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Abstract: The domain of renewable energy has seen tremendous growth in the past many years.
This growth has shown optimism for a sustainable future and promises to lead the human race
towards a cleaner and healthier environment. Wind energy, which is a vital part of this clean energy
revolution, has received significant attention globally. To get benefit from wind energy, wind farms
need to be developed with the highest efficiency so that the maximum energy can be harnessed. A key
decision in this development process is selection of a turbine type that shows highest compatibility
with the geographical and topographical features of the site where the turbines are to be installed.
In practical terms, the turbine selection mechanism should consider several decision criteria. In many
cases, these criteria are conflicting with each other. Furthermore, the choice and aspirations of the
decision-maker who selects these turbines should be considered in the selection process and should
be flexible. This paper presents a preliminary study on a rule-based turbine selection methodology
which is based on the concepts of fuzzy logic. The proposed methodology analyzes several scenarios
in conjunction with the turbine selection model. The applicability of the methodology is demonstrated
via two test scenarios. Data from a real potential site in Saudi Arabia were used, and 17 turbines from
different manufacturers and with rated capacities in range of 1.5–3 MW were evaluated. The results
indicate that the proposed scheme is able to incorporate decision-maker’s aspirations and effectively
reflects these aspirations in the turbine selection process.

Keywords: wind energy; wind turbine selection; multi-criteria decision-making; fuzzy logic;
decision rules

1. Introduction

During the last couple of decades, the world has suffered from various environmental issues.
Air pollution, water pollution, noise pollution, soil and radioactive contamination, and plastic pollution
are major elements of the environmental pollution. The main cause of this environmental pollution can
be attributed to the demands pertaining to improved quality of living standards worldwide, which has
resulted in increased demand for energy as well. However, the traditional sources of energy supply,
which mainly consist of fossil fuels, have contributed significantly to various forms of pollution. Due to
the alarming rate of increase in pollution levels around the globe, research is focusing on finding
solutions to various problems with one main goal: a sustainable future. Accordingly, a notable level
of attention has been given to reduce (and eventually eliminate) reliance on fossil fuels and to find
alternative sources of cheap and clean energy for sustainable times ahead.

With the aim of harnessing clean energy, various solutions have been proposed over the years.
One area which has received significant attention by researchers is wind energy. The interest in
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wind energy is due to several reasons. Wind energy is cheap; the cost of generation, operations, and
maintenance is substantially less than energy generation from fossil fuels [1]. The time required for
deployment and commissioning of a wind farm is also far less than that required for establishing
an energy generation plant that runs on oil, gas, or coal. Furthermore, unlike the resources of fossil
fuels, which are owned and controlled by certain countries and governments, wind is not affected by
geographical boundaries or geopolitical conflicts.

At a commercial level, wind energy is obtained by developing wind farms in windy regions.
One crucial phase in the development of a commercially viable wind farm is the selection of a turbine
type that meets the geographical, topographical, and climatic characteristics of the wind farm site
under consideration. This selection is often governed by several decision criteria, where one or more
decision criteria are conflicting with each other. To address this multi-criteria nature of the turbine
selection problem, several approaches exist. These approaches are broadly covered under the domain
of multi-criteria decision-making (MCDM).

The MCDM approaches are used to solve decision problems where multiple criteria are involved
in the decision making process. These criteria are in conflict with each other, in addition to being
mutually incommensurable. Conflict refers to a situation where improvement in the quality of decision
in one criterion results in a negative impact on at least one other decision criterion. For example, in a
factory X, if the work force is to be minimized while total earnings are to be maximized, then the two
objectives are conflicting since reduction in work force will minimize the total earnings as well (which
is not desired). Incommensurability refers to a situation where the decision criteria have different
units and magnitudes. In the example above, the work force and total earnings are incommensurable
since work force is a head count while total earnings is the amount of money in a certain currency.
In addition, the work force could be in the hundreds, while the total earnings could be in the millions.

Over the years, several MCDM techniques have been developed by researchers. Some well-known
techniques include weighted sum method [2], goal programming [3], TOPSIS [4], VIKOR [5], ELECTRE [6],
AHP [7], PROMETHEE [8], Grey relational analysis [9], minimum Manhattan distance (MMD)
approach [10], and fuzzy logic [11], among many others [12]. In the context of MCDM problems,
two possible decision scenarios may be encountered by the decision-maker. These scenarios can be
illustrated by the following two decision rules as examples:

Example 1. IF Criterion A is optimized AND Criterion B is optimized AND Criterion C is optimized THEN
the Result D is also optimized.

Example 2. IF Criterion A is optimized OR Criterion B is optimized OR Criterion C is optimized THEN the
Result D is also optimized.

In Example 1, there are three decision criteria, namely Criteria A, B, and C, and optimization of
all three is mandatory in order to reach an optimized decision represented by Result D. If any one of
the three decision criteria is not optimized, even though we optimize the other two input criteria, then
Result D will not be optimized. In contrast, the decision rule in Example 2 requires optimization of
any one of the three input criteria in order optimize Result D.

A limitation of the MCDM techniques, including the ones mentioned above (with the exception
of fuzzy logic) is that they are designed to deal with problems depicting situations shown in Example
1. That is, the techniques can effectively solve MCDM problems where the decision is to be taken
based on the ’AND’ operation between the criteria. These techniques are not equipped to deal with
the situation illustrated in Example 2 where the decision rule is based on the ’OR’ operation. Fuzzy
logic, on the other hand, has an exceptional capability in the sense that it can deal with decisions rules
where AND or OR operations are present. More specifically, fuzzy logic can deal with AND operation
through the t-norm functions while the OR situation can be handled through the s-norm functions [11].
This feature of fuzzy logic allows easy handling of situations where the decision may involve the
mixed AND-OR type rules, which is the focus of the present study and provides the main motivation
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to employ fuzzy logic for developing and implementing several decision rules for turbine selection.
While other MCDM techniques may be computationally or methodologically better than fuzzy logic,
they lack the s-norm type capability and therefore cannot be applied to situations other than the ones
involving the AND operation between the input criteria.

Another motivation to advocate the use of fuzzy logic for the multi-criteria turbine selection problem
is the uncertainties and impreciseness associated with the problem data. The multi-criteria turbine
selection problem typically deals with decision variables that involve imprecise data. The literature has
identified a number of such decision variables which include hub height, wind speed, turbine reliability,
maintenance organization, percentages of zero output and rated output, annual energy production, net
capacity factor, tip speed ratio, system reliability indices, and many others [13]. Fuzzy logic is naturally
designed to efficiently deal with imprecise data which makes the logic an effective tool to deal with the
turbine selection problem.

One more aspect that makes fuzzy logic an attractive choice for the multi-criteria turbine selection
problem is computational efficiency of the technique. Many studies [14–19] have used algorithms, such
as genetic algorithms, differential evolution, and particle swarm optimization, which are promising in
producing efficient solution, but at the expense of computational efficiency. In contrast, fuzzy logic is not
only effective in producing quality solutions, but is also computationally efficient.

