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Abstract: Sustainable energy development consists of design, planning, and control optimization
problems that are typically complex and computationally challenging for traditional optimization
approaches. However, with developments in artificial intelligence, bio-inspired algorithms mimicking
the concepts of biological evolution in nature and collective behaviors in societies of agents have
recently become popular and shown potential success for these issues. Therefore, we investigate the
latest research on bio-inspired approaches for smart energy management systems in smart homes,
smart buildings, and smart grids in this paper. In particular, we give an overview of the well-known
and emerging bio-inspired algorithms, including evolutionary-based and swarm-based optimization
methods. Then, state-of-the-art studies using bio-inspired techniques for smart energy management
systems are presented. Lastly, open challenges and future directions are also addressed to improve
research in this field.

Keywords: smart energy management; sustainable energy; bio-inspired computing; evolutionary
computing; swarm intelligence; internet of energy

1. Introduction

Nowadays, electric power plays a significant part in human life, supporting vital infrastructures
and utilities [1,2]. The significant electricity generated globally still comes from fossil fuels. However,
fossil fuel supplies are getting scarce. Furthermore, fossil fuels are burning in the electricity production
process, and they release large amounts of carbon emissions, which causes global warming and climate
change. This awareness has encouraged interest in sustainable energy development using renewable
and clean energy sources [3]. Examples of renewable energy sources (RES) include solar, wind, biomass,
and hydro. These alternatives improve power supply, increase ongoing energy production, decrease
dependence on fossil fuel, and reduce carbon emissions.

Recently, the conventional power grid has been changed to the smart grid, which is a power grid
combined with information and communication technologies (ICT) [2–5]. Widely accepted definitions
of smart grid technologies include intelligent control of intermittent production, two-way connectivity
between suppliers and users, and the usage of advanced ICT [5]. It allows for dynamic optimization
and continuous coordination of grid operation and energy resources. Smart grid technology is seen as
a significant enabler in transforming more sustainable electricity networks since it boosts the adoption
of RES into power grids. On the demand-side, smart homes and smart buildings are critical to smart
grids’ function and performance by boosting control optimization of infrastructures and resources,
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also increasing energy efficiency [2,3]. They integrate digital sensing and communication devices that
make it possible to track energy usage in real-time, control smart appliances, and communicate with
the utilities and grid. There has recently been growing attention in smart energy management systems
(EMS) for smart homes (home energy management systems, HEMS), smart buildings (building energy
management systems, BEMS), and smart grids [3,6–8]. Optimization-based methods are commonly
used in these energy management systems. With the developments in artificial intelligence, biologically
inspired computing (or bio-inspired computing) methods have shown the promise of success on
optimization issues [9–11].

1.1. Contributions

There are several surveys on EMS. For example, Beaudin et al. [1] reviewed modeling techniques
for different aspects of HEMS. Zhou et al. [6] reviewed different architectures and functional modules
of HEMS. Although energy scheduling strategies are mentioned, they are minor in the paper.
Minoli et al. [7] discussed some Internet of Things (IoT) requirements and considerations for BEMS
and energy optimization. Mariano et al. [8] focused on various control strategies but only for
BEMS. Bayram et al. [2] reviewed the behind-the-meter EMS in the smart grid by addressing the
system’s three-layer classification approach. The issues and solutions for optimization are listed,
but not in-depth. Hirsch et al. [12] mainly presented the concept of microgrid (a part of the smart
grid) and challenges in general. There is no discussion of the scheduling and optimizing issues.
Chen et al. [13] focused on demand response for buildings. Few studies of optimization control
strategies are discussed. Recently, Makhadmeh et al. [14] discussed energy scheduling issues and
datasets used in reviewed studies but only in the smart home. Rathor et al. [3] reviewed EMS with
different aspects, stakeholders, and participants. However, the existing surveys did not focus on
EMS based on bio-inspired approaches, which have shown their effectiveness in scheduling and
optimization problems. Also, some surveys were outdated or only focused on a single type of
EMS strategy.

This paper completely focuses on the latest studies on bio-inspired approaches for different smart
EMS strategies, i.e., HEMS, BEMS, and EMS, on the smart grid. In particular, we give an overview of
bio-inspired computing, which is divided into two groups: (1) evolutionary computing, which involves
the incremental development of living organisms in reaction to environmental conditions, and (2)
swarm intelligence, which is focused on agents’ collective and social behaviors. Then, we give a
thorough analysis of these algorithms in design, planning, and control issues in smart EMS for homes,
buildings, and smart grids with conventional energy sources and renewable and stored energy sources.
Lastly, open challenges and research opportunities are also discussed.

1.2. Methodology

The methodology aims to identify, categorize, and analyze the latest bio-inspired approaches
used in smart EMS. Relevant keywords, defined by the EMS environment and bio-inspired algorithms,
were searched in Scopus and Web of Science databases. When searching, we narrowed down the scope
of the articles by combining the keywords. Some example of keywords are “smart energy management
system”, “home energy management system”, “building energy management system”, “smart grid”,
“microgrid”, “bio-inspired”, “evolutionary”, “swarm intelligence”, “ant colony optimization”, “particle
swarm optimization”, “genetic algorithm”, and their abbreviations. We checked the abstracts and
picked the papers written from 2015 and onwards from the search results, based primarily on their
direct relation to the EMS and bio-inspired approaches. Finally, 70 related papers were selected. Other
references are related to the algorithms details, existing surveys, EMS background, and related articles
for future research directions.

The selected articles were then classified based on EMS strategies: HEMS, BEMS, and smart grid.
In each type of EMS, we provide an introduction to architecture, objectives, and enabled technologies.
The representative studies are elaborated in ascending chronological order in tables, including the
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bio-inspired techniques utilization, optimization objectives, and highlights of the articles, followed by
a detailed discussion of all studies. This systematic review hopes to clarify the gaps and exhibit the
research direction to improve the bio-inspired EMS area.

1.3. Paper Organization

The remainder of this survey is arranged as follows. Bio-inspired techniques are briefly presented
in Section 2, which includes evolutionary computation and swarm intelligence. A comprehensive
survey on smart energy management using biologically inspired approaches is given in Section 3.
Research opportunities and open challenges on smart energy management using bio-inspired
approaches are discussed in Section 4. Conclusions are finally given in Section 5.

2. Overview of Bio-Inspired Algorithms

Bio-inspired computing has become the focus of numerous research in computer science,
mathematics, and biology in recent years. Bio-inspired algorithms are emerging methods based on
the concepts and inspiration of nature’s biological evolution for creating novel and robust techniques.
There are two well-known types of algorithms in bio-inspired computing as follows:

• Evolutionary computing (EC): It represents techniques that mimic evolutionary concepts to
solve optimization problems in an automated manner. Genetic Algorithm (GA) [15], which is a
well-known EC meta-heuristic technique, emulate evolutionary principles (fittest selection) and
genetic inheritance schemes between successive generations (crossover, mutation) to allow search
operators to explore the search space of the optimization problem effectively.

