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Abstract: Spain is aiming at moving towards a low-carbon economy. The success of this task will
depend on the capacities of Spanish regions to follow the national energy and climate strategy
and decarbonize their economies. In this paper, we analyze the CO, fluctuations and links with
economic activity, throughout the period 1990 to 2018, using dynamic factor and recursive estimation
models. We confirm the robustness of our results by testing the stability of the estimated parameters.
Our findings show that the dynamics of the pattern of synchronization and decoupling of the regions
are quite similar. Nonetheless, there are significant differences regarding the comparison of levels and
trajectories across regions, emphasizing the need to intensify efforts to achieve national objectives.
This study highlights interest in utilizing the proposed approach for the analysis of the short-run
dynamics of environmental performance.

Keywords: environmental performance; factor model; environmental cyclical convergence; decoupling;
European Green Agreement; economic transaction

1. Introduction

The European Union (EU) has launched important initiatives, focused on the supply aspect of the
energy system, aimed at achieving the goal of reducing greenhouse gas (GHG) emissions by 80-90% by
2050 (2050 long-term strategy). This objective is at the heart of the European Green Deal and in line with
the EU’s commitment to global climate action under the Paris Agreement. Although the EU pressured
their member countries to implement energy and carbon reducing policies, there are differences in the
involvement of the state members. This has generated interest in the assessment of environmental
efficiency and comparison of performance across EU member states [1-3]. However, these works
may conceal differences at the regional level that could be key to addressing the reduction in carbon
emissions. Not taking these differences into account in the design of a sustainable environmental
policy may make it difficult to reach the proposed targets. Thus, regional studies have recently sparked
interest and spurred researchers to evaluate the efforts made by member states to achieve a sustainable
economic system ([4-9]).

Most of these works have focused on the long-run approach, while the short-term analysis of the
energy variables has been ignored. The short-run approach can be of interest as regards supplementing
and improving research on the topic of the decoupling relationship between GDP and CO, emissions.
If regions are cyclically converging, this can enhance the effectiveness of the policy measures adopted
to decouple CO, emissions from economic activity. The main purpose of this paper is to fill this
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gap in the literature and propose the study of the cyclical convergence and decoupling patterns for
greenhouse gas emissions. In line with this aim, we focus on the case of the Spanish regions. In Spain,
national commitment was set out in the Strategic Energy and Climate Framework (3) (Spanish Ministry
of Ecological Transition, 2019), which includes the Integrated National Energy and Climate Plan
2021-30 (PNIEC). This plan lays the foundation for a carbon-neutral economy by 2050 and it has been
supported by preceding environmental legislation (see Table 1). Spain’s 2030 target for greenhouse gas
(GHG) emissions not covered by the EU Emissions Trading System (non-ETS), is —26% compared to
2005, as established in the Effort Sharing Regulation (ESR), while the emissions target covered by the
ETS is —43%. The assessment of environmental performance by regions will allow us to understand
better the possibilities of achieving national objectives.

There are quite a few studies that have delved into the CO, emissions for Spain. Apergis and
Garzoén [11] examined the convergence of greenhouse gas emissions per capita over the period
1990 to 2017. They found evidence of four clubs which involve different regions. In their research,
Garcia-Gusano et al. [12] employed dynamic econometric models to project the electricity demand in
Spain and introduce the projections as input for the Spanish energy model, created using the LEAP
framework. Their result, for the period 2010-2015, shows the existence of decoupling and proves that
industry demand is overestimated, whereas residential demand is undervalued. Cansino et al. [13]
estimated a structural decomposition of changes in CO, emissions by using an enhanced structural
decomposition analysis (SDA) for the period 1995-2009. In this paper, the authors conclude that the
implementation of renewable energy sources (RES) appears to have a positive impact on CO, emissions
trends in Spain. Ruiz-Fuensanta [14] calculated the inefficiency levels of Spanish regions during
the period 2003-2008 and estimated an environmental directional distance function using different
sources. The results confirmed the existence of significant differences in the behavior and evolution of
regional energy efficiency. The work of Quesada-Rubio et al. [15] reflects a detailed study of emissions
and allowances of the industries by regions to test efficiency and compliance with requirements and
conditions prescribed in their regulations. Results highlight significant differences across regions.

Unlike the above-mentioned papers, this paper focuses on the assessment of the trajectories of the
Spanish regions by studying the dynamics of the synchronization of the cycles, cyclical convergence,
and of relative decoupling. Synchronization of emission cycles means similar movements of the
region’s growth rates over time. We can relate this analysis to the advance towards a common
national environmental strategy. In the design of this strategy, we consider the decoupling of
emissions from economic activity to be one of the main objectives. Relative decoupling occurs when
resource use or emissions increase less than the GDP does. Such a study should be a valuable
complement to the work done on energy efficiency and the convergence characteristics. To this
end, in this analysis, we employ the dynamic factor model to parametrically estimate the Spanish
cyclical performance of CO; emissions and also utilize a recursive estimation model to assess the
dynamics of the cyclical convergence of the CO, emissions fluctuations and decoupling effectiveness
at the regional level. Additionally, the parametric approach offers the significant test of correlation
alongside the sample, which is not usually conducted and which allows us to monitor the dynamics
of cyclical convergence and decoupling across the Spanish regions throughout the 1990-2018 period.
Consequently, we can evaluate the efforts that each Spanish region makes to improve environmental
efficiency and convergence concerning their CO, emissions. Furthermore, we applied the robustness
check proposed by Cendejas et al. [16], to confirm the stability of our results. Finally, this paper
provides an analysis of the cyclical characteristics of the national CO, emission cycle in terms of
duration, amplitude, and intensity, using the Harding and Pagan method [17]. This is the first study,
to the best of our knowledge, that assesses both types of concepts in the same evaluation analysis and
for the Spanish regions.