With the consideration of the above issues, this paper presents a fuzzy logic based flexible
framework to deal with the turbine selection problem which is modeled as an MCDM problem.
Accordingly, the main contributions of the paper can be enumerated as follows:

1. A fuzzy logic based approach is proposed that allows the decision maker to develop flexible
decision rules for the turbine selection problem. The proposed approach is robust and scalable,
and can be extended to accommodate any number of decision criteria in the selection process.

2. The turbine selection problem is modeled as an MCDM problem considering five decision criteria.
These criteria include hub height, wind speed, percentage of zero power, percentage of rated
power, and net capacity factor. The importance of these criteria is endorsed by several previous
studies [19–23].

3. The Unified AND-OR (UAO) fuzzy operator [24] is employed for conversion of fuzzy rules to
numerical values. The UAO operator is specifically selected due to its flexibility in handling the
ANDing and ORing scenarios, as explained below. Furthermore, while the UAO operator has
previously been applied to turbine selection problem on a simple model, the application of the
operator to the new decision model mentioned above will be the first such attempt.

4. As opposed to many previous studies on turbine selection, where hypothetical data were used,
the present study utilized real data collected from a potential site in Saudi Arabia. However, the
proposed approach can be applied to any type of data, whether synthetic or real.

The rest of this paper is organized as follows. Section 2 highlights previous research and current
status of the turbine selection problem. This is followed by a discussion on fuzzy logic in the context
of the problem model in Section 3. Fuzzy logic-based decision methodology and rules are presented in
Section 4. The results are discussed in Section 5 through application examples of two decision rules
using real data. Finally, concluding remarks are provided in Section 6.

2. Literature Review

Numerous studies have addressed the turbine selection problem as a multi-criteria
decision-making problem with various solution techniques. Sarja and Halonen [25] identified product
reliability and availability, production volume, cost, and maintenance management as important
factors for turbines selection. However, the study did not suggest any decision model. Perkin et al. [14]
used rotor diameter, generator size, hub height, pitch angle range, and rotations per minute (RPM)
range as the decision criteria which were used in conjunction with the genetic algorithm. However, the
choice of genetic algorithm was a point of concern due to the algorithm’s computational complexity.
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Montoya et al. [16] also utilized genetic algorithm with power output and deviation in daily power
output as the decision criteria. El-Shimy [26] considered capacity factor, normalized average power
output, and turbine-performance-index and used site-specific data. Dong et al. [18] utilized a number
of algorithms from the domain of natural computing. These algorithms included genetic algorithms,
particle swarm optimization, and differential evolution for turbine selection. They used matching index,
turbine cost index, and the integrated matching index as the selection criteria. Shirgholami et al. [27]
identified over 30 decision criteria for turbine selection, but suggested that only a subset of the
criteria can be used depending on the requirements of the turbine selection problem model and
site under consideration. An Analytic Hierarchy Process (AHP) based approach was used as the
underlying turbine selection technique. Yorukoglu [28] proposed a turbine selection strategy based
on MULTIMOORA method while considering six criteria. These criteria were reliability, production,
service life, first cost, noise, and operation cost. Lee et al. [29] proposed a multi-criteria decision
approach considering four decision criteria, namely, machine characteristics, economic aspects,
environmental issues, and technical challenges. However, one major limitation of their study was that
they only focused on the problem foundations without showing actual implementation on real data.
Khan and Rehman [22,30] first proposed the use of fuzzy logic for turbine selection while considering
hub height, zero output percentage, and rated output percentage as the decision criteria. They also
proposed an enhanced two-tier selection approach [13] based on fuzzy logic. Furthermore, they also
proposed goal programming and weighted sum approaches for turbine selection [21,31,32]. However,
the decision models were simpler compared to what is proposed in this paper.

Şağbanşua and Balo [33] utilized the AHP approach for turbine selection using models from
different manufacturers. Although they considered technical, economic, environmental, and customer
related factors, the testing of their model was validated on turbines with rated capacity 1.5 MW only.
Shateranlou and PourHossein [34] proposed a blade element momentum (BEM) method combined
with multi-objective optimization algorithms to select the best turbine while using turbine blade radius,
tip speed ratio, blade sectional radius width (chord) , twisting angle distribution, turbine tower height,
and blade airfoil standard as the decision criteria. Dinmohammadi and Shafiee [35] developed a
hybrid approach combining AHP and TOPSIS while considering bottom fixed, floating, vertical-axis,
horizontal-axis, gearbox-operated, and gearless wind turbines. Sedaghat et al. [19] proposed a turbine
selection model while using the levelized cost of electricity, capacity factor, and normalized annual
energy production as the decision criteria. The underlying technique was based on the concept of
Pareto ranking to select the best turbine. Beskese et al. [36] proposed a hybrid method that integrated
AHP with TOPSIS approach for wind turbine evaluation for a potential site in Turkey. Their model
was based on qualitative and quantitative data analysis.

3. Fuzzy Logic Based Turbine Selection Model

The fuzzy logic based MCDM approach requires criteria to be aggregated in the form of a decision
function, which is termed as overall membership function in this paper. This decision function is the
mathematical mapping of a decision rule. An important consideration in the formation of the decision
function is the mathematical structure of the function. Typically, turbine selection problems have
been modeled in a way that requires satisfaction/optimization of all criteria simultaneously which
results in the so called “ANDing” (intersection) operation between decision criteria, as shown in
Example 1. To deal with this, a number of fuzzy mathematical operators (i.e., functions) have been
proposed in literature. These include Werners’ operator, Dubois and Prade operator, Yager’s ordered
weighted average (OWA) operator, Hamacher’s operator, Einstein operator, and Unified AND-OR
(UAO), among many others [37]. In contrast to “ANDing”, there might be decision requirements that
require “ORing” between one or more criteria, as illustrated through Example 2 above. To address this
scenario, the aforementioned operators have a counterpart that implements the OR function. However,
the mathematical representation of AND and OR functions require two different equations, with the
exception of the UAO operator. The UAO operator [24] is different and unique in the sense that a
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single equation is used for both AND and OR functions. Due to this capability of the UAO operator,
its use has been reported in many previous studies [38–47], including simpler versions of the turbine
selection problem [22,48]. Therefore, the operator is used in this paper with an improved problem
model. To maintain comprehensiveness, the operator is briefly discussed below.

3.1. The Unified AND-OR Operator

The main characteristic of the UAO operator is that it can either behave as the “AND” function
or the “OR” function, but uses a single equation. The behavior of the operator as AND or OR is
controlled through a variable ν ≥ 0 whose value decides the behavior of the operator. Mathematically,
the operator is represented as follows [24]:

f (µA, µB)=
µAµB + ν max{µA, µB}

ν + max{µA, µB}
=

{
I? = µA∪B(x) if ν > 1
I∗ = µA∩B(x) if ν < 1

(1)

where µA represents the membership value of first decision criterion, µB represents the membership
value of the second decision criterion, and f (µA, µB) represents the overall membership value of the
decision. I∗ denotes the AND operation using the UAO operator and I? represents the OR operation
using the UAO operator. With 0 < ν < 1, the UAO behaves as the AND operator, whereas ν > 0 gives
the OR behavior. Further details and mathematical properties of the UAO operator can be found in the
study by Khan and Engelbrecht [24].