• Swarm intelligence (SI): It makes efficient use of the collective behaviors from different species
(e.g., ants, bees, and flocks of birds), forming a group of agents with basic principles of
interactions. These functional principles result in effective decentralized search algorithms with
balanced exploring and exploiting abilities. Common characteristics of the techniques are nature
inspiration, sociality, and iteration. They are different in the way of exploring and exploiting of
the agents in the search space. In this branch of bio-inspired computing, well-known techniques
consists of Particle Swarm Optimization (PSO) [16] and Ant Colony Optimization (ACO) [17], along
with other modern heuristics, e.g., Artificial Bee Colony (ABC) [18], Bat Algorithm (BA) [19],
Cuckoo Search (CS) [20], Grey Wolf Optimization (GWO) [21], Firefly Algorithm (FA) [22],
Social Spider Algorithm (SSA) [23], and Kestrel-based Search Algorithm (KSA) [24,25].

In the following, the principles of the widely used and emerging bio-inspired algorithms are
briefly introduced. For comprehensive reviews of bio-inspired optimization algorithms, interested
readers are referred to [9–11].

2.1. Evolutionary Computation (EC)

GA is the most common technique among EC algorithms. It is a random searching algorithm to
solve complex problems by mimicking biological evolution, which adopts the notion of survival of
the fittest as its evolution principle [15,26]. The GA is based on a set of individuals (chromosomes)
that are potential solutions for the optimization problem. The initial population is determined by a
random initialization method. At each iteration step (generation), the chromosomes are evaluated and
given the fitness values. Based on the probability proportional to the relative fitness, the chromosomes
are selected to join in a crossover process, and then a mutation process. A comparison between new
chromosomes (offsprings) and previous ones is performed to choose better chromosomes for the
next generation. The selection, crossover, mutation, and generation procedures are repeated to an
acceptable solution, or convergence is reached. GA is powerful in searching for a global optimum since
the crossover and mutation processes can preserve the population diversity and expand the searching
space. Nowadays, GA algorithms are ubiquitous and have been effectively applied to various areas,
e.g., optimization, machine learning, bioinformatics, automatic programming, and social systems [26].
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Other popular EC algorithms are Evolutionary Strategy (ES) [27] and Differential Evolution
(DE) [28,29]. To produce better and better solutions iteratively, ES uses mutation, recombination,
and selection applied to a population of individuals, which contains candidate solutions. Unlike GA
and ES, in which the perturbation arises following arbitrary variance, DE utilizes weighted variances
among solutions to perturb the individuals. Therefore, the robustness of optimization and faster
convergence can be achieved.

2.2. Swarm Intelligence (SI)

2.2.1. Ant Colony Optimization (ACO)

ACO is based on the social behaviors of some ant species which can discover the shortest route
only depositing pheromones on their moving paths [17,30]. A feasible solution is represented by an
ant. The probability of ant k traveling from node i to j is computed as follows:

Pk
ij(t) =

[τij(t)]α · [ηij(t)]β

∑l∈Nk
i
[τil(t)]α · [ηil(t)]β

, (1)

where τij is the amount of deposited pheromones on (i, j), ηij is the visibility heuristic value which
equals to the inverse of the distance Lij, α and β are weighting parameters, and Nk

i represents
the neighbor nodes that can be visited. The greater is the solution, the more pheromone is laid.
The pheromone update process is formulated by:

τij(t + 1) = (1− ρ) · τij(t) +
m

∑
k=1

∆τk
ij, (2)

where ∆τk
ij is the amount of added pheromones by ant k on (i, j) and ρ ∈ (0, 1] represents the

evaporation rate. ∆τk
ij is measured as follows:

∆τk
ij =


Q

f (sk)
if ant k used (i, j),

0 otherwise
, (3)

where Q is a fixed value, sk is the solution constructed by ant k, and f (sk) is its cost function, which can
be the path length (Lk). A sufficient iteration numbers must be perform before the termination condition
is satisfied. As a result, all ants move on the optimal path with the most concentrated pheromone.
ACO has followed by various enhancements and applied in many applications [17,31,32].

2.2.2. Particle Swarm Optimization (PSO)

PSO is a population-based heuristic approach that mimics the collective behaviors of flocks of
birds and originally develops to tackle continuous optimization problems [16]. Every particle location
is a possible solution for the problem. In particular, a particle i consists of a vector xi for location and
vector vi for velocity. Every particle heads in the direction of its previous best location (xBest) and the
global best location (gBest) in the population at every iteration as follows:

vt+1
i = ωvt

i + c1r1
(
xBestt

i − xt
i
)
+ c2r2

(
gBestt

i − xt
i
)

, (4)

xt+1
i = xt

i + vt+1
i , (5)

where ω is inertia value, c1 represents the individual coefficient of acceleration, and c2 represents the
global coefficient of acceleration, and r1 and r2 are weighting local best model and global best model
(r1, r2 ∈ [0, 1]). The neighborhood of a particle in the global best model includes the particles in the
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population exchanging information together. In the local best model, the neighborhood of a particle is
determined by a fixed number of particles. The best global model typically converges more quickly,
while the best global model is more likely to be trapped in local optima [33]. The PSO applications and
its variants can be found in [34].

2.2.3. Artificial Bee Colony (ABC)

ABC is inspired by the honey-gathering behaviors of honey bees [18]. They have different
behaviors depending on their respective labor division and realize the information communication and
sharing of bee swarms to achieve an optimum solution. We have three kinds of bees: scouts, onlooker
bees, and employed bees. Employed bees hunt for food sources (solutions) in their memories and
provide their knowledge to the onlooker bees, which pick food sources with high quality (determined
by nectar amount or fitness value) among the identified ones. If the onlooker bees cannot provide a
better food source, the employed bees become scouts and arbitrarily look for new food sources. A
probability of the food source xi being selected is as follows:

pi =
Fit (xi)

∑N
j=1 Fit

(
xj
) , (6)

where Fit(xi) is a fitness value corresponding to nectar quantity, and N is employed bee numbers.
The neighbor food source is found by the following:

vij = xij + φij

(
xij − xkj

)
, (7)

where φij ∈ [−1, 1] represents a random value and k represents a random solution index selected from
N (k 6= i). After the number of iterations, if a solution cannot be enhanced, it is then discarded. A scout
finds a different food source to supplant the abandoned one by:

xj
i = xj

min + rand(0, 1)
(

xj
max − xj

min

)
, (8)

where xj
min and xj

max represent the low and high bound values, respectively. ABC and its derivatives
have applied to several applications, including combination optimization, task scheduling, resource
allocation, and engineering optimization [35].

