figure 6a,b
(t < 10 h).) Thereafter, the MPC controller regulates the charging power to keep the battery voltage
around the reference with an error lower than 1%, regardless of the case under study (Cases I–IV)
and the system operating conditions: low dynamic (Cases I, II, III) or variable operation (Case IV).
From this moment, the charging battery protocol based on a fuzzy logic controller guarantees a safe
and efficient charging process according to the battery charge acceptance curve, up to the maximum
SOC constraint (SOC = 90%). (Please see Figures 5a and 6a (7.5 h < t < 10 h).)

Based on the proposed tuning method, the MPC controller regulates the charging process through
a perfect synchronism between battery, electrolyzer and external grid; according to the weighting
factors of control signal variation (λ1, λ2 and λ3), battery and H2 system accumulated degradation and
operating priority (determined by α5 and α6). In this sense, the energy excess is used in the safest and
most efficient way following design considerations, i.e., prioritizing the hydrogen production instead
of selling energy to the external grid. This can be clearly seen in the battery, electrolyzer and external
grid operating power profiles presented in Figure 5a (t < 10 h) and 6a (t < 10 h), as well as even faster
in Figures 7a and 8a.
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Attending exclusively to the control signal variation, it is verified that under dynamic operating
conditions (Case III, energy excess situation (1)), the use of the electrolyzer is heavily penalized due to
the specified constrains in the operating power variation. In accordance with the above, the external
grid acts virtually as a battery charging regulation system, Figure 7 (t > 215 min).

In contrast, being an operation with a much lower dynamics (Case I and Case III excess energy
situation), the operation of the electrolyzer is prioritised with respect to a small percentage of energy
destined for sale to the external grid, Figure 5a (5 h < t < 10 h) and Figure 8a (t > 5 min).

Finally, in the case that the hydrogen level approaches the maximum capacity of the hydrogen
tank (5 Nm3), a controlled switch-off of the electrolyzer is carried out. Then, the external grid is
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responsible for guaranteeing the power balance and the management of the battery charging protocol.
(Please see Figure 5a (8 h < t < 16 h) and Figure 8a (t > 70 min).)

Given the energy deficit situation (Case I, Case II and Case IV), the reduced weighting factor of
the battery power variation term (λ1) makes the battery absorb the transients in the net power set point
instantaneously in order to cover the demand. Please see Figure 5a (t > 10 h), Figure 6a (t > 10 h) and
9a (around t = 50 min). Once the battery SOC is lower than that designated as optimal by the reference
(SOC = 85%), the fuel cell and, with less intensity, the external grid, go into operation to reduce the
excessive use of batteries. (Please see Figure 5a (t > 15 h), Figure 6a (t > 10 h) and Figure 9a,b (t > 0 min).)
The energy distribution between battery and fuel cell is defined mainly from the term associated with
the tracking error of the reference of the battery SOC, the dynamic imposed by the weighting factors
associated with the control signal variation (λ1 and λ2) and the current degradation, which directly
influences the weighting factors of the degradation of batteries and the H2 system (α5 and α6).Sustainability 2020, 12, x FOR PEER REVIEW 22 of 28 
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Reaching the minimum battery SOC (55%), it is the fuel cell and the external grid which guarantees
the power balance. (Please see Figure 5a (t > 17 h), Figure 6a (t > 18 h), and Figure 9a,b (t > 47 min).)
The energy distribution between fuel cell and grid cell is defined mainly from the weighting factors
associated to the use of each system (α8 and α9), the dynamic impose by the weighting factors associated
with the control signal variation (λ2 and λ3) and the current degradation which directly influences the
weighting factor of the H2 system (α6).

Thus, in the case of reduced degradation of the fuel cell, its operation prevails over the use of the
external grid, thanks to the use of a lower weighting factor (α8 < α9) to maximize the use of the energy
resources available. (Please see Figure 5a (t > 10 h) and Figure 9a (5 min < t < 90 min).) Although the
priority is established by the design considerations, the external grid will act against changes in the
net power set point, thanks to the lower restriction in the variation of the working power (λ3 < λ2),
in order to maintain a low dynamic and more conservative fuel cell operation.

Once the hydrogen level approaches the lowest limit, Figure 5a (t > 20 h), the controlled order to
shut down the fuel cell, and it is ultimately the external grid which meets the demand. Unlike the
previous case, the implementation of battery charge voltage controller is not required.

Finally, based on the influence of systems degradation, the increase in the use of the battery or
hydrogen-based subsystems will be associated with an increase in its degradation and, therefore,
a more conservative use will be required. The proposed adaptive tuning method for the weighting
factor of the electrolyzer degradation (α6els), battery degradation (α5) and fuel cell degradation (α6 f c),
will allow the increase of the associated term on the cost function (4), which will result in less use of the
most vulnerable equipment to the detriment of greater use of batteries/hydrogen system (depending on
critical system) and external grid. Please see Case II in Figure 6a (10 h < t) for electrolyzer, battery and
fuel cell degradation influence analysis respectively.