In accordance with the theory of fuzzy logic [11], the overall membership value that signifies the
quality decision should be obtained. This requires formation of the overall membership function as
well as the membership functions of the individual selection criteria. In the context of multi-criteria
turbine selection problem, the decision model is based on five selection criteria as discussed earlier.
The formation of membership functions for these criteria is motivated by previous studies [22,48] and
is presented below.

3.2. Membership Functions for the Selection Criteria

To employ the UAO operator for turbine selection, five linguistic variables need to be defined:
“hub height”, “wind speed”, “percentage of zero output”, “percentage of rated output”, and “net
capacity factor”. Our interest is in the terms “low hub height”, “high wind speed”, “low zero output
percentage”, “high rated output percentage”, and “high net capacity factor”. Since conflict exists
between criteria, the objective is to find the optimal ratio that provides the best tradeoff between
the criteria. This optimal ratio is the decision function that is represented by membership function
“optimal turbine”.

As mentioned above, each decision criteria is defined by a membership function µ.
The membership function lies in range [0,1] which describes the degree of satisfaction with the
decision criterion under consideration. The higher is the value (towards 1) for the output of “optimal
turbine”, the better is the turbine in terms of its quality (optimality).

The membership functions for the five criteria are found as follows. First, the membership
function for hub height is formed by first defining the upper and lower limits, denoted by hmax and
hmin, respectively. Note that the hub height is desired to be decreased. Accordingly, the membership
function is given as

µh(x) =


1 if Height(x) ≤ hmin
hmax−Height(x)

hmax−hmin
if hmin < Height(x) ≤ hmax

0 if Height(x) > hmax

(2)

where the term Height(x) represents the hub height of a combination x.
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Similarly, the membership function for wind speed is defined as follows. The upper and lower
limits of wind speed are denoted by wmax and wmin, where the intention is to increase the wind speed.

µw(x) =


1 if Wind(x) ≥ wmax
Wind(x)−wmin

wmax−wmin
if wmin ≤Wind(x) < wmax

0 if Wind(x) < wmin

(3)

where the term Wind(x) represents the wind speed of a combination x.
The membership function for percentage of zero output can be defined as follows, where zmax and

zmin represent the upper and lower limits, respectively. The requirement is to decrease the percentage
of zero output.

µz(x) =


1 if Zero(x) ≤ zmin
zmax−Zero(x)

zmax−zmin
if zmin < Zero(x) ≤ zmax

0 if Zero(x) > zmax

(4)

where the term Zero(x) represents the percentage of zero output of a combination x.
With regard to the percentage of rated output, the corresponding membership function can

be defined as given below. Here, rmax and rmin represent the upper and lower limits, respectively.
The percentage of rated output is intended to be decreased.

µr(x) =


1 if Rated(x) ≥ rmax
Rated(x)−rmin

rmax−rmin
if rmin ≤ Rated(x) < rmax

0 if Rated(x) < rmin

(5)

where the term Rated(x) represents the percentage of rated output of a combination x.
Finally, the membership function for net capacity factor, which is intended to be increased, can be

defined as given in the following equation. Here, nmax and nmin represent the upper and lower limits,
respectively.

µn(x) =


1 if Capacity(x) ≥ nmax
Capacity(x)−nmin

nmax−nmin
if nmin ≤ Capacity(x) < nmax

0 if Capacity(x) < nmin

(6)

where Capacity(x) represents the net capacity factor of a combination x.

4. Fuzzy Rules for Turbine Selection

Similar to the approach proposed by Khan and Engelbrecht [24], the five criteria can be combined
in a decision rule in several ways by forming fuzzy rules to get a single consequent, i.e., “optimal
turbine”. One extreme requires that all the criteria are simultaneously considered, thus implying the
AND operation among all five criteria. The other extreme signifies a situation where decision based
on any one criterion would be sufficient. Between these two extremes, there are other instances in
which any two, three, or four criteria may be considered in the decision process. Accordingly, the
decision-maker can define a rule depending upon how many criteria he/she desires to be considered
in the decision process. That is, a scenario is based on the concept of “how many criteria to be used in
the decision process” rather than “which criteria to be used in the decision process” and a decision
rule is formed by the decision-maker considering this aspect. Accordingly, the different possible cases
as well as the application of the UAO operator to these case are discussed below with examples.
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4.1. Case 1: Turbine Selection Based on All Five Criteria

This is one extreme in which all five criteria are considered in the decision simultaneously. In this
case, the fuzzy rule would be:

• R1: IF Hub Height is low AND Wind Speed is high AND Zero Output is low AND Rated Output
is high AND Net Capacity Factor is high THEN the turbine is optimal.

The corresponding representation using the UAO operator is:

µt = I∗(µh, µw, µz, µr, µn) (7)

4.2. Case 2: Turbine Selection Based on Any Four Criteria

In this case, any four of the five criteria are considered in the decision process. In this case, there could
be many fuzzy rules. Some examples are given below with their corresponding UAO representations.

• R2a: IF Hub Height is low AND Wind Speed is high AND (Zero Output is low OR Rated Output is
high) AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(µh, µw, I?(µz, µr), µn) (8)

• R2b: IF Hub Height is low AND Wind Speed is high AND Zero Output is low AND (Rated Output
is high OR Net Capacity Factor is high) THEN the turbine is optimal.

µt = I∗(µh, µw, µz, I?(µr, µn)) (9)

• R2c: IF (Hub Height is low OR Wind Speed is high) AND Zero Output is low AND Rated Output
is high AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(I?(µh, µw), µz, µr, µn) (10)

• R2d: IF Hub Height is low AND Wind Speed is high AND (Zero Output is low OR Net Capacity
Factor is high) AND Rated Output is high THEN the turbine is optimal.

µt = I∗(µh, µw, I?(µz, µn), µr) (11)

• R2e: IF (Hub Height is low OR Rated Output is high) AND Wind Speed is high AND Zero Output
is low AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(µh, µw, I?(µz, µn), µr) (12)

4.3. Case 3: Turbine Selection Based on Any Three Criteria

This situation leads to many possible cases, in which any three of the five objectives are be
considered in the selection process. Some of these possibilities and their UAO representations are:

• R3a: IF (Hub Height is low OR Wind Speed is high) AND (Zero Output is low OR Rated Output is
high) AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(I?(µh, µw), I?(µz, µr), µn) (13)

• R3b: IF Hub Height is low AND Wind Speed is high AND (Zero Output is low OR Rated Output is
high OR Net Capacity Factor is high) THEN the turbine is optimal.

µt = I∗(µh, µw, I?(µz, µr, µn)) (14)
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• R3c: IF (Hub Height is low OR Wind Speed is high OR Zero Output is low) AND Rated Output is
high AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(I?(µh, µw, µz), µr, µn) (15)

• R3d: IF (Hub Height is low OR Rated Output is high OR Net Capacity Factor is high) AND Wind
Speed is high AND Zero Output is low THEN the turbine is optimal.

µt = I∗(I?(µh, µr, µn), µw, µz) (16)

• R3e: IF (Hub Height is low OR Rated Output is high) AND (Net Capacity Factor is high OR Wind
Speed is high) AND Zero Output is low THEN the turbine is optimal.