2.2.4. Firefly Algorithm (FA)

FA gets inspiration from the flashing rhythms and typical behaviors of fireflies [22]. Some continuous
optimization problems have been solved by FA [36]. FA follows the three conceptual rules: (1) Fireflies
are gender neutrality. Thus, fireflies fly toward brighter ones. (2) The attractiveness is inverse to the
distance among them, and corresponds to its brightness. If there is no brighter firefly than the one
in question, they will randomly fly. (3) The brightness is estimated by the fitness value. They are
formulated as follows. The distance of fireflies i and j is Cartesian distance:

rij =
∥∥xi − xj

∥∥ , (9)

where xi and xj are locations of two fireflies, respectively. The attractiveness β is proportional to the
brightness:

β(r) = β0e−γr2
, (10)

where γ is the light absorption value and β0 represents the attractive parameter at r = 0. Given a
random parameter α, a firefly i moves to another brighter one j as follows:

xi = xi + β0e−γr2
ij
(

xj − xi
)
+ α

(
rand(0,1)− 1

2

)
. (11)
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2.2.5. Social Spider Algorithm (SSA)

SSA is a relatively novel swarm intelligence technique compared to PSO, ACO, and many
other algorithms. It is inspired by the foraging strategy employed by special species of spiders
living in a group called social spiders [23]. The SSA designing is based on the information-sharing
model that describes individuals in a group as free agents with the ability to perform a searching
activity on an individual base, but each also seeks the opportunity to join others to accomplish a
common goal [23]. The implementation mechanism of SSA initializes the artificial spiders across a
hyper-dimensional search space (social web) where every location on it is a possible solution. Through
iterative evaluation of a spider’s location using a fitness function, the artificial spiders are manipulated
to find an optimum solution. Each spider keeps in-memory information on its location and parameters
that drive the optimization process: spider current location, following vibration at a previous iteration,
last movement, degree of in-activeness, and dimension mask [23]. On the social web, any vibration
detected is attributed to a source, and vibration has intensity. Vibration is generated during a spider
goes from a location to another. At the time t, the vibration intensity I generated is estimated by:

I (Pa, Pb, t) = log
(

1
f (Ps)− C

+ 1
)

, (12)

where f (Ps) is the fitness value of spider P, C is a confidently small value and Pa and Pb represent
the source and destination of vibration, respectively. As vibration travels from one point to another,
it palliates over distance. The distance between a vibration source and Pa and its destination Pb is
defined by 1-norm (Manhattan distance) as:

D (Pa, Pb) = ‖Pa − Pb‖1 . (13)

Then, the vibration palliation obtained by a spider is estimated by:

I (Pa, Pb, t) = I (Pa, Pa, t) · exp
(
−D (Pa, Pb)

σ · ra

)
, (14)

where ra governs the palliation ratio, and σ represents the standard deviation average including all
spider locations. The above equations manipulate a set of spiders with the number of steps toward
obtaining optimal results to a given optimization problem. SSA can solve some real-world issues such
as transmission expansion planning [37], railroad operation plan [38], and economic load dispatch [39].
An improvement of SSA can be found in [40], which considers the vibration triggered by trapped prey
on the web.

2.2.6. Kestrel-Based Search Algorithm (KSA)

KSA is a emerging SI technique influenced by the hunting behavior of kestrel birds such as
random encircling, the use of the eye to detect the position of prey, the velocity of kestrel to move
and capture its prey, and the trail evaporation from a prey [24,25]. The KSA uses the concept of the
half-life of radioactive substances. Initially, the KSA generates a set of random kestrels and then finds
an optimal parameter in a search space. The kestrel’s position is given by:

xk
i+1 = xk

i + β0e−γr2
(

xj − xk
i

)
+ f k

i , (15)

where xk
i+1 is the current better position, xk

i is the last position based on random encircling formulation,

β0e−γr2
represents how attractive a light reflection is from a trail which varies within [0, 1], β0 is initial

attractiveness value, r is Minkowski distance, xj represent a better position of the kestrel, and f k
i is the

bobbing frequency to detect its prey within sight measurement. When kestrels get to a better position,
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the bobbing frequency is applied to exploit the frequently changing conditions at time t. The random
encircling is defined as follows:

~x(t + 1) = ~xp(t)− ~A · ~D, (16)

where ~A = 2 ·~z · ~r2 −~z, ~D = |~C · ~xp(t) − ~x(t)|, ~C = 2 · ~r1, ~xp(t) represents prey’s position, ~x(t)
represents kestrel’s previous position, ~x(t + 1) represents kestrel’s position, and r1, r2 ∈ [0, 1] are
random numbers. ~z controls the active mode with flight mode parameter ~zhi and perched mode
parameter~zlow as follows:

~z = ~zhi − (~zhi −~zlow)
itr

Max−itr
, (17)

where itr represents the current iteration and Max−itr represents the total number of iterations. Based
on the best position of the leading kestrel, the other kestrels update their position. Finally, the kestrel’s
velocity is updated by:

vk
t+1 = vk

t + xk
t , (18)

where vk
t is initial velocity, vk

t+1 is current best velocity, and xk
t is current best position. Prey deposit

trails, which used by kestrels to search for food sources. Kestrels do not follow a depleted source of
food and prefer to explore new areas of fresh food sources. The diminishment of the trail indicates the
unstable nature of trail substances. Conceptually, given N unstable nodes, dN

dt
= −γN is a radioactive

substance decay rate with time t. It can be abridged by γt = γ0e−ϕt, where γ0 is initial value. Decay
constant ϕt is re-measured by ϕ = ln0.5/−t0.5 with half-life −t0.5. If ϕt is larger than 1, the trail is
preferred to be fresh; otherwise, the trail is preferred to be old. KSA can resolve some optimization
problems, e.g., feature selection in a classification problem [24] and energy optimization in wireless
sensor networks [25].

3. Smart Energy Management Systems Based on Bio-Inspired Algorithms

In recent years, research on EMS has gained more attention due to the global demand for efficient
energy and the reduction of harmful substances into the immediate environment [1,3,6,7,14]. “Smart”
has been used to depict intelligence and EMS’s ability to make intelligent decisions on scheduling energy
loads and minimizing energy consumption within a specified time horizon. EMS are computer-aided
tools capable of monitoring, supervising, optimizing, and managing users, distribution, transmission,
and generator facilities. Its primary purpose is to create an efficient and cost-effective balancing between
supply and demand within operational constraints and uncertainties of renewable energy resources,
energy costs, and customer patterns [3]. Besides, IoT and machine learning are becoming increasingly
prevalent and useful for the efficient operation of the EMS [3,7].

Two widely implemented EMS are HEMS [1,6,14], BEMS [7,8]. Generally, the purpose of EMS is
to minimize energy consumption through device scheduling within specified time horizons. In this
regard, both HEMS and BEMS have the same objective—energy consumption minimization. However,
the design and implementation of these systems are different, which poses challenges to EMS’s efficient
implementation. The rising demand for electricity and the scarcity of primary energy sources have
resulted in reliance on RES. One of the latest solutions for this problem is a smart grid. The smart grid
and advanced ICT can combine distributed and renewable energy sources, reducing the impacts of the
vast number of electric vehicles (EV) and peaking power stations.