The article is structured as follows. The next section describes the methodology and data utilized
for our analysis. In Section 3, we evaluate and discuss the results obtained for the Spanish regions.
The final section presents the conclusions and policy implications of the paper.
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Table 1. Evolution of the Spanish environmental policies, regulations, and initiatives.

UE Legislation

Spanish Legislation

17/05/1993 Resolution No. 93/C 138/01 on a Community program of
policy and action in relation to the environment and sustainable
development. 5th Environmental Action Program (EAP) 1993-2000.
The EC’s decision to stabilize CO, emissions at the 1990 levels by 2000.
24/09/1996 Directive 96/61/EC of concerning integrated pollution
prevention and control.

22/12/1972 Law 38/1972, on the protection of the
atmospheric environment.

27/11/1997 Law 54/1997 on the electricity sector
21/04/1998 Law 10/1998 on waste.

29/04/1998 Spain signed the Kyoto Protocol, and ratified the Protocol on 31/05/2002

26/04/1999 Directive 1999/31/EC on the landfill of waste

27/09/2001 Directive 2001/77/EC on the promotion of electricity
produced from renewable energy sources in the internal

electricity market

23/10/2001 Directive 2001/80/EC on the limitation of emissions of
certain pollutants into the air from large combustion plants
22/07/2002 Decision No. 1600/2002/EC laying down the Sixth
Community Environment Action Program. 6th EAP 2002-2012 The
EU-15 target is to reduce emissions by 8%, as compared to the

1990 levels.

13/10/2003 Directive 2003/87/EC establishing a scheme for greenhouse
gas emission allowance trading within the Community and amending
Council Directive 96/61/EC.

24/04/2004 Directive 2004/35/CE on environmental liability regarding
the prevention and remedying of environmental damage. The
polluter-pays principle.

11/04/2004 Directive 2004/08/EC on the promotion of cogeneration on
the basis of the demand for useful heat in the internal energy market
and amending Directive 92/42/EEC

27/10/2004 Directive 2004/101/EC amending Directive 2003/87/EC
establishing a scheme for greenhouse gas emission allowance trading
within the Community, in respect of the Kyoto Protocol’s

project mechanisms

19/11/2008 Directive 2008/101/EC amending Directive 2003/87/EC to
include aviation activities in the scheme for greenhouse gas emission
allowance trading within the Community

23/04/2009 Directive 2009/29/EC amending Directive 2003/87/EC to
improve and extend the greenhouse gas emission allowance trading
scheme of the Community

23/04/2009 Decision No 406/2009/EC—Effort of Member States to
reduce their greenhouse gas emissions to meet the Community’s
greenhouse gas emission reduction commitments up to 2020
23/04/2009 Directive 2009/28/EC on the promotion of the use of energy
from renewable sources and amending and subsequently repealing
Directives 2001/77/EC and 2003/30/EC

23/04/2009 Regulation No. 443/2009 setting emission performance
standards for new passenger cars as part of the Community’s
integrated approach to reduce CO, emissions from light-duty vehicles
12/10/2010 Regulation No. 1031/2010 on the timing, administration,
and other aspects of auctioning of greenhouse gas emission
allowances pursuant to Directive 2003/87/EC establishing a scheme for
greenhouse gas emission allowances trading within the Community
03/11/2010 Decision laying down criteria and measures for the
financing of commercial demonstration projects that aim at the
environmentally safe capture and geological storage of CO, as well as
demonstration projects of innovative renewable energy technologies
under the scheme for greenhouse gas emission allowance trading
within the Community established by Directive 2003/87/EC.
11/05/2011 Regulation No. 510/2011 setting emission performance
standards for new light commercial vehicles as part of the Union’s
integrated approach to reduce CO, emissions from light-duty vehicles
23/11/2011 Regulation No. 1210/2011 amending Regulation No
1031/2010 to determine the volume of greenhouse gas emission
allowances to be auctioned prior to 2013.

24/04/2013 Decision No. 377/2013/EU derogating temporarily from
Directive 2003/87/EC establishing a scheme for greenhouse gas
emission allowance trading within the Community.

20/11/2013 Decision No. 1386/2013/EU on a General Union
Environment Action Program to 2020 Living well, within the limits of
our planet. 7th EAP 2013-2020. The EU-28 target is for a 20%
reduction in emissions, compared to the 1990 levels.