µt = I∗(I?(µh, µr), I?(µn, µw), µz) (17)

4.4. Case 4: Turbine Selection Based on Any Two Criteria

There will be many possible cases, in which any two of the five criteria are considered in the
decision. Some of these cases and their UAO representations are given below.

• R4a: IF (Hub Height is low OR Wind Speed is high OR Zero Output is low OR Rated Output is
high) AND Net Capacity Factor is high THEN the turbine is optimal.

µt = I∗(I?(µh, µw, µz, µr), µn) (18)

• R4b: IF (Hub Height is low OR Wind Speed is high) AND (Zero Output is low OR Rated Output is
high OR Net Capacity Factor is high) THEN the turbine is optimal.

µt = I∗(I?(µh, µw), I?(µz, µr, µn)) (19)

• R4c: IF (Hub Height is low OR Wind Speed is high OR Zero Output is low) AND (Rated Output is
high OR Net Capacity Factor is high) THEN the turbine is optimal.

µt = I∗(I?(µh, µw, µz), I?(µr, µn)) (20)

• R4d: IF (Hub Height is low OR Rated Output is high OR Net Capacity Factor is high) AND (Wind
Speed is high OR Zero Output is low) THEN the turbine is optimal.

µt = I∗(I?(µh, µr, µn), I?(µw, µz)) (21)

• R4e: IF Hub Height is low AND (Wind Speed is high OR Zero Output is low OR Rated Output is
high OR Net Capacity Factor is high) THEN the turbine is optimal.

µt = I∗(µh, I?(µw, µz, µr), µn)) (22)

4.5. Case 5: Turbine Selection Based on Any One Criterion

This is the other extreme, where turbine selection based on any one of the five objectives would
suffice. The fuzzy rule for this scenario would be:

• R5: IF Hub Height is low OR Wind Speed is high OR Zero Output is low OR Rated Output is high
OR Net Capacity Factor is high THEN the turbine is optimal.
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The corresponding mathematical representation using the UAO operator is:

µs = I?(µh, µw, µz, µr, µn) (23)

5. Results and Discussion

This section discusses the results of empirical analysis through illustration of two example rules,
namely R1 and R2a, presented in Section 4. The rules were applied to test data obtained from a
potential site of Turaif located in the northern part of Saudi Arabia. The location is at a height of
827 m above sea level. The measurements for wind speed were taken at hub heights ranging from
50 to 140 m. Wind speed was interpolated or estimated at step size of 10 m using local wind shear
exponent. The data for the study were collected over a period of 39 years, from 2 January 1980 to
31 December 2018 and was comprised of hourly average values. Essential information relevant to the
underlying study was extracted from the collected data. Moreover, 17 different turbine types from
various manufacturers were considered. The rated capacity of the turbines was between 1.5 and 3 MW.
Specifications of these turbines are provided in Table 1.

Table 1. Specifications of turbines used in the study.

Turbine Rated Power (KW) Rated Speed (m/s) Rotor Diameter

Acciona AW 70/1500 Class I [49] 1500 14 70
Alstom ECO 100/2000 Class I [50] 3000 17 100
Clipper Liberty C99 Class IIIa [51] 2500 13 99

DeWind D92 [52] 2000 13 93
Dongfang DF110-2500 [53] 2500 10 110

Doosan WinDS3000 [54] 3000 12.5 91.3
Enercon E-82 E2/2000 [55] 2300 13 82
Enercon E-82 E4/3000 [56] 3000 16 82
Gamesa G97-2.0 MW [57] 2000 14 97

Goldwind GW 121/2500 [58] 2500 11 109
Hanjin HJWT2000-93 [59] 2000 12.5 93
Leitwind LTW70-2000 [60] 2000 13 70.1

Nordex N131/3000 [61] 3000 14 131
Sinovel SL3000/115 [62] 3000 11.5 115
Vestas V110-2.0MW [63] 2000 11.5 110
Vestas 112-3.0MW [64] 3075 11.5 112

Windtec FC 3000-130 [65] 3000 10.5 130

Two sets of analysis were carried out. In the first set, the two decision rules were applied to
each turbine type listed in Table 1. The purpose of this analysis was to identify the best combination
of the five decision criteria for each turbine. In the second set of analysis, results from the first
analysis were aggregated to identify the best turbine for the potential site. Details of these analysis are
provided below.

5.1. Identification of Best Set of Turbine Criteria Using Rules R1 and R2a

Rules R1 and R2a from Section 4 were used for analysis. The purpose of this analysis was to study
the outcome of different rules on turbine selection. Recall from Section 4 that rule R1 considers all five
criteria in the decision. On the other hand, rule R2a considers four criteria, considering hub height,
wind speed, and net capacity factor as the mandatory criteria, and only one criterion between zero
output percentage or rated output percentage in the decision. In addition, to evaluate the membership
values using the corresponding membership function, the upper and lower limits of the criteria were
also defined while considering the data range for each criterion. Accordingly, these limits are listed in
Table 2. Furthermore, for the ‘AND’ operation ν = 0.5 while for ‘OR’ operation, ν = 1.5 in the UAO
operator given in Equation (1).
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Table 2. Upper and lower limits for the criteria.

Criterion Upper Limit Lower Limit

Hub Height 150 m 40 m
Wind Speed 7.5 m/s 6 m/s

Percentage of zero output 24% 1%
Percentage of rated output 12% 0%

Net capacity factor 47% 14%

Tables 3–19 show the results for the 17 turbines with respect to the two selection rules. For each
turbine type, the tables show the actual values of the criteria as well as the corresponding membership
values obtained using Equations (2)–(6). As depicted in the tables, for each turbine type, there are 10
possible options (i.e., combinations of criteria values) which are represented by C1–C10. The overall
membership values, µt, for rules R1 and R2a are listed in the last two columns of the tables, respectively.

It is observed from these tables that the proposed fuzzy logic rule-based approach was able to
identify the best combination for each turbine type, and for both test rules. As an example, consider
the results in Table 3. The second last column of the table shows the overall membership, µt, for rule
R1. Since combination C1 has the highest value of overall membership with µt = 0.323 (highlighted
in bold), the combination represents the best balance between criteria among all other combinations.
Similarly, as depicted in the last column of the table, the same combination (i.e., C1) represents the best
option as µt = 0.324 for rule R2a. This trend, where the same combination turns out to be the best for
both rules is visible in Tables 5, 6, 8, 10, 14 and 18.

Another trend that is observed in Tables 3–19 is the presence of Pareto optimal solutions in many
instances. Pareto optimal solutions are those optimal solutions where the overall membership value
is the same for different combinations. An interesting example of this phenomenon is observed in
Table 4 for rule R1, where options C1, C6, C7, C8, C9, and C10 all have the same overall membership
of µt = 0.329. Such instances are also observed in Table 15 for rule R2a where options C6 and C7

are Pareto optimal with µt = 0.378. Another instance of Pareto optimal solution is seen in Table 16
where options C2 and C3 have the same overall membership of µt = 0.329. Similar observations can
be made for Rules R1 and R2a in Table 17. Since Pareto optimal solutions represent the same quality,
they provide flexibility to the decision-maker as the decision-maker can select any one of the Pareto
optimal solutions.