In the smart grid, Demand-side Management (DSM) and Demand Response (DR) are two essential
elements of an EMS [3]. The DSM component is a series of load control decisions, including planning,
executing, and monitoring predefined operations influencing consumer patterns in energy usage.
DSM can systematically transfer and disperse usable energy to reduce emissions and peaking loads
using the DR program and allow users to select their preferences in the source of energy. The DR
program is responsible for providing dynamic pricing schemes, which include incentive-based schemes
and time-based pricing schemes, e.g., Time-of-Use (ToU), Real-time Pricing (RTP), Critical Peak Pricing
(CPP), and Inclining Block Rate (IBR) [6,13]. Optimization and scheduling of energy usage can be
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achieved when the EMS controller obtains the DR data and price tariff for energy from the service
providers. This optimization and scheduling problem can be implemented in conjunction with hard
and soft constraints. The hard constraints ensure computed solutions’ feasibility, e.g., every appliance
must be scheduled to work within its permitted period. The soft constraints are not vital but desirable,
e.g., the appliances can be planned to work as soon as possible at the beginning of its allowable
duration of service [14].

The smart EMS, based on bio-inspired approaches, is illustrated in Figure 1, which includes
energy sources, optimization objectives, algorithms, and applications. In general, energy supplies
are categorized into traditional and renewable energy sources, contributing significantly to reliable
energy generation. As energy is produced from these sources, factors such as peak-to-average ratio,
energy demand, electricity cost, emission cost, operation cost, and user comfort must be considered as
it influences which energy source or combination of energy sources could be factored into the energy
generation mix. The control of these factors is achieved with EMS controllers that provide a scheduling
mechanism based on the received information and then signals the EMS to respond accordingly by
optimizing the factors within a time horizon. In this regard, the smart EMS should intelligently manage
information from the EMS controller, and one of the approaches to achieve this is using algorithms
such as bio-inspired approaches. The strength of bio-inspired search approaches is their ability to
avoid searching unpromising local search space to produce a global optimized search result. By so
doing, the performance of smart EMS is enhanced. This search strategy makes it flexible when applied
to energy management applications used in our homes, buildings, energy grids, and the Internet
of Energy. Bio-inspired techniques are more powerful than exact methods to resolve optimization
problems since they effectively search in the feasible region to find an optimal solution [10,11,41].
The following subsections present the concepts, architectures, optimization objectives, and bio-inspired
approaches in the smart EMS.

Evolutionary 

Computation

(GA, ES, DE, etc.)

Swarm Intelligence

(ACO, PSO, ABC, 

FA, SSA, KSA, etc.)

Energy 

Sources 

Optimization 

Objectives

Applications

Internet of 

Energy

Bio-Inspired 

Energy 

Management 

Systems

Smart 

Home

Smart 

Building
Smart Grid

Traditional Energy 

Sources
Renewable Energy 

Sources
Coal

Natural Gas

Nuclear Solar

Wind

Hydropower

Biomass

Geothermal

Other

Petroleum

Energy 

Demand

Operation 

Costs

Emissions
Electricity 

Costs

AlgorithmsUser 

Comfort

Peak-to-

average 

ratio

Figure 1. Structure of smart EMS using bio-inspired approaches.

3.1. Smart Home

Recent developments in ICT include the use of the IoT, smart meters, smart sensor technologies,
smart appliances, and home energy storage systems have been developed. The rising use of these
technological interventions has provided the technological framework and infrastructure for a smart
home. In particular, it enables the communication between users and appliances and enhances the
automation, monitoring, and remote control of home appliances. The increased energy demand
and the advent of smart grids have created new perspectives and dimensions for smart HEMS.
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The smart HEMS is a DR platform that monitors and schedules different home appliances in real-time
by considering consumer needs through a smart home human-machine interface to save electricity
cost, enhance the energy efficiency, and preserve the user comfort [1,6].

Figure 2 presents the overall paradigm of a typical smart HEMS. It includes a smart meter,
HEMS controller, smart appliances, energy distribution, and advanced communication systems.
The HEMS controller provides monitoring and control functions for the homeowner based on the
local communication network (e.g., LAN, WLAN, Wi-Fi, ZigBee, and Bluetooth). Real-time data on
smart appliances’ energy usage can also be obtained by the HEMS controller to perform optimal
demand dispatch. The smart meter functions as an interactive communication channel between
smart homes and power providers. In general, it receives a DR signal as input data to the HEMS
controller. Then appliance scheduling is executed for DR. Meanwhile, the application of EV as a
replacement for conventional vehicles with a combustion engine is becoming increasingly of interest.
An EV not only operates as a load but also can be utilized to provide emergency energy to other
household loads [42]. In residential areas, distributed renewable generations usually include solar
panels. Residential electricity supplies can be incorporated entirely into HEMS, enabling smart homes
not merely to rely on the transmission systems’ bulk electricity. Therefore, energy storage systems
(ESS) are vital in improving energy quality and conservation and ensuring electricity system stability.

Smart Meter

Energy Storage

Electric Vehicle

Distributed 

Generation

Home Energy 

Management System 

Controller

Mobile 

Devices

Power Utility 

Smart Appliances

Power Network Communication

Figure 2. Smart HEMS.

The purpose of HEMS is to control energy usage better. To do this, the HEMS tracks household
use and schedules the function of the appliance. It can be accomplished by scheduling strategies to
determine the best timing of the operation of smart appliances. Some common objectives considered
for appliance scheduling are described as follows [1,2,6]:

• Electricity cost usually includes any financial expense related to energy management. Cost is
the simplest criterion to calculate since numerical values for these different components are
readily accessible.

• Peak-to-average ratio (PAR) represents a rate of peaking energy consumption to average energy
consumption. When this rate is near one, the services are heavily used since the load profile is
relatively flat. When this rate is low, there is a significant idle system capacity resulting in higher
operating costs.
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• User comfort is a set of criteria, such as temperature, humidity, lighting, and air quality, making
people more comfortable and increasing their productivity. There are three main types of comfort:
air quality, thermal comfort, and visual comfort. Furthermore, the user comfort level can be
measured based on the delay rate for the appliances’ service.

• Emission is typically expressed in grams of carbon dioxide equivalent per kWh of electricity usage.
It refers to greenhouse gas emissions related to energy consumption, depending on the grid
emission intensity.