25/11/2015 Directive 2015/2193 on the limitation of emissions of certain
pollutants into the air from medium combustion plants

01/07/2002 Law 16/2002, on Integrated Pollution
Prevention and Control. This is a transposition
of Directive 96/61/EC into national law
27/08/2004 Royal Decree Law 5/2004, which
regulates the gas emission allowance trading
system greenhouse

09/03/2005 Law 1/2005, which regulates the
regime of trade in greenhouse gas emission
allowances swimmer. Transposition of the
Directive 2003/87/CE

20/07/2007 Royal Decree 1031/2007 that
develops the participation framework in the
flexibility mechanisms of the Kyoto Protocol
23/10/2007 Law 26/2007 on Environmental
Responsibility. Transposition of the

Directive 2004/35/CE

15/11/2007 Law 34/2007 on air quality and
protection of the atmosphere,

upgrade Law 38/1972

05/07/2010 Law 13/2010, amending Law 1/2005,
which regulates the greenhouse gas emission
allowance trading system, to perfect and
expand the general emission allowance trading
system and include aviation in it.

04/03/2011 Law 2/2011 on Sustainable Economy,
lays the foundations for a new energy model
based on security of supply, economic efficiency
and respect for the environment.

28/07/2011 Law 22/2011 of waste and
contaminated soils

04/05/2012 Royal Decree Law 17/2012, of urgent
measures in the matter of environment.
Establish and regulation of the European
emissions trading system.

28/12/2012 Royal Decree 1022/by develops
aspects related to the free allocation of emission
rights are developed as well as the regulation of
the trading of greenhouse gas emission rights.
Carbon leakage

12/06/2013 Law 5/2013by amending Law
16/2002, on integrated pollution prevention and
control, and Law 22/2011, on waste and
contaminated soils

11/12/2013 Law 21/2013 of

environmental assessment

03/07/2014 Law 11/2014 amending Law 26/2007
on Environmental Responsibility
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Table 1. Cont.

UE Legislation Spanish Legislation
22/04/2016 Spain signed the Paris Agreement, and ratified the Agreement on 12/01/2017

v 19/03/2018—Directive (EU) 2018/410 amending Directive 2003/87/EC
to enhance cost-effective emission reductions and low-carbon
investments, and Decision 2015/1814
v 08/04/2018—Consolidated version of Directive 2003/87/EC of the
European Parliament and of the Council establishing a scheme for
greenhouse gas emission allowance trading within the Community v 06/07/2018 Royal Decree 818/2018 on measures

and amending Council Directive 96/61/EC tc? reduce national emissions of certain
v 30/05/2018—Regulation 2018/842—Binding annual greenhouse gas air pollutants.
emission reductions by member states from 2021 to 2030 contributing 4 22/02/2019 Strategic Energy and Climate
to climate action to meet commitments under the Paris Agreement Framework, which includes the National
and amending Regulation (EU) No 525/2013 Integrated Energy and Climate Plan 2021-2030

v/ 28/11/2018—Communication by the European Commission, (Spanish acronym: PNIEC)

COM/2018/773. A Clean Planet for all. A European strategic long-term
vision for a prosperous, modern, competitive, and
climate-neutral economy.

v Should be adopted in the 4th quarter of 2020. 8th EAP 2021-2030. The
EU-28 target aims at a cut of at least 40% below 1990 levels by 2030

Source: own elaboration with the information of Ecological Transition ministry Ministry [10].

2. Methods and Data

The assessment of the cyclical environmental performance of Spanish regions is rooted in the
application of business cycle analysis methods, and in our analysis, we resort to synchronization and
decoupling concepts. Firstly, synchronization implies an increase in the level of similarity between
the regional CO; emissions cycles, that is, the existence of cyclical convergence. Next, the decoupling
concept is used to reflect the asynchronous changes in the relationship between environmental pressures
and economic activity. In this analysis, it is necessary to first obtain the cyclical component of CO,
emissions. Accordingly, the annual series on per capita carbon dioxide emissions at the regional level
have been log-transformed and differentiated (A = 1 —L, being L the lag operator) to obtain the regional
carbon emission cycles. To this end, the dataset spans from 1990 to 2018 and covers the 17 Spanish
Autonomous Communities and the two Autonomous Cities of Ceuta and Melilla. Greenhouse gas
emissions data by regions are obtained from the Spanish Informative Inventory System. GHG per
capita are measured in thousands of tons of carbon dioxide equivalents (ktCO,eq). Data on population
are obtained from the Spanish Regional Accounts database published by the Spanish Statistical Office
(INE). Real GDP data by region are expressed in thousands of constant 2010 euros [18].

To investigate the dynamics of short-run CO; emission fluctuations in Spain, the estimation of
the national cycle is performed or carried out with a multivariate unobserved component model.
To that end, we model the degree of co-movements in CO, emissions using a dynamic factor model by
Stock and Watson [19]. The dynamic factor model is based on the assumption that a small number of
unobserved latent factors, f;, generate the observed time series through a stochastically perturbed linear
structure. Formally, it is assumed that the pattern of observed co-movements of a high-dimensional
vector of time series states, X; = Aln CO2;;, can be represented by a few unobserved latent common
dynamic factors. The latent factors follow time series processes, which are commonly taken to be a
vector autoregressive model (VAR). The dynamic factor model can be summarized as

X = Aft + e
fe=y(L) fea +m

where there are N Spanish regions, so X; and e; are N X 1; there are m dynamic factors, so f; and 7 are
mXx1, A= (B1,B2-...,Pm)is N xm, Lis the lag operator, and the lag polynomial matrix ¢(L) is m X m.
The i-th 8; are called factor loadings for the i-th regions, that offer the level of participation of each region
regarding co-movements captured by the common factor or factors. The idiosyncratic disturbances,
er = (err, et ..., eN,t)', are the specific elements of each series contained in a vector. They are assumed

)
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to be uncorrelated with the factor innovations at all leads and lags, that is, Ee;n;, = 0 for all k.
The standard estimation is via the model in state-space form using the Kalman filter programmed in
GROCER’s Econometric Toolbox [20], assuming that all the processes in (1) are stationary and not
cointegrated.