Table 3. Analysis for turbine Acciona AW 70/1500 Class I using Rules R1 and R2a. The best choices
for R1 and R2a are marked in boldface. HH, hub height; WS, wind speed; ZO, percentage of zero
output; RO, percentage of rated output; NCF, net capacity factor; µh, membership for hub height;
µw, membership of wind speed; µz, membership of zero output percentage; µr, membership of rated
output percentage; µn, membership of net capacity factor; µt, membership for best turbine.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 13.56 0.16 19.11 0.909 0.053 0.454 0.013 0.155 0.323 0.324
C2 60 6.24 12.87 0.21 20.52 0.818 0.160 0.484 0.018 0.198 0.311 0.318
C3 70 6.37 12.33 0.26 21.76 0.727 0.247 0.507 0.022 0.235 0.297 0.310
C4 80 6.49 11.88 0.31 22.88 0.636 0.327 0.527 0.026 0.269 0.281 0.300
C5 90 6.60 11.51 0.36 23.90 0.545 0.400 0.543 0.030 0.300 0.262 0.286
C6 100 6.70 11.17 0.41 24.84 0.455 0.467 0.558 0.034 0.328 0.269 0.271
C7 110 6.79 10.87 0.46 25.71 0.364 0.527 0.571 0.038 0.355 0.271 0.285
C8 120 6.87 10.61 0.51 26.52 0.273 0.580 0.582 0.043 0.379 0.271 0.292
C9 130 6.95 10.38 0.56 27.28 0.182 0.633 0.592 0.047 0.402 0.281 0.297
C10 140 7.02 10.17 0.62 27.99 0.091 0.680 0.601 0.052 0.424 0.289 0.298

While analyzing the results for different rules, caution should be taken. The overall membership
values for the two rules cannot be mutually compared. That is, µt for rule R1 cannot be compared with



Sustainability 2020, 12, 8467 11 of 21

µt for rule R2 as both rules represent a different scenario. This is a general approach and is applicable
to any number or type of rules. The values of µt are only comparable for the same rule. For example,
in Table 6, although the best value of µt = 0.323 is the same for both rules, we cannot claim that both
rules are equivalent. The comparison can only be made in the vertical direction within the same table,
not in the horizontal direction. Similarly, a higher or lower value of µt for different rules do not have
any mutual relevancy.

Table 4. Analysis for turbine Alstom ECO 100/2000 Class I using Rules R1 and R2a. The best choices
for R1 and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 2.66 0.06 20.21 0.909 0.053 0.928 0.005 0.188 0.329 0.326
C2 60 6.24 2.53 0.08 21.71 0.818 0.160 0.933 0.007 0.234 0.327 0.324
C3 70 6.37 2.42 0.10 23.03 0.727 0.247 0.938 0.008 0.274 0.328 0.320
C4 80 6.49 2.34 0.13 24.22 0.636 0.327 0.942 0.011 0.310 0.328 0.313
C5 90 6.60 2.26 0.15 25.31 0.545 0.400 0.945 0.013 0.343 0.328 0.310
C6 100 6.70 2.19 0.17 26.30 0.455 0.467 0.948 0.014 0.373 0.329 0.313
C7 110 6.79 2.14 0.19 27.22 0.364 0.527 0.950 0.016 0.401 0.329 0.312
C8 120 6.87 2.08 0.21 28.07 0.273 0.580 0.953 0.018 0.426 0.329 0.307
C9 130 6.95 2.04 0.24 28.87 0.182 0.633 0.955 0.020 0.451 0.329 0.306
C10 140 7.02 2.00 0.27 29.63 0.091 0.680 0.957 0.023 0.474 0.329 0.303

Table 5. Analysis for turbine Clipper Liberty C99 Class IIIa using Rules R1 and R2a. The best choices
for R1 and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 13.53 0.33 22.18 0.909 0.053 0.455 0.028 0.248 0.323 0.326
C2 60 6.24 12.84 0.42 23.84 0.818 0.160 0.485 0.035 0.298 0.311 0.321
C3 70 6.37 12.30 0.51 25.30 0.727 0.247 0.509 0.043 0.342 0.297 0.316
C4 80 6.49 11.86 0.60 26.62 0.636 0.327 0.528 0.050 0.382 0.282 0.308
C5 90 6.60 11.48 0.69 27.81 0.545 0.400 0.544 0.058 0.418 0.264 0.297
C6 100 6.70 11.15 0.78 28.90 0.455 0.467 0.559 0.065 0.452 0.271 0.283
C7 110 6.79 10.84 0.87 29.90 0.364 0.527 0.572 0.073 0.482 0.274 0.296
C8 120 6.87 10.58 0.96 30.83 0.273 0.580 0.583 0.080 0.510 0.274 0.302
C9 130 6.95 10.35 1.06 31.70 0.182 0.633 0.593 0.088 0.536 0.282 0.304
C10 140 7.02 10.14 1.15 32.51 0.091 0.680 0.603 0.096 0.561 0.290 0.302

Table 6. Analysis for turbine DeWind D92 using Rules R1 and R2a. The best choices for R1 and R2a are
marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 23.90 0.33 20.29 0.909 0.053 0.004 0.028 0.191 0.323 0.323
C2 60 6.24 22.70 0.42 22.08 0.818 0.160 0.057 0.035 0.245 0.310 0.312
C3 70 6.37 21.76 0.51 23.66 0.727 0.247 0.097 0.043 0.293 0.296 0.300
C4 80 6.49 20.97 0.60 25.08 0.636 0.327 0.132 0.050 0.336 0.280 0.288
C5 90 6.60 20.31 0.69 26.36 0.545 0.400 0.160 0.058 0.375 0.262 0.273
C6 100 6.70 19.72 0.78 27.54 0.455 0.467 0.186 0.065 0.410 0.242 0.257
C7 110 6.79 19.21 0.87 28.61 0.364 0.527 0.208 0.073 0.443 0.258 0.272
C8 120 6.87 18.77 0.97 29.61 0.273 0.580 0.227 0.081 0.473 0.270 0.283
C9 130 6.95 18.37 1.06 30.54 0.182 0.633 0.245 0.088 0.501 0.281 0.291
C10 140 7.02 17.99 1.15 31.41 0.091 0.680 0.261 0.096 0.528 0.289 0.295
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Table 7. Analysis for turbine Dongfang DF110-2500 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 9.39 3.34 29.77 0.909 0.053 0.635 0.278 0.478 0.325 0.331
C2 60 6.24 8.93 4.23 31.81 0.818 0.160 0.655 0.353 0.540 0.323 0.341
C3 70 6.37 8.55 5.23 33.59 0.727 0.247 0.672 0.436 0.594 0.322 0.348
C4 80 6.49 8.22 6.24 35.16 0.636 0.327 0.686 0.520 0.641 0.333 0.355
C5 90 6.60 7.96 7.24 36.57 0.545 0.400 0.697 0.603 0.684 0.347 0.373
C6 100 6.70 7.71 8.21 37.85 0.455 0.467 0.708 0.684 0.723 0.356 0.383
C7 110 6.79 7.51 9.14 39.01 0.364 0.527 0.717 0.762 0.758 0.365 0.387
C8 120 6.87 7.32 10.06 40.08 0.273 0.580 0.725 0.838 0.790 0.370 0.384
C9 130 6.95 7.16 10.94 41.06 0.182 0.633 0.732 0.912 0.820 0.368 0.373
C10 140 7.02 7.00 11.82 41.98 0.091 0.680 0.739 0.985 0.848 0.357 0.353