Table 1 shows an overview of the typical studies used bio-inspired algorithms in HEMS. Among
them, GA and PSO are the most prominent. The GA is applied to numerous HEMS models as
follows. Zhao et al. [43] combined RTP with IBR pricing schemes in their HEMS model, and then
adopt GA to optimize the operation start timestamps of appliances to decrease both the energy cost
and PAR. An improvement of this model was proposed in [44] by integrating RES in the system.
In [45], a system including GA, system identification, and model predictive control achieved significant
energy and cost savings while ensuring reasonable user comfort levels. Javaid et al. [46] aimed
to reduce energy expense and consumer discomfort while considering peaking energy usage via
appliance scheduling. They presented a hybridization of GA and binary PSO (BPSO) called the GAPSO
method. This proposed hybrid method obtained substantial reductions in energy cost with minimum
user discomfort in comparison with GA, BPSO, and dynamic programming (DP). Rahim et al. [47]
integrated HEMS with RES and ESS, requiring modifications in heuristic algorithms. For energy
pricing, the authors presented a hybrid model based on TOU and IBR. Simulations revealed that
GA worked more effectively than BPSO and ACO with regard to reducing energy cost and PAR and
increasing user comfort. In [48], a GA-based evolutionary accretive comfort method was introduced
to produce an optimum power allocation schedule, which results in comfort maximization within
a predefined consumer budget. Hussain et al. [49] presented a multi-objective GA (MOGA) along
Pareto optimality to optimize the size of a dispatchable generator that guarantees a reliable energy
supply during large load shedding hours. To obtain optimum trade-offs between energy cost, thermal
comfort, and peak demand reductions, Hu et al. [50] presented a DR control model for inverter air
conditioners with a day-ahead tariff. In the model, GA was implemented to search ideal schedule
settings for controllers.

Several studies utilized the PSO in their HEMS models. For example, in [51], a HEMS appliance
scheduling model was developed based on the day-ahead pricing scheme and photovoltaic production
with the objectives of energy, user discomfort, and emissions minimization. The drawbacks of PSO are
the problems of locally optimal trapping and premature convergence. A cooperative multi-swarm PSO
method was developed to overcome PSO’s drawbacks and to schedule different appliances. A PSO
variant in [52], called a weighted-sum PSO, was implemented to find the optimal function of DR for
load shifting. Their HEMS model also includes the dispatch strategy for ESS, solar panel, and energy
grid systems. The major objectives include the minimization of energy cost, customer discomfort,
and peak load. Faia et al. [53] presented a PSO-based energy management paradigm. The scheduling
method with the objective of operation expense minimization takes variables, including photovoltaic
production, available storage capacity, and dynamic loads into consideration. Cao et al. [54] developed
PSO and its variants for a purpose-built heat pump control tool. Among them, the crossover
sub-swarm PSO obtained a mean savings of 25.61% while ensuring an acceptable degree of user
comfort. Dinh et al. [55] proposed a novel HEMS paradigm, including RES and ESS, taking the
energy consumption and selling model into consideration. Energy cost and PAR objectives were
included in the fitness function. The hybrid of PSO and BPSO was developed to tackle the optimization
problem, i.e., BPSO and PSO update the binary variables and continuous variables, respectively.
Simulations showed that the hybrid method reduced the electricity cost and PAR by roughly 10%
compared with that of BPSO. HEMS with the incorporation of RES and ESS is considered in [56].
Simulations showed that the integrated model reduced by approximately 20% both electricity expense
and PAR. Furthermore, the hybrid of GA and PSO methods surpassed other bio-inspired algorithms
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by decreasing both electricity expense and PAR by approximately 25%. Ullah et al. [57] proposed a
simulation model for a GA and PSO-based energy management framework. The sensors collect the
data, and then the Kalman filter eliminates the noise from the collected data. In the study, the case
study was conducted in South Korea, and the heating situation was regarded since the temperature
was already below the country’s comfort index.

Table 1. Overview of the typical studies used bio-inspired algorithms in HEMS.

Reference & Year Techniques Objectives Highlights

[46] 2017 GA, BPSO Energy cost, PAR,
user comfort

HEMS model was evaluated based on pricing schemes: CPP and
day-ahead. The hybrid scheme of GA and BPSO named GAPSO
performed better compared to GA and BPSO.

[58] 2017 CS Energy cost, PAR The efficiency of CS was superior to GA in HEMS with RTP
pricing signal.

[48] 2018 GA User comfort The proposed GA-based evolutionary accretive comfort algorithm
achieved an maximum comfort within the budget limits.

[50] 2018 GA
Energy cost,
thermal comfort,
peak load demand

GA was utilized to find the optimal set-point schedule for
indoor air temperature. Trade-off weightings in objectives were
addressed based on sensitivity analysis.

[59] 2018 FA Energy cost, PAR,
user comfort

Under RTP pricing scheme, FA-based HEMS with the integration
of RES could reduce energy cost and alleviate PAR.

[52] 2019 PSO Energy cost, user
comfort, peak load

HEMS model includes a dispatch strategy for ESS, solar panel,
and energy grid systems, and a weighted-sum PSO-based DR
optimization for load shifting.

[60] 2019 DE Load balancing,
user comfort, PAR

An improved enhanced DE (iEDE) with the influence of DR
aggregator was presented for optimizing the electricity usage
parameters.

[61] 2019 ACO Energy cost, delay ACO scheduling enhanced by a mutation operator achieved a
5.44% decrease in overall cost compared to traditional ACO.

[62] 2019 GWO Energy cost, PAR,
user comfort

GWO was compared to GA and showed better results under the
same consumption profiles in HEMS with RTP and IBR price
tariffs.

[63] 2020 ABC Energy cost
A distributed ABC-based scheduling approach was implemented
in a decentralized HEMS, where the IoT-based appliances are
communicated and collaborated with each other.

Other bio-inspired algorithms are also applied in HEMS models. Essiet et al. [60] introduced an
improvement of enhanced DE technique in which the two-archive method boosts the performance of
mutation and crossover operators. It was implemented to align the load scheduling and participation
of RES in HEMS to optimize energy consumption while reducing PAR and improving user comfort.
Silva et al. [61] proposed a mutation operation integrated ACO scheduling approach with a predefined
consumption threshold to reduce electricity bills and delay. Then, the proposed approach reduced
total cost by 5.44% compared with baseline ACO-based HEMS. Bui et al. [63] proposed a dynamic and
distributed ABC-based appliance scheduling method to minimize energy usage. By taking the IoT
advantages, the appliances are connected and collaborated as a fully decentralized HEMS. In [59], FA
was deployed in HEMS to resolve the scheduling problem that aimed at reducing energy usage and
expense, peak load demand, and improving customer comfort under the RTP signals. In [62], GWO was
used for a multi-objective energy scheduling problem in the HEMS with IBR and RTP tariffs to minimize
the energy expense, PAR, and customer discomfort. The proposed approach was compared to GA and
yielded better results under the same user consumption profiles. Similarly, in [64], GWO-based HEMS
outperformed PSO-based HEMS in terms of minimizing the electricity expense, PAR, and maximum
peak load consumption. Aslam et al. [58] suggested a CS-based appliance scheduling scheme to reduce
energy cost and PAR within a reasonable delay under RTP signals. CS performance was seen to be
superior to GA since CS spent more time on global exploration than local exploration, and the number
of parameters required to be tuned from CS was less than GA.
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3.2. Smart Building

Buildings have recently been a significant concern for environmental issues as they absorb about
40% of global electricity supply and account for 30–40% of emissions [8]. To overcome this, the concept
of smart buildings has emerged. Smart buildings bring to the buildings the energy advances which
concentrate on automated resource allocation, user comfort, and efficient energy consumption [7].
Thereby, they can be sufficiently adaptable to shift load to cheaper price periods, reduce energy cost,
and maximize the use of local RES and ESS [65]. To support that, the idea of BEMS is now being used.
BEMS can monitor and control building energy demand to optimize total energy usage, taking into
account the consumers’ convenience and comfort.