We can confirm the existence of a national cycle of CO; emissions, f?:oz,t/ by employing the
statistical criterion proposed by Bai and Ng [21]. If we obtain only one common factor, this factor
can represent the Spanish cyclical performance of CO, emissions. For a better identification of this
fluctuation pattern, we also employ the Harding and Pagan [17] dating method. This method enables
us to examine the turning points (the peaks and troughs) of the Spanish cyclical performance of CO,
emissions, with contractions or declining phases designated as peak-to-trough (PT) and expansions or
increasing phases as trough-to-peak (TP). It also enables us to estimate their characteristics regarding
the duration, amplitude, and intensity of phases and complete cycles:

e  Duration of the phase is observed according to its length along the abscissa axis.

e Amplitude would be the height of the phase, which is observed as it increases or decreases on the
ordinate axis.

e Intensity relates to the amplitude and duration of each phase, such that if the phase has more
amplitude and shorter duration, it is more intense and more pronounced graphically.

The study of the dynamics in the cyclical behavior of the national CO, emissions enables assessment
of the trajectory of the cyclical convergence of the regions. In line with this objective, we propose the
use of a recursive estimation model put forward by Andrews [22] to test parametrically the degree of
cyclical convergence of the Spanish regions with respect to national behavior throughout the period.
Accordingly, we recursively estimate:

xi¢ = Bi(7) feons + vie(7) ()

where the moving index 7 = 70, 79 + 1, ..., T excludes some portions (trimming) of the sample at the
beginning, where 79 = nT (the integer part), and 7, the proposed trimming, is a minimum sample
percentage excluded at the beginning of the sample.

This procedure allows us to extract information on how the Spanish regions are synchronizing
their emissions cycles following a common national environmental strategy by offering additional
graphic information on their evolution as a continuum of results and their t-statistics.

A relevant aspect to consider in this analysis is whether the advances towards a national common
behavior are linked to the decoupling of their economies from energy. With this aim, we also assess
the relationship between the CO, emissions fluctuation of each region with their own business cycle.
We apply the recursive estimation model to evaluate the progress in dissociation between CO, emissions
from economic activity. Until now, the “Tapio decoupling model” by Tapio [23] has been widely
adopted by many investigators, such as Jiang et al. [24], and Qiu et al. [25]. In this paper, we use an
alternative method in line with the correlation analysis of Doda [26], who evaluates the relationship of
the cycles of the CO, emissions and GDP across countries through contemporaneous cross-country
correlation. For this study, we propose the following model:

xit = pi(T)VInGDP;; + &; (1) 3)

The results obtained for the recursive coefficients p;(7) of model (3) show the dynamics of the
Spanish regions regarding decoupling their CO, emissions from their GDP over the period.

By integrating the results obtained in the recursive estimations of (2) and (3), we can check whether
the regions are converging towards a common national cyclical behavior, (), and if this behavior is
followed by relative decoupling, p;(7).

Finally, we confirm the robustness of our results by testing the stability of the estimated parameters
to check the existence of structural or temporal breaks. If the date of a possible break is unknown,
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a recursive testing procedure could be employed [16]. The null hypothesis Hy of the parameters’
stability of each model is Hy : B;(t) = 0 and Hy : p;(7) = 0, respectively.

Recursive estimations f;(7) and p;(7) are obtained from (2) and (3) and the F-type statistic
(Wald-type statistic) to test for a break of an unknown date is

F :max[Fi(To),Fl‘(T()+1),...,FZ'(T—1),F1'(T)] 4)

SupWald,i

The asymptotic distribution of the Fs, w14, statistic is not standard because the break date appears
only under the alternative hypothesis. In this work, empirical critical values with no asymptotic
sample sizes and autocorrelated errors have been calculated by Monte Carlo simulation according to
our data characteristics, that is, by assuming autocorrelation disturbances in (2) and (3) and for the
available sample sizes [16].

3. Analysis Results

3.1. Spanish Cyclical Performance of CO, Emissions

We estimate the Spanish cyclical performance of CO; emissions over the period 1991-2018.
The information on the national cycle of CO, emissions in Spain is valuable information with respect
to the study of the short-run main characteristics of its behavior. The results from (1) are shown
in Table 2. The AR idiosyncratic parameter and noise ratio confirm the suitability of the model.
The significance of the loading factors indicates which regions’ emissions are co-moving, following a
national cycle, and which are not. We find that all the regions have significant and statistically similar
factor loadings with the exceptions of the Autonomous Cities of Ceuta and Melilla. These territories
are then excluded from the estimation and therefore they do not appear in Table 2. Ceuta and Melilla
follow an independent emissions pattern.