Table 8. Analysis for turbine Doosan WinDS3000 using Rules R1 and R2a. The best choices for R1 and
R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 9.40 0.47 16.63 0.909 0.053 0.635 0.039 0.080 0.323 0.324
C2 60 6.24 8.93 0.59 18.00 0.818 0.160 0.655 0.049 0.121 0.311 0.316
C3 70 6.37 8.56 0.71 19.24 0.727 0.247 0.671 0.059 0.159 0.297 0.307
C4 80 6.49 8.23 0.84 20.38 0.636 0.327 0.686 0.070 0.193 0.294 0.297
C5 90 6.60 7.96 0.96 21.44 0.545 0.400 0.697 0.080 0.225 0.296 0.284
C6 100 6.70 7.72 1.08 22.42 0.455 0.467 0.708 0.090 0.255 0.298 0.280
C7 110 6.79 7.51 1.19 23.34 0.364 0.527 0.717 0.099 0.283 0.300 0.284
C8 120 6.87 7.32 1.32 24.21 0.273 0.580 0.725 0.110 0.309 0.301 0.292
C9 130 6.95 7.16 1.44 25.02 0.182 0.633 0.732 0.120 0.334 0.302 0.297
C10 140 7.02 7.00 1.56 25.80 0.091 0.680 0.739 0.130 0.358 0.302 0.298

Table 9. Analysis for turbine Enercon E-82 E2/2000 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 1.67 0.55 22.31 0.909 0.053 0.971 0.046 0.252 0.345 0.328
C2 60 6.24 1.59 0.69 23.98 0.818 0.160 0.974 0.058 0.302 0.333 0.329
C3 70 6.37 1.53 0.83 25.46 0.727 0.247 0.977 0.069 0.347 0.334 0.328
C4 80 6.49 1.47 0.96 26.79 0.636 0.327 0.980 0.080 0.388 0.336 0.324
C5 90 6.60 1.43 1.10 27.99 0.545 0.400 0.981 0.092 0.424 0.337 0.330
C6 100 6.70 1.39 1.22 29.10 0.455 0.467 0.983 0.102 0.458 0.338 0.334
C7 110 6.79 1.35 1.37 30.11 0.364 0.527 0.985 0.114 0.488 0.339 0.333
C8 120 6.87 1.31 1.50 31.06 0.273 0.580 0.987 0.125 0.517 0.339 0.328
C9 130 6.95 1.28 1.64 31.94 0.182 0.633 0.988 0.137 0.544 0.338 0.318
C10 140 7.02 1.26 1.80 32.76 0.091 0.680 0.989 0.150 0.568 0.336 0.308
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Table 10. Analysis for turbine Enercon E-82 E4/3000 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 6.03 0.03 14.74 0.909 0.053 0.781 0.003 0.022 0.323 0.323
C2 60 6.24 5.73 0.05 15.87 0.818 0.160 0.794 0.004 0.057 0.310 0.313
C3 70 6.37 5.50 0.06 16.87 0.727 0.247 0.804 0.005 0.087 0.311 0.303
C4 80 6.49 5.31 0.08 17.77 0.636 0.327 0.813 0.007 0.114 0.312 0.291
C5 90 6.60 5.13 0.10 18.60 0.545 0.400 0.820 0.008 0.139 0.313 0.276
C6 100 6.70 4.98 0.11 19.36 0.455 0.467 0.827 0.009 0.162 0.313 0.277
C7 110 6.79 4.84 0.13 20.07 0.364 0.527 0.833 0.011 0.184 0.314 0.278
C8 120 6.87 4.72 0.15 20.74 0.273 0.580 0.838 0.013 0.204 0.315 0.285
C9 130 6.95 4.61 0.16 21.37 0.182 0.633 0.843 0.013 0.223 0.315 0.292
C10 140 7.02 4.51 0.18 21.96 0.091 0.680 0.847 0.015 0.241 0.316 0.295

Table 11. Analysis for turbine Gamesa G97-2.0 MW using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 5.58 0.14 28.37 0.909 0.053 0.801 0.012 0.435 0.323 0.330
C2 60 6.24 5.30 0.17 30.31 0.818 0.160 0.813 0.014 0.494 0.311 0.336
C3 70 6.37 5.07 0.21 32.00 0.727 0.247 0.823 0.018 0.545 0.314 0.339
C4 80 6.49 4.88 0.26 33.50 0.636 0.327 0.831 0.022 0.591 0.316 0.339
C5 90 6.60 4.72 0.30 34.83 0.545 0.400 0.838 0.025 0.631 0.317 0.346
C6 100 6.70 4.57 0.34 36.04 0.455 0.467 0.845 0.028 0.668 0.318 0.353
C7 110 6.79 4.45 0.38 37.15 0.364 0.527 0.850 0.032 0.702 0.319 0.354
C8 120 6.87 4.34 0.43 38.16 0.273 0.580 0.855 0.036 0.732 0.319 0.349
C9 130 6.95 4.25 0.47 39.10 0.182 0.633 0.859 0.039 0.761 0.319 0.341
C10 140 7.02 4.17 0.52 39.96 0.091 0.680 0.862 0.043 0.787 0.319 0.327

Table 12. Analysis for turbine Goldwind GW 121/2500 using Rules R1 and R2a. The best choices for
R1 and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 6.00 1.38 33.81 0.909 0.053 0.783 0.115 0.600 0.324 0.334
C2 60 6.24 5.70 1.68 35.89 0.818 0.160 0.796 0.140 0.663 0.318 0.348
C3 70 6.37 5.47 2.02 37.69 0.727 0.247 0.806 0.168 0.718 0.324 0.357
C4 80 6.49 5.28 2.37 39.26 0.636 0.327 0.814 0.198 0.765 0.331 0.378
C5 90 6.60 5.10 2.75 40.64 0.545 0.400 0.822 0.229 0.807 0.338 0.391
C6 100 6.70 4.94 3.16 41.89 0.455 0.467 0.829 0.263 0.845 0.343 0.398
C7 110 6.79 4.81 3.58 43.01 0.364 0.527 0.834 0.298 0.879 0.349 0.397
C8 120 6.87 4.69 4.02 44.04 0.273 0.580 0.840 0.335 0.910 0.351 0.390
C9 130 6.95 4.58 4.48 44.98 0.182 0.633 0.844 0.373 0.939 0.350 0.377
C10 140 7.02 4.49 4.96 45.85 0.091 0.680 0.848 0.413 0.965 0.344 0.358
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Table 13. Analysis for turbine Hanjin HJWT2000-93 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 9.42 0.47 25.98 0.909 0.053 0.634 0.039 0.363 0.323 0.328
C2 60 6.24 8.95 0.59 27.84 0.818 0.160 0.654 0.049 0.419 0.312 0.330
C3 70 6.37 8.58 0.72 29.46 0.727 0.247 0.670 0.060 0.468 0.299 0.329
C4 80 6.49 8.25 0.84 30.90 0.636 0.327 0.685 0.070 0.512 0.297 0.326
C5 90 6.60 7.98 0.96 32.20 0.545 0.400 0.697 0.080 0.552 0.300 0.320
C6 100 6.70 7.74 1.09 33.38 0.455 0.467 0.707 0.091 0.587 0.302 0.328
C7 110 6.79 7.53 1.20 34.46 0.364 0.527 0.716 0.100 0.620 0.304 0.332
C8 120 6.87 7.34 1.33 35.45 0.273 0.580 0.724 0.111 0.650 0.305 0.330
C9 130 6.95 7.18 1.45 36.38 0.182 0.633 0.731 0.121 0.678 0.304 0.323
C10 140 7.02 7.03 1.56 37.24 0.091 0.680 0.738 0.130 0.704 0.303 0.312