BEMS manages all the electricity generators, energy storage, loads, and communication networks,
as shown in Figure 3. Significant loads considered in BEMS consist of electric lights, and charging
loads, and HVAC. Hence, the ultimate goal of sustainable development in smart buildings is to
enhance energy efficiency by minimizing energy losses and environmental impacts. In particular,
renewable energy generators can be built into buildings and district infrastructure to boost the
sustainable community [47,66]. The discussed BEMS is also known as a nearly or net-zero energy
building (nZEB) [8]. Research on the buildings’ energy efficiency involves the following dimensions:
determining the appropriate type of sensors and control systems such as IoT; using suitable consumer
modeling methods to identify consumer behaviors; conducting simulations; utilizing power usage
and consumer comfort optimization; and implementing control methods to energy usage systems.

Control and 
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Electric Vehicle 

Charging Station

Smart Meter Power Utility 

Energy Storage

HVAC 

Control

Lighting 
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Building Energy 
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Power Network
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Figure 3. Smart BEMS.

Table 2 presents an overview of the typical works using bio-inspired approaches in BEMS.
In particular, Lu et al. [67] compared two approaches to optimizing renewable energy systems,
i.e., GA with a single objective and Non-dominated Genetic Sorting Algorithm (NSGA-II) with
multiple objectives. They considered three objectives, namely the overall expenditures, emissions,
and the index of grid interaction. With more information, the NSGA-II makes better decisions in
optimization in comparison with GA. In [68,69], Shaikh et al. proposed a multi-agent system together
with stochastic optimization utilizing the MOGA for BEMS. The proposed control system offered
considerable efficiency in energy utilization and indoor pleasure (i.e., thermal comfort, lighting, and air
quality). Delgarm et al. [70] adopted a multi-objective PSO (MOPSO) for energy efficiency with respect
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to the use of electricity for ventilation, heating, and illumination. Reynolds et al. [65] implemented
an ANN model for forecasting the heating power demand and zone temperature, then combined
ANN and GA model to decrease the energy cost by 25% over a test week. Ali et al. [71] introduced an
optimization technique for user comfort and energy cost with GA and fuzzy controllers in a residential
building. The optimized parameters were temperature, lighting, and air quality representing the
consumer comfort index. The same optimization models were studied in [72–74]. Particularly, instead
of using GA to solve the optimization problem, Wahid et al. [73] used ABC with Knowledge Base,
which considered the historically optimized parameters. Via simulations, it was shown that the
ABC-KB-based model consumed less energy and maximized user comfort index than the GA and
PSO-based models. In addition, BA, which is a SI approach inspired by the properties of bats in
echolocation, was used in [72], and an ensemble of GA and PSO was used in [74].

Table 2. Overview of the typical studies used bio-inspired algorithms in BEMS.

Reference & Year Techniques Objectives Highlights

[67] 2015 GA, NSGA-II
Expenses,
emissions, grid
interaction

GA with single objective and NSGA-II with multiple objectives
were compared in buildings’ renewable energy systems.

[71] 2015 GA with fuzzy
controllers

Energy saving,
user comfort

GA was used to optimize temperature, lighting, and quality of air
parameters which represents the user comfort.

[75] 2015 PSO

Energy saving,
user comfort,
voltage grid
support

For the interconnection of the smart grid and smart buildings,
a dual agent-based control framework, which used PSO was used
for optimization strategy in BEMS, was proposed.

[68] 2016 MOGA Energy cost,
indoor comfort

A multi-objective GA (MOGA)-based multi-agent system offered
considerable efficiency in energy utilization and indoor pleasure
(i.e., thermal, visual, and air quality comfort).

[70] 2016 MOPSO Energy cost
A multi-objective PSO (MOPSO) was proposed to minimize
electricity consumption in a typical room in a building with
respect to cooling, heating, and lighting.

[65] 2018 GA, ANN Energy cost
Artificial neural network (ANN) was implemented for predicting
heating energy demand and zone temperature. Then, GA was
used to reduce energy cost by 25% over a test week.

[66] 2018 dEA Energy use
intensity

For planning the community energy, a distributed evolutionary
algorithm (dEA) was presented. Trade-offs between energy usage
minimization and load balancing were discussed.

[72] 2018 BA with fuzzy
controllers

Energy cost, user
comfort

BA was used to optimize temperature, lighting, and air-quality
parameters, compared to GA, and PSO and yields better results.

[73] 2019
ABC-KB
with fuzzy
controllers

Energy cost, user
comfort

ABC combining knowledge base (ABC-KB) was taken into
account historically optimized parameters. ABC-KB-based BEMS
yields better results compared with GA and PSO-based models.

[74] 2020 Ensemble of
GA and PSO

Energy cost, user
comfort

An ensemble of PSO and GA-based BEMS model reduced
consumed power and improved user comfort compared to GA,
PSO, ACB-KB-based BEMS models.

Beyond the scale of buildings, Bucking et al. [66] suggested an approach to co-optimize buildings
and community energy networks to minimize energy utilization and stabilize the loads. The dEA
algorithm was introduced to help communities achieve net-zero energy and alleviate peaks applying
a district energy system at the same time. For the interconnection between the smart grid and
smart buildings, Hurtado et al. [75] introduced a dual agent-based control system that used PSO for
optimization strategy in BEMS. It was concluded that the PSO had a tremendous capacity for electricity
efficiency, user comfort maximization, and voltage grid support.

3.3. Smart Grid

A smart grid is a future energy solution, which combines energy transmission and distribution
processes with state-of-the-art sensor technologies, control techniques, and networking capabilities [5].
It allows the delivery of electricity more efficient and user-friendly.
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Figure 4 illustrates the smart grid’s general architecture. Recently, utilities have implemented
various algorithms in a decentralized manner to coordinate different elements in various locations in
their electrical networks. With the support of high-speed and bi-directional communication protocols,
IoT devices such as smart meters communicate with each other to perform the analysis or make
decisions in independent or collaborative manners. Additionally, the development of distributed
intelligent methodologies such as monitoring, detecting faults, maintaining, and integrating RES
into EMS has enhanced overall system performance and reliability. Microgrid, a great solution
for integrating RES under the smart grid environment, has drawn the interest in the research
community [4,12]. A microgrid is a local energy distribution with a self-control mechanism that
manages distributed energy sources and loads in a coordinated manner. There are two modes of a
microgrid: connected to the grid or isolated. It uses several types of RES, such as wind, photovoltaics,
and microturbines, as the electricity generators [4]. Therefore, it can enhance the grid’s reliability and
address the electricity crisis.
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Figure 4. Smart grid.