Table 2. Estimation results from model (1). Sample period: 1991-2018.

CCAA Factor Loadings AR Parameters Residual Variance
Andalusia 0.51 (5.01) *** -0.35(-1.81)* 0.39 (3.45) ***
Aragon 0.26 (3.01) *** —0.53 (—3.27) *** 0.6 (3.69) ***
Asturias 0.29 (2.89) *** —0.34 (-1.86) * 0.69 (3.69) ***
Balearic Islands 0.48 (4.16) *** —-0.09 (-0.43) 0.52 (3.55) ***
Canary Islands 0.42 (4.03) *** —0.34 (-1.86) * 0.59 (3.61) ***
Cantabria 0.4 (3.49) *** —-0.15 (-0.77) 0.62 (3.64) ***

Castille-Leon 0.27 (2.37) *** -0.22 (-1.16) 0.8 (3.7) ***

Castille-La Mancha 0.58 (6.03) *** —0.49 (-2.46) *** 0.19 (2.85) ***
Catalonia 0.52 (4.4) *** 0.09 (0.44) 0.43 (3.45) ***
Valencia 0.54 (4.91) *** -0.1 (-0.47) 0.38 (3.41) ***
Extremadura 0.54 (5.11) *** —0.13 (-0.6) 0.34 (3.36) ***
Galicia 0.32 (2.89) *** —-0.24 (-1.28) 0.74 (3.68) ***
Rioja 0.42 (3.5) *** 0(-0.01) 0.61 (3.61) ***
Madrid 0.54 (5.14) *** —-0.34 (-1.77) 0.39 (3.41) ***
Navarre 0.43 (3.4) *** 0.17 (0.84) 0.58 (3.58) ***
Basque Country 0.4 (3.83) *** —0.28 (-1.49) 0.57 (3.62) ***
Murcia 0.33 (2.43) *** 0.12 (0.61) 0.78 (3.68) ***

Note: In () t-statistics, * significant parameter at 90% and *** 99%. Ceuta and Melilla are not significant.

The results concerning the national cycle of CO, emissions allow us to provide an analysis of
its cyclicality properties. Figure 1 shows the evolution of the CO, emission cycle from 1991 to 2018.
Upon examination of the three decades, we identify a phase from peak to trough (1994-2009) where a
decline in the growth emissions occurs. In the course of those years, the United Nations Framework
Convention on Climate Change (UNFCCC) 1992, and the subsequent Kyoto Protocol 1997 took place.
To this is also added the EC’s decision to set long-term objectives, based on the 1990 emissions,
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which has contributed positively to moderate growth in CO, emissions. The year 2009 witnessed a
phase of increase in emission growth that spanned 2009-2017 (from trough to peak). During this phase,
the recovery of the Spanish economy contributed to this rise in the emissions. Analysis of the national
emission cycle shows a clear asymmetry in their behavior, with the average duration of the declining
phase being longer than that of the expansions. In addition, the declining of emissions is on average
steeper or more intense than the expansions when the amplitude is studied.

_— Observed

A o Cycle dmra[lerisli.[s:
Average duration from peak to peak: 23
v Troughs Average duration from frough fo trough: 16
Average duration from peak to frough: 15
2 Average duration from trough fo peak: 45
Average amplitude from paak to trough: -5.85
Average amplitude from trough to peak: £14
14
0_
-14
-2 4
-3 4
T, [
1991a 1994a 1997a 2000a 2003a 2006a 2009a 2012a 2015a 2018a

Figure 1. Dating the Spanish common cyclical environmental performance. Note: shaded areas
correspond to the declining phases in Spanish CO, emissions fluctuations. Source: own compilation
using Harding and Pagan [17].

3.2. The Dynamics of Cyclical Convergence and Decoupling

The recursive estimation model proposed in the methodological section is employed to evaluate
the dynamics of cyclical convergence and track the efforts made to decouple CO; emissions from the
GDP. Our proposal allows us to assess and compare, on a yearly basis, the efforts made by the Spanish
regions. By integrating both analyses, we can check whether the regions are converging towards a
common national cyclical behavior, 3;(7), and if this behavior is followed by relative decoupling, p;(7).
The continuum of results obtained in both estimations and their t-statistics are shown in Figures 2-5.

We monitored the results for each Spanish region, thereby allowing us to comparatively evaluate the
dynamics of the patterns of synchronization and decoupling. Asitis standard in the empirical literature,
we can consider that the correlation is high if §;(7) or p;() take on values >0.5. Following these criteria,
it is possible to differentiate three main groups of regions.