5. Conclusions

To ensure a safe and efficient operation of renewable energy microgrids, it is necessary to implement
energy management strategies, which take into account all the characteristics of the microgrid and
allow the supply to be guaranteed at all times, optimizing the response of the microgrid based on
technical and economic criteria. This is especially important when the microgrid includes hydrogen
systems (electrolyzers and fuel cells), due to its high cost and rapid degradation due to misuse.

Based on the needs raised, MPC-based techniques stand as a powerful tool for the design of
multivariable controllers that optimize the response of the closed-loop system (microgrid + controller),
taking into account the restrictions associated with the physical or operating limits of the systems
connected to the microgrid. All this, together with the ability to predict any change in the output,
makes the use of MPC controllers provide great advantages over traditional control techniques.

Although previous works can be found where the theory of predictive control is applied to
hydrogen-based microgrids, most display particularized solutions have been adapted to the topology
and application in question, thus greatly hindering their applicability to other cases. These works
present concrete solutions, which focus on the short-term operation of the microgrid, ignoring pivotal
technical-economic criteria for the optimization and operation of actual microgrids, both in the short
and the long term.

In order to respond to the lack of general solutions based on predictive control applied to
renewable source-based microgrid, this paper has presented a methodological foundation to design a
MPC controller that can be applied to renewable source-based microgrid with hydrogen as backup.
The methodology is sufficiently general to be used independent of the microgrid topology.

The resolution of the multi-objective optimization problem was carried out using a generalized
quadratic cost function. The weighting factors have been calculated taking into account the role of
each system connected to the microgrid, as well as technical and economic parameters based on the
performance of the actual systems, including considerations related to the battery bank charging
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strategy, system efficiency, operating degradation or system costs in accordance with the selected
topology and application both in the short and long-term.

The intrinsic difficulty in optimizing the multi-objective functions, as well as the large number of
parameters to be optimized, make the tuning process a very complex task. Although a mathematical
method to calculate the weighting factors is not presented, because it depends strongly on the
microgrid topology and the final application, different cause–effect relationships have been explained
and guidelines have been offered to facilitate the tuning process.

The MPC controller and the tuning methodology proposed have been checked in a case study,
both under simulation and experimental tests.

Considering the test results, thanks to the predictive action of the MPC controller, the goodness of
the model used, as well as the proposed tuning method, the ability of the controller to establish the
proposed energy management strategy has been demonstrated, based on the design criteria and the
operating limits defined by the equipment restrictions.

Results obtained in the case study show the validity of the model and tuning methodology of the
MPC controller, offering a powerful tool to other researchers in the tasks of designing, controlling and
managing microgrids with renewable generation and the use of hydrogen as energy vector.
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List of Acronyms

EMS Energy Management System
ESS Energy Storage System
H2 Hydrogen
HL Hydrogen level
LTI Linear Time Invariant
LPV Linear Parameter Variant
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
MPC Model Predictive Control
O&M Operating and Maintenance
PV Photovoltaic
SOC State of Charge

Notation and Symbols

α( j) Weighting factor of tracking error.

αx(k + 1)
Degradation weighting factor of the element x at sampling time k + 1, with x = 5 (battery)
or 6 (H2 sub-system).

λ( j) Weighting factor of control signal variation.
Csys System operating cost (€/Ts).
Dbat Battery degradation (Ah/Ts).
DH2 Hydrogen sub-system degradation; (h/Ts) for the electrolyser and (V/Ts) for the fuel cell.

Dx(i)
Current degradation of the element x at sampling time i, with x = 5 (battery) or 6 (H2
sub-system).
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Dxmax Maximum expected degradation of the element x, with x = 5 (battery), 6 (H2 system).
HL Hydrogen level (Nm3).
HLr Reference of the hydrogen level (Nm3).
Loss Microgrid losses (W).
Pbat Battery power (W).

PH2
Hydrogen system power consumed (if electrolyser is on, Pels)/supplied (if fuel cell is
on, P f c) (W).

Pgrid Power consumed (Pgridin )/supplied (Pgridout ) from/to the electrical grid (W).
Pnet Net power in the microgrid (W).
Pnetr Reference net power in the microgrid (W).
PPV Photovoltaic power generation (W).
SOC Battery state of charge (%).
SOCr Reference of the battery state of charge (%).
Ts Sampling time (s).
Vbat Battery voltage (V).
Vbatr Reference battery voltage (V).
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