Table 3 presents an overview of the typical studies using bio-inspired approaches in the smart
grid. Several works focused on strategies of deploying and sizing distributed generation and energy
storage systems to reduce energy loss, which can happen through electricity transmission from
the central power stations to the consumer. For example, in the existing distributed generators,
Kalkhambkar et al. [76] implemented GWO to find optimal placement for energy storage to minimize
electricity deficit through peak shaving. In [77,78], with the target of total investment cost minimization,
PSO was used to optimally scale isolated-hybrid diesel/solar/wind/battery power systems. It was
implemented in the parallel method to speed up the optimization process. In [79], PSO was also applied
but to optimize the scale and location of ESS to enhance the dependability of the radial distribution
hybridization system. SSA was utilized in [37] to tackle the transmission expansion planning issue,
which identifies a collection of additional power lines to expand the electric grid capacity. In [39],
a variant of SSA was developed to address an economic load dispatch issue, which determines the
optimum scheduling of electricity generator, taking into account fuel consumption and power unit
generator restrictions. Improved ABC also resolved this problem in [80].
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In the smart grid, load scheduling is also one of the most crucial problems. Elsied et al. [81]
presented an advanced real-time EMS which used GA to minimize the electrical expense and pollution
whereas maximizing the capacity of usable RES generators in a microgrid. Neves et al. [82] discussed a
GA-based controllable loads optimization for an isolated microgrid controller concerning the dispatch
expenses, renewable assets, and emissions. Dai et al. [42] proposed a combination of a multi-agent
system and PSO, called the multi-agent PSO algorithm, to size solar panel, battery, and find the
charging/discharging pattern of battery. Radosavljevic et al. [83] employed PSO to reduce the total
expense of energy and operation through optimally changing EMS control variables and following
various operational constraints. Li et al. [84] implemented an EMS based on a regrouping PSO
technique for commercial microgrids with high RES penetration. The system’s goal is to minimize
fuel consumption and operational cost through day-ahead scheduling, considering energy demands
and the prediction of produced electricity by generators. Shi et al. [85] used PSO for load scheduling
for minimizing energy expenditure. They selected several examples of changing the renewable
electricity usage ratio and consumer comfort level and then implemented them in a smart community.
In [86], an integrated energy system including solar panel, combined heat and power, and the ESS
battery was designed to obtain a minimum operating expense, considering the battery life loss.
An improved DE algorithm was used to test the system in three battery states. Safamehr et al. [87] used
ABC-quasi-static techniques to decrease the electrical expenditure and peak demand for reshaping
load profiles. Simulation findings showed that this technique decreased energy expenditure by 8.33%
and peak demand by 11.11%. Finally, considering the fluctuations of demand prediction, wind turbine
generator, solar panel generator, and energy price, Mohammadi et al. [88] investigated an adaptive FA
algorithm for the optimal operational control of a microgrid with RES.

Table 3. Overview of the typical studies used bio-inspired algorithms in smart grid.

Reference & Year Techniques Objectives Highlights

[87] 2015 ABC Energy cost, peak
demand

The paper presented a cost-effective and reliable microgrid. ABC
and quasi-static methods were used to minimize electricity costs
and peak demand by 8.33% and 11.11%, respectively.

[76] 2016 GWO Energy loss GWO was used to find optimal placement of ESS in a smart grid
with the presence of RES.

[39] 2016 SSA Fuel cost A variant of SSA was developed to discover the optimal scheduling
of energy generation in an economic load dispatch problem.

[83] 2016 PSO Energy cost,
operational cost

PSO was employed to obtain the optimum adjustment of EMS
control variables in a microgrid.

[77] 2017 PSO Investment cost The parallel PSO was applied to optimize the scale of isolated energy
systems including diesel/solar/wind/battery hybridization.

[37] 2017 SSA Investment cost SSA was used for solving a transmission expansion planning
problem to expand the power system capacity.

[82] 2018 GA
Dispatch cost,
renewable share,
emissions

GA was adapted for optimizing flexible loads in an isolated
microgrid to reduce the dispatch costs.

[86] 2018 iDE Operational cost An improved DE (iDE) was proposed to minimize operating
expenses while considering the battery lifetime deficit.

[85] 2019 PSO Energy cost PSO was used to schedule the flexible loads, maximize the renewable
production, and manage the status of ESS.

[42] 2019 MAPSO Energy cost
A multi-agent PSO (MAPSO) was developed to estimate the
optimal size of photovoltaic, battery ESS, and determine the
charging/discharging pattern of battery ESS.

4. Challenges and Research Opportunities

This section discusses the limitations of the previous studies, which could serve as potential
research directions for bio-inspired approaches to smart energy management.
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4.1. Emerging and Hybrid Bio-Inspired Approaches

We observe that the number of studies on bio-inspired approaches to sustainability and smart
energy management issues has grown significantly. However, none of the particular approaches could
be ideally suited to all kinds of issues. The problem needs to be formulated in a manner that is fitting
for the algorithm. Moreover, real-world problems usually take more than one objective into account.
They are typically conflicting, so it is crucial to find suitable trade-offs among them. Furthermore,
the problem gets more complicated when it includes both binary and continuous variables. We think
that bio-inspired algorithms with parallel and multi-objective processing will be exciting research
directions. The hybridization of them can also be a potential research direction.

Several new bio-inspired approaches have been published recently. For example, Social Spider Prey
Algorithm [40] is an emerging nature-inspired algorithm that takes the vibration created by trapped prey
on the web of the spiders into consideration. This algorithm helps to identify the feasible solution on a
hyper-plane in a multi-objective optimization problem. Whale Optimization Algorithm [89], motivated
by the behaviors of Humpback whale, has been used to achieve the optimal size of distributed
generators [90]. Ant Lion Optimization [91], which is designed based on the special hunting behavior
of ant lions, has also been used to identify the optimum size of distributed generation [92] and find
energy scheduling in microgrid [93]. Earliglow Algorithm, which takes advantage of both Jaya and
strawberry algorithms, is applied in HEMS with significant achievements [94]. Dragonfly Algorithm,
which is motivated by the behavior of hunting and migration of dragonflies, is used in HEMS
with objectives of energy cost, PAR, and delay minimization [95]. Other different issues in energy
management systems are also solved by many other new bio-inspired algorithms, such as Wind-Driven
Optimization [96], Grasshopper Optimization Algorithm [97], Bacterial Foraging Algorithm [97,98],
Flower Pollination Algorithm [98], Glowworm Swarm Optimization [99], Artificial Fish Swarm
Algorithm [100], and Kestrel-based Search Algorithm [24,25].