In the first group (Figure 2), we include regions that show high correlation of emissions with
national behavior and with the GDP. The group includes Cantabria, Castille-La Mancha, Catalonia,
Valencia, Extremadura, and Madrid. For these regions, an important result is that the trajectories of
synchronization and decoupling are quite similar throughout the period, except for Cantabria. In the
study of the cyclical convergence, the Spanish regions show quite stable patterns. Nonetheless, in cases
like Madrid, we observe that after a strong increase, since 2005, it has become negative. Cantabria also
shows a decrease in the synchronization below 0.5 in 2005, but it recovers again the following year.
These regions, in general, show positive trajectories in their decoupling of CO, emissions from the GDP,
especially at the end of the period studied. However, this is not enough to reach correlations below
0.5 over the period. We can highlight Catalonia with the most intense decoupling results that happen
during the national declining phase of CO, emissions (1994-2009). In Valencia, Castille-La Mancha,
and Madrid, this process is not stable but, approximately since the mid-2000s, we observe a positive
trajectory in its decoupling. In the case of Extremadura, this region decreases slightly concerning the
correlation between GDP and CO, emissions throughout the period studied. The results show the
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difficulties experienced by these regions in implementing efficient environmental policies, as evidenced
by the difficulties to reduce the correlation results below 0.5.

Cantabria

1995 2004
t-stat Cantabria

2018

1995 2004

Valencia

08
06

1995 2004
t-stat Valencia

2018

Figure 2.

Castille-La Mancha

A VT

Catalonia

1995 2004 2018
t-stat Castille-La Mancha

1995 2004 2018
t-stat Catalonia

1995 2004 2018

Extremadura

T e

1995 2004 2018

1995 2004 2018

t-stat Extremadura

1995 2004 2018
t-stat Madrid

Spanish regions with correlation >0.5 in decoupling and synchronization.

Note:

initial Tables 2 and 3 are at 20% and the bands of the t-stat are at 10% significance. The continuous

line corresponds to the synchronization analysis, while the dotted line corresponds to the decoupling

analysis. Source: own compilation using Matlab.

In the second group (Figure 3), we include regions with correlation close to or <0.5. We also
observe that the patterns of synchronization and decoupling are quite similar. Within this group,
we find regions that clearly maintain the correlation results for synchronization and decoupling below
0.5. This subgroup comprises the regions of Asturias, Castille-Leon, and Galicia. These regions show a
slight increase in their cyclical convergence towards the national emissions cycle which can facilitate
the coordination of environmental performance. The regions in this subgroup maintain, in general,
their level of decoupling below 0.5 throughout the period, except Castille-Leon which shows a few
years in which it increases, reaching the value of 0.5. These regions should intensify their efforts to

improve results.

Asturias

1995 2004
t-stat Asturias

2018

1995 2004
t-stat Aragon

2018

Castille-Leon

X

W

1995 2004 2018

t-stat Castille-Leon

0
1995 2004 2018

t-stat Rioja

Galicia

0.5

1995 2004 2018

t-stat Galicia

2
1995 2004 2018

Murcia

1995 2004 2018
t-stat Murcia

Figure 3. Spanish regions with correlation close to or <0.5 in decoupling and synchronization. Note:
initial trimming to the estimation of models (2) and (3) is at 20% and the bands of the t-stat are at 10%
significance. The continuous line corresponds to the synchronization analysis, while the dotted line

corresponds to the decoupling analysis. Source: own compilation using Matlab.



Sustainability 2020, 12, 8569 9of 14

We can identify another subgroup that includes Aragon, Murcia, and Rioja with results closer
to 0.5. Aragon and Rioja show a positive trajectory in their cyclical convergence, but they have also
experienced an increase in correlations in the process of decoupling their emissions from the GDP.
This result is cause for concern regarding these regions. In Rioja, a significant increase in the correlation
between emissions and GDP is observed in 2004, although it slows down in subsequent years. In the
case of Aragon, this increase occurred in the mid-1990s and was slightly reduced by the economic
crisis. Lastly, we observe in Murcia an upward trajectory for the correlation between CO, emissions
and GDP, reaching values above 0.5 after 2005, although soon after it shows a downward evolution
during the crisis, returning to values below 0.5. In this region, the convergence with the national cycle
reaches values below 0.5, with a decreasing trend during this period.

The third group (Figure 4) includes regions with differences in the initial levels and trajectories
obtained in the synchronization and decoupling analysis. However, an important approximation in
these patterns is observed at the end of the period in all the regions. In this group, we find Andalusia,
Basque Country, Balearic Islands, Murcia, and Canary Islands. First, we examine the cases of Balearic
Island, Navarre, and Basque Country. In these regions, we observe an increase in correlation in the
decoupling process, reaching correlation levels close to 0.5. On the other hand, they show a decrease in
the synchronization with the national emission cycle. For these regions, it is important to control the
negative evolution of these variables. Next, we identify the cases of Andalusia and Canary Island with
levels of decoupling correlation above 0.5, with slight decreases during the period studied. For these
two regions, we find a positive evolution for the synchronization of their emissions, showing a cyclical
convergence with a correlation under 0.5, that increases during the years studied. This is a promising
trajectory for both regions. In general, we can consider that these regions only made moderate efforts
in decoupling, not taking advantage of the starting lower correlation.