Table 14. Analysis for turbine Leitwind LTW70-2000 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 6.01 0.33 14.79 0.909 0.053 0.782 0.028 0.024 0.323 0.323
C2 60 6.24 5.72 0.42 15.93 0.818 0.160 0.795 0.035 0.058 0.311 0.313
C3 70 6.37 5.49 0.51 16.96 0.727 0.247 0.805 0.043 0.090 0.311 0.303
C4 80 6.49 5.29 0.59 17.90 0.636 0.327 0.813 0.049 0.118 0.312 0.292
C5 90 6.60 5.11 0.69 18.77 0.545 0.400 0.821 0.058 0.145 0.314 0.279
C6 100 6.70 4.96 0.78 19.57 0.455 0.467 0.828 0.065 0.169 0.315 0.282
C7 110 6.79 4.82 0.87 20.33 0.364 0.527 0.834 0.073 0.192 0.316 0.284
C8 120 6.87 4.71 0.96 21.03 0.273 0.580 0.839 0.080 0.213 0.316 0.286
C9 130 6.95 4.59 1.06 21.70 0.182 0.633 0.844 0.088 0.233 0.317 0.293
C10 140 7.02 4.50 1.14 22.34 0.091 0.680 0.848 0.095 0.253 0.316 0.296

Table 15. Analysis for turbine Nordex N131/3000 using Rules R1 and R2a. The best choices for R1 and
R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 8.62 0.92 32.36 0.909 0.053 0.669 0.077 0.556 0.324 0.332
C2 60 6.24 8.19 1.12 34.37 0.818 0.160 0.687 0.093 0.617 0.314 0.341
C3 70 6.37 7.84 1.33 36.10 0.727 0.247 0.703 0.111 0.670 0.304 0.347
C4 80 6.49 7.54 1.52 37.61 0.636 0.327 0.716 0.127 0.715 0.305 0.359
C5 90 6.60 7.30 1.73 38.96 0.545 0.400 0.726 0.144 0.756 0.315 0.371
C6 100 6.70 7.08 1.93 40.17 0.455 0.467 0.736 0.161 0.793 0.322 0.378
C7 110 6.79 6.90 2.14 41.27 0.364 0.527 0.743 0.178 0.826 0.327 0.378
C8 120 6.87 6.73 2.37 42.27 0.273 0.580 0.751 0.198 0.857 0.331 0.372
C9 130 6.95 6.57 2.59 43.20 0.182 0.633 0.758 0.216 0.885 0.332 0.362
C10 140 7.02 6.45 2.84 44.06 0.091 0.680 0.763 0.237 0.911 0.330 0.346
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Table 16. Analysis for turbine Sinovel SL3000/115 using Rules R1 and R2a. The best choices for R1 and
R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 9.39 0.96 25.24 0.909 0.053 0.635 0.080 0.341 0.323 0.328
C2 60 6.24 8.92 1.18 27.00 0.818 0.160 0.656 0.098 0.394 0.313 0.329
C3 70 6.37 8.55 1.40 28.55 0.727 0.247 0.672 0.117 0.441 0.301 0.329
C4 80 6.49 8.22 1.62 29.94 0.636 0.327 0.686 0.135 0.483 0.301 0.325
C5 90 6.60 7.95 1.87 31.20 0.545 0.400 0.698 0.156 0.521 0.305 0.318
C6 100 6.70 7.71 2.11 32.35 0.455 0.467 0.708 0.176 0.556 0.308 0.323
C7 110 6.79 7.51 2.37 33.40 0.364 0.527 0.717 0.198 0.588 0.310 0.327
C8 120 6.87 7.32 2.64 34.38 0.273 0.580 0.725 0.220 0.618 0.311 0.325
C9 130 6.95 7.15 2.93 35.29 0.182 0.633 0.733 0.244 0.645 0.310 0.319
C10 140 7.02 7.00 3.23 36.13 0.091 0.680 0.739 0.269 0.671 0.307 0.309

Table 17. Analysis for turbine Vestas V110-2.0MW using Rules R1 and R2a. The best choices for R1 and
R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 9.40 1.03 34.27 0.909 0.053 0.635 0.086 0.614 0.324 0.333
C2 60 6.24 8.93 1.26 36.39 0.818 0.160 0.655 0.105 0.678 0.315 0.343
C3 70 6.37 8.56 1.49 38.21 0.727 0.247 0.671 0.124 0.734 0.306 0.351
C4 80 6.49 8.23 1.75 39.79 0.636 0.327 0.686 0.146 0.782 0.318 0.370
C5 90 6.60 7.96 2.00 41.19 0.545 0.400 0.697 0.167 0.824 0.327 0.383
C6 100 6.70 7.72 2.27 42.45 0.455 0.467 0.708 0.189 0.862 0.334 0.389
C7 110 6.79 7.52 2.55 43.58 0.364 0.527 0.717 0.213 0.896 0.340 0.389
C8 120 6.87 7.32 2.85 44.61 0.273 0.580 0.725 0.238 0.928 0.343 0.383
C9 130 6.95 7.16 3.18 45.56 0.182 0.633 0.732 0.265 0.956 0.343 0.372
C10 140 7.02 7.01 3.51 46.43 0.091 0.680 0.739 0.293 0.983 0.340 0.356

Table 18. Analysis for turbine Vestas 112-3.0MW using Rules R1 and R2a. The best choices for R1 and
R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 13.40 0.33 23.85 0.909 0.053 0.461 0.028 0.298 0.323 0.326
C2 60 6.24 12.72 0.43 25.62 0.818 0.160 0.490 0.036 0.352 0.311 0.324
C3 70 6.37 12.19 0.51 27.19 0.727 0.247 0.513 0.043 0.400 0.298 0.319
C4 80 6.49 11.76 0.60 28.59 0.636 0.327 0.532 0.050 0.442 0.282 0.313
C5 90 6.60 11.38 0.70 29.85 0.545 0.400 0.549 0.058 0.480 0.266 0.303
C6 100 6.70 11.04 0.79 31.01 0.455 0.467 0.563 0.066 0.515 0.273 0.300
C7 110 6.79 10.74 0.88 32.08 0.364 0.527 0.577 0.073 0.548 0.275 0.305
C8 120 6.87 10.49 0.97 33.06 0.273 0.580 0.587 0.081 0.578 0.276 0.306
C9 130 6.95 10.25 1.07 33.98 0.182 0.633 0.598 0.089 0.605 0.283 0.307
C10 140 7.02 10.05 1.16 34.83 0.091 0.680 0.607 0.097 0.631 0.290 0.303
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Table 19. Analysis for turbine Windtec FC 3000-130 using Rules R1 and R2a. The best choices for R1
and R2a are marked in boldface.