The bio-inspired algorithms could be hybridized to reduce time complexity or space complexity
and further improve the solutions. For instance, an ensemble of GA and PSO is proposed to minimize
power utilization and enhance user comfort [74]. A hybridization of Bird Swarm and Cuckoo Search
techniques is presented to resolve a multi-objective scheduling problem in HEMS [101]. A combination
of the Bat Algorithm and Flower Pollination Algorithm is used for scheduling shifting appliances [102].
A meta-heuristic integration of the enhanced DE and Harmony Search Algorithm has been proven
to be effective regarding energy cost and PAR reduction in HEMS [103]. A Wind-Driven Bacterial
Foraging algorithm, which combines a wind-driven algorithm and a bacterial foraging algorithm,
has been implemented to systematically schedule IoT-based appliances in the smart home to eliminate
PAR, decrease energy expenditure, and increase consumer comfort [104]. Some other studies have
also applied hybrid bio-inspired approaches to solve different issues in EMS [105–109]. The hybrid
algorithms can enhance the convergence and computational time of energy optimization and scheduling
problems. However, more consideration should be given to the types of problems (i.e., single or
multiple objectives), kinds of optimization (i.e., local or global), efficiency, or reliability when selecting
an algorithm to solve these optimization problems.

4.2. Coordinated Energy Management Systems

Bio-inspired algorithms could face difficulties in solving load optimization problems under
heterogeneous and dynamic environments. Because they are typically applied in a centralized fashion,
the computational cost rises along the environment’s scale and complexity. Decentralized frameworks
can be applied to overcome this issue. For instance, every energy consumer can be an agent in the
multi-agent system, exchange information, and perform computation together to achieve the optimal
state of energy usage. It could bring more flexibility to the coordinated management system. With the
big data from IoT devices/smart meters, the integration of bio-inspired approaches with machine
learning techniques should be explored in predicting load demands, automated context exploration,
and artificial context perception, moving to EMS self-adapting and self-reconfiguration. RES are the
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most exciting alternative energy sources due to their prosperous and sustainable features. However,
they also come with irregular and unpredictable characters [47,99]. Therefore, the usage of single
RES could result in an excessive system. As a result, hybrid renewable energy systems (HRES) have
emerged [110]. They combine different RES and/or with ESS and traditional energy sources. They can
be operated independently or connected to the main grid. To further improve the performance
and reliability of the HRES, comprehensive investigations are needed regarding the real-time and
cost-effective RES deployment and appropriate ESS selection. For example, in the large-scale
HRES, the sizing problems, the optimal placement of energy resources, and capital/operational
cost optimization problems could be challenging. Finally, the plugged-in EV have dual roles, namely
as consumers and generators. Hence, it is also essential to include them in EMS.

4.3. Internet of Energy and Beyond

The latest computing and networking paradigms offer essential motivation for developing
different heuristics for incredibly complicated tasks. Hence, the developments of existing
bio-inspired approaches regarding these new paradigms could substantially improve computing
efficiency. For example, an Internet-style solution has been introduced for exploiting the
bidirectional transmission of energy and data, namely the Internet of Energy (IoE, also known as
Energy Internet) [111–114]. It takes both the characteristics of the smart grid and IoT. IoT is known
as a novel communication paradigm that enables a large number of smart objects to communicate
with each other and share services and information [7,49,104]. On the other hand, the smart grid can
provide two-way connectivity among a power grid and EMS, monitor, and control power generator
equipment [3,5]. Some existing works have built fundamental concepts and addressed different aspects
of IoE. In [115], the authors foresaw a transition of the conventional energy networks, which have
excess capacity to meet peak demands, to a more stable combined system where energy is generated
to meet peak demands, storing energy either chemically or thermally, or time-shifting to meet the
demand-supply. In [116], the authors proposed an energy router-based microgrid interconnection
framework, in which the energy router functions as a gateway for the establishment of electrical
transmissions between microgrids and the main grid. With a target of a distributed, scalable,
and privacy-protected energy management in IoE, the authors of [112] introduced a distributed
computational intelligence paradigm where each energy device as an agent manages its private
database and performs local computing without sending private data to others. In [117], the authors
presented a decentralized HVAC management scheme where every smart device is linked by the
wire connections and collaboratively interacts with others. Likewise, in [63], the authors proposed a
decentralized HEMS where smart appliances communicate with each other to perform scheduling
optimization based on a distributed ABC algorithm. In [113], a novel IoE communication platform
was introduced to enable peer-to-peer (P2P) communications among microgrids. In [118], the authors
reviewed the crucial challenges and concerns for the IoT applications in sustainable energy systems.
Finally, Blockchain technology could be used to allow various electrical providers to trade energy and
carry out energy transfers without requiring a third party [114].

For the foreseeable future, IoE will be progressively utilized in buildings, EV, distributed power
systems, and local and commercial sectors. It will require comprehensive intelligent monitoring and
control for distributed and intermittent energy generation and storage. In this context, a range of
new problems should be addressed, such as the P2P energy trading between prosumers, optimizing
EV charging stations’ location, dispatching and managing energy optimization, and exchanging
information and energy in the smart grids. Therefore, further studies could investigate the bio-inspired
approaches to these issues.

5. Concluding Remarks

This paper provides a comprehensive analysis of recent studies on bio-inspired approaches
for smart energy management systems consisting of HEMS, BEMS, and smart grid. In summary,
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the bio-inspired techniques can be used to minimize energy consumption, stabilize the energy loads,
improve user comfort, and reduce emissions. Furthermore, with the aid of the Internet of Energy,
the bio-inspired approaches can provide a more efficient control system for distributed and hybrid
renewable energy sources and enhance the scope of smart energy management systems for developing
even smarter systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
BA Bat Algorithm
BEMS Building Energy Management Systems
BPSO Binary Particle Swarm Optimization
CPP Critical Peak Pricing
CS Cuckoo Search
DE Differential Evolution
DP Dynamic Programming
DR Demand Response
DSM Demand-side Management
EC Evolutionary Computing
EMS Energy Management Systems
ES Evolutionary Strategy
ESS Energy Storage Systems
EV Electric Vehicles
FA Firefly Algorithm
GA Genetic Algorithm
GWO Grey Wolf Optimization
HEMS Home Energy Management Systems
HRES Hybrid Renewable Energy Systems
HVAC Heating, Ventilation, and Air Conditioning
IBR Inclining Block Rate
ICT Information and Communication Technologies
IoE Internet of Energy
IoT Internet of Things
KSA Kestrel-based Search Algorithm
MOGA Multi-Objective Genetic Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm
nZEB Nearly/Net Zero Energy Building
P2P Peer-to-Peer
PAR Peak-to-Average Ratio
PSO Particle Swarm Optimization
RES Renewable Energy Sources
RTP Real-time Pricing
SI Swarm Intelligence
SSA Social Spider Algorithm
ToU Time-of-Use
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