Balearic Islands Navarre Basque country
5 08 0.8
1 0.6 ﬁ*\_\/\m 0.6
T * K Iy A
W kststte W

05 W 04 [ 04 f

0 02 0.2

1995 2004 2018 1995 2004 2018 1995 2004 2018

10 t-stat Balearic Islands w0 t-stat Navarre 10 t-stat Basque country

slx N — 2

0 0

1995 2004 2018 1995 2004 2018 1985 2004 2018

Andalusia Canary Islands

oo, %WM os /X i Y s o
04 AZ/\ﬂJ W

1995 2004 2018 1995 2004 2018

t-stat Andalusia t-stat Canary Islands

Figure 4. Spanish regions with differences in the trajectories in decoupling and synchronization. Note:
initial trimming to the estimation of models (2) and (3) is at 20% and the bands of the t-stat are at 10%
significance. The continuous line corresponds to the synchronization analysis, while the dotted line
corresponds to the decoupling analysis. Source: own compilation using Matlab.

Finally, in the case of Ceuta and Melilla, their analysis allows us to verify that these Autonomous
Cities follow an independent path in their emissions (Figure 5).

The results obtained in the analysis highlight the differences that exist across the Spanish regions,
which are in line with previous works cited for the Spanish economy using different methodologies.
The difficulties found to increase cyclical convergence in their carbon emission cycles may be a problem
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with respect to achieving the mitigation commitment and advance in the implementation of the Strategy
Energy and Climate Framework.

Ceuta and Melilla

1995 2004 2018

Figure 5. Spanish regions that follow independent patterns. Note: initial trimming to estimation of
models (2) and (3) is at 20% and the bands of the t-stat are at 10% significance. The continuous line
corresponds to the synchronization results, while the dotted line corresponds to the decoupling values.
Source: own compilation using Matlab.

3.3. Robustness Checks

We performed a number of robustness checks to test the validity of our results. First, we confirmed
the existence of only one common factor, fAssrt, by employing the statistical criterion proposed by Bai
and Ng [21]. The number of dynamic factors, p, following [21], is p < r, where r is the number of static
factors determined by Bai and Ng [27], where p = 1 since ¥ = 1 according to the following criteria:

1Cy1(g) = log(det(X)) + g™ + log( L, )

IC,2(g) = log(det(¥)) + 9% + log(min(n, T)) ®)

1Cys(y) = log(det($)) + 7/ 2Emta )

where ), = variance matrix of residual e;.

Next, we confirmed the stability of the parameters and verified the non-existence of structural or
temporal breaks in models (2) and (3). In line with this aim, we applied the robustness check proposed
by Cendejas et al. [16] to observe changes in the estimated parameters. First, we apply the robustness
check for the recursive estimations ;(7) from (2) to detect any possible breaks that reflect changes
in regional behaviors related to difficulties to adhere to national environmental policies. We show
results for the estimation breaks and the F-type statistic (Wald-type statistic) in Table 3 and Figure 6.
Some temporal breaks were found in Galicia in 2007 and Rioja in 2006, which can be linked to the
beginning of the economic crisis in Spain. A third break, this time structural, was found in Ceuta and
Melilla, confirming that these Autonomous Cities follow independent patterns.

Table 3. Estimation breaks of model (2) for Spanish regions, 1990-2018.

Regions Trimming 90% 95% 99% FsupWala,i Break Date Breaks
Andalusia 30% 18.7 32.6 81.1 19 2007
Aragon 30% 17.8 33.1 83.2 10.4 1998
Asturias 30% 15.6 25 55 4.2 1998
Balearic Island 30% 19.3 28 111.2 1.7 2010
Canary Island 30% 18.1 28.5 74 5.6 1998
Cantabria 30% 15.6 25.4 59.1 2 1998
Castille-Leon 30% 16.8 27.6 77.7 14.3 1998

Castille-La Mancha 30% 17.3 27.3 57.5 1 2000
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Regions Trimming 90% 95% 99% Fsupwala,i Break Date Breaks
Catalonia 30% 15.3 239 65.5 0.4 2008
Valencia 30% 16.2 25 110.7 0.5 2012
Extremadura 30% 16.7 28.7 99.7 04 1998
Galicia 40% 7.2 11.2 31.3 134 2007 ** Temporal break
Rioja 40% 8.8 13.8 34.8 84.4 2006 *** Temporal break
Madrid 30% 15.1 279 68 1.1 2012
Navarre 30% 17.6 289 74.3 2.8 2010
Basque Country 30% 16.1 29.2 65.6 1.1 2010
Murcia 30% 17.7 27.6 75.8 2.1 2000
Ceuta and Melilla 40% 6.5 9.1 21.3 10.6 2007 ** Structural break
Note: significant Fs,wa,i statistic ** at 95%, and *** at 99%.
5 Andalusia Aragon s Asturias 2 Balearic Islands Canary Islands 2 Cantabria
15 10 4 15 15
3 4
1 1 1
5 2 3
05 1 05 05
[} 0 0 [ 0 0
2000 2010 2020 2000 2010 2020 2000 2010 2020 2000 2010 2020 2000 2010 2020 2000 2010 2020
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1

Figure 6. The asymptotic distribution of the Fs, w14, statistics of model (2) by Spanish regions at 30%

of trimming. Note: * at 40% of trimming. Source: own compilation using Matlab.

Then, we applied the robustness check for the recursive estimations p;(7) from (3) to detect any
possible breaks that reflect changes in the regional behaviors associated, this time, with the possibility
of decoupling emission growth from economic activity. We show results for the estimation breaks and
the F-type statistic (Wald-type statistic) in Table 4 and Figure 7. The results reveal only temporal breaks
in 2010 in Castille-la Mancha and in 2000 in Rioja.

Table 4. Estimation breaks of model (3) by Spanish regions, 1990-2018.

Regions Trimming 90% 95% 99% Fsupwala,i Break Date Breaks

Andalusia 30% 7.3 13.2 29.4 0.5 2008
Aragon 30% 9.1 14.8 31.8 3.6 2010
Asturias 30% 14.5 24.1 67.1 1.2 2006
Balearic Island 30% 7.9 12 23.9 0.7 2009
Canary Island 30% 8 13.1 447 1.4 1998
Cantabria 30% 6.9 12.6 25.1 1.3 1998
Castille-Leon 30% 18.3 30.5 89.9 35 2010

Castille-la Mancha 40% 6.3 9.7 18.5 6.5 2010 * Temporal break
Catalonia 30% 54 8 15.9 0.8 1999
Valencia 30% 3.8 5.5 14.6 0.6 2006
Extremadura 30% 6.3 9.2 19.3 1.5 1998
Galicia 30% 13.2 21.3 56.6 2.5 2010

Rioja 30% 5.8 8.9 23 55.8 2000 *** Temporal break
Madrid 30% 39 6.2 14.6 1.9 2012
Navarra 30% 4.8 6.9 15.6 1.1 2010
Basque Country 30% 4.6 7.7 14.1 13 2009
Murcia 30% 5.4 8.4 15.5 1 2011
Ceuta and Melilla 30% 53 8.6 19.3 0.9 2001

Note: * significant Fs,pwa,i statistic at 90% and *** at 99%.
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Figure 7. The asymptotic distribution of the Fs, w14, statistics of model (3) by Spanish regions at 30%
of trimming. Note: * at 40% of trimming. Source: own compilation using Matlab.

4. Discussion and Conclusions

Spain faces the challenge of fulfilling the commitments set out in the Integrated National Energy
and Climate Plan 2021-30 (PNIEC). With respect to this challenge, the Spanish regions have an important
role that must be considered. The purpose of our research is to contribute to the understanding of
regional environmental performance by offering a short-run dynamics analysis of CO, emissions.
There is no paper that uses this approach in the literature on the environmental behavior of the Spanish
regions. Therefore, the present study is highly significant from the practical viewpoint. The short-run
approach could be of interest regarding supplementing and improving research on the subject matter
of the decoupling relationship between GDP and CO; emissions. It is important to understand whether
Spanish regions are cyclically converging so as to implement the most adequate policy measures.
Thus, our research is the first to estimate the national cyclical pattern for Spanish CO, emissions over
the period 1990-2018 by applying the dynamic factor model. The information on the CO, emissions
cycle makes it possible to track the progress of each region towards a national synchronized pattern
of emissions and a stronger decoupling from economic growth. For this analysis, we use a recursive
estimation model, which allows us to compare the estimations obtained, on a yearly basis. Through the
integration of the technical methods employed, we have carried out a comprehensive study that
allows us to show whether the regions that are cyclically converging have experienced improvements
in decoupling CO, emissions from economic activity. The paper is an important supplement and
improvement regarding existing research on energy convergence, as well as an important contribution
to the research field of decoupling.

Based on the evidence obtained, we identify the declining and expansionary phases of CO; in
Spain. The analysis has shown that 2009 marked the beginning of a phase where there was an increase
in emission growth from 2009 to 2017, confirming that the recovery of the Spanish economy contributed
to the said rise in emissions. Results also reveal that the dynamics of the pattern of synchronization
and decoupling of the regions are quite similar. The EU and the Spanish government have launched
environmental policies to mitigate CO, emissions and promote environmental efficiency. Although the
Spanish regions share objectives, there is a risk that regional governments are not focused on decoupling
their emissions growth from the business cycle, which can reduce the chances of linking their emissions
to the national fluctuation pattern. We also find that there are significant differences upon comparing
levels and trajectories across regions. Results reveal a contrasting picture with Madrid, Catalonia,
and Valencia among the regions with high levels of correlation for cyclical convergence and GDP and
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synchronization analysis. They show a positive trajectory in their results, but the levels of decoupling
are still cause for concern. We also observe a favorable evolution in their cyclical convergence process.
On the other hand, we find regions, like Asturias and Galicia, showing low levels in the cyclical
convergence and decoupling analysis, but which undergo a negative trajectory for decoupling during
the last years of the period. Given the diversity in performance within the Spanish regions, there is
ample scope for improving these processes. The results obtained reveal insufficient efforts towards
dissociating emissions from the economic cycle, and this may pose a problem regarding achieving a
sustainable economic system in Spain. To reach a higher level of decoupling, the synchronization of
emissions could be a way to facilitate this process.

This paper tackles the short-run dynamics of environmental performance with a methodological
proposal that offers valuable information for policy-makers. Its application will allow policies to be
modulated for each region, city, state, or even member state, according to the degree of synchronization
of their CO, emissions and their decoupling from economic activity. Further research on how to
contribute to the understanding of this process is needed.
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