Option HH WS ZO RO NCF µh µw µz µr µn µt µt
Rule 1 Rule 2a

C1 50 6.08 11.36 2.05 32.38 0.909 0.053 0.550 0.171 0.557 0.324 0.331
C2 60 6.24 10.77 2.56 34.45 0.818 0.160 0.575 0.213 0.620 0.318 0.340
C3 70 6.37 10.32 3.14 36.25 0.727 0.247 0.595 0.262 0.674 0.312 0.346
C4 80 6.49 9.94 3.75 37.82 0.636 0.327 0.611 0.313 0.722 0.319 0.360
C5 90 6.60 9.62 4.36 39.22 0.545 0.400 0.625 0.363 0.764 0.332 0.375
C6 100 6.70 9.34 5.06 40.47 0.455 0.467 0.637 0.422 0.802 0.343 0.383
C7 110 6.79 9.10 5.75 41.61 0.364 0.527 0.648 0.479 0.837 0.350 0.385
C8 120 6.87 8.88 6.43 42.65 0.273 0.580 0.657 0.536 0.868 0.353 0.380
C9 130 6.95 8.69 7.11 43.60 0.182 0.633 0.666 0.593 0.897 0.350 0.369
C10 140 7.02 8.51 7.77 44.48 0.091 0.680 0.673 0.648 0.924 0.342 0.351

5.2. Identification of Best Turbines Using Rules R1 and R2a

To choose the best turbine, the results of best combinations in Tables 3–19 are aggregated and
summarized. These summarized results are presented in Tables 20 and 21 for rules R1 and R2a,
respectively. The entries in these tables are populated by taking the best combination for each
turbine type in Tables 3–19. In case, where Pareto optimal solutions were present, one of the Pareto
combinations was randomly chosen (although any other approach could be possible depending upon
the aspirations of the decision-maker).

Table 20. Summary of best combination for each turbine using Rule R1. The best turbine type is marked
in boldface.

Turbine HH WS ZO RO NCF µh µw µz µr µn µt % Imp.

AccionaAW 50 6.08 13.56 0.16 19.11 0.909 0.053 0.454 0.013 0.155 0.323 12.70
Alstom 50 6.08 2.66 0.06 20.21 0.909 0.053 0.928 0.005 0.188 0.329 11.08
Clipper 50 6.08 13.53 0.33 22.18 0.909 0.053 0.455 0.028 0.248 0.318 14.05
DeWind 50 6.08 23.9 0.33 20.29 0.909 0.053 0.004 0.028 0.191 0.323 12.70

Dongfang 120 6.87 7.32 10.06 40.08 0.273 0.58 0.725 0.838 0.790 0.370 Ref.
Doosan 50 6.08 9.4 0.47 16.63 0.909 0.053 0.635 0.039 0.08 0.323 12.70

Enercon E2 50 6.08 1.67 0.55 22.31 0.909 0.053 0.971 0.046 0.252 0.345 6.76
Enercon E4 50 6.08 6.03 0.03 14.74 0.909 0.053 0.781 0.003 0.022 0.309 16.49

Gamesa 50 6.08 5.58 0.14 28.37 0.909 0.053 0.801 0.012 0.435 0.323 12.70
Goldwind 120 6.87 4.69 4.02 44.04 0.273 0.58 0.84 0.335 0.91 0.351 5.14

Hanjin 50 6.08 9.42 0.47 25.98 0.909 0.053 0.634 0.039 0.363 0.323 12.70
Leitwind 50 6.08 6.01 0.33 14.79 0.909 0.053 0.782 0.028 0.024 0.323 12.70
Nordex 130 6.95 6.57 2.59 43.2 0.182 0.633 0.758 0.216 0.885 0.332 10.27
Sinovel 50 6.08 9.39 0.96 25.24 0.909 0.053 0.635 0.08 0.341 0.323 12.70

Vestas V110 120 6.87 7.32 2.85 44.61 0.273 0.58 0.725 0.238 0.928 0.343 7.30
Vestas V112 50 6.08 13.4 0.33 23.85 0.909 0.053 0.461 0.028 0.298 0.323 12.70

Windtec 120 6.87 8.88 6.43 42.65 0.273 0.58 0.657 0.536 0.868 0.353 4.59

In each of Tables 20 and 21, the percentage improvement achieved by the best turbine is shown
with respect to the turbine shown in that row. For example, for the results of rule R1 in Table 20, the
best turbine is identified as Dongfang DF110-2500 (whose overall membership of µt = 0.370 is taken
as the reference). If this overall membership is compared with the overall membership of turbine
Acciona 70/1500 Class I (with µt = 0.323), then it is observed that the µt of Dongfang DF110-2500 was
12.70% better than that of Acciona 70/1500 Class I. Similar results are presented for other turbines in
the table. Overall, it is observed that the percentage improvements obtained by Dongfang DF110-2500
ranged between 4.59% and 16.49%, with the majority of improvements over 10%. This indicates that
the Dongfang DF110-2500 was a much better choice than many other turbines. The closest comparable
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option was Windtec FC 3000-130 which was inferior by 4.59%. Furthermore, the worst option was
Enercon E-82 E4/3000 which was 16.49% inferior compared to Dongfang DF110-2500.

With regard to rule R2a, Table 21 shows that Goldwind GW 121/2500 turned out to be the best
option among the available turbines. The percentage improvements for this turbine ranged between
2.26% and 18.84%, with the majority of improvements over 16%. In contrast to the results of rule R1,
there were many turbines that were close to Goldwind GW 121/2500. These turbines were Vestas
V110-2.0MW, Dongfang DF110-2500, and Windtec FC 3000-130 with percentage different of 2.26%,
2.76%, and 3.27%, respectively. This gives more choice to the decision maker in terms of choosing
a turbine. Furthermore, there were many turbines that were worst performers, as Goldwind GW
121/2500 showed percentage improvements of over 18% for 8 out of 17 turbines.

Table 21. Summary of best combination for each turbine using Rule R2a. The best turbine type is
marked in boldface.

Turbine HH WS ZO RO NCF µh µw µz µr µn µt % Imp.

AccionaAW 50 6.08 13.56 0.16 19.11 0.909 0.053 0.454 0.013 0.155 0.324 18.59
Alstom 50 6.08 2.66 0.06 20.21 0.909 0.053 0.928 0.005 0.188 0.326 18.09
Clipper 50 6.08 13.53 0.33 22.18 0.909 0.053 0.455 0.028 0.248 0.326 18.09
DeWind 50 6.08 23.9 0.33 20.29 0.909 0.053 0.004 0.028 0.191 0.323 18.84

Dongfang 110 6.79 7.51 9.14 39.01 0.364 0.527 0.717 0.762 0.758 0.387 2.76
Doosan 50 6.08 9.4 0.47 16.63 0.909 0.053 0.635 0.039 0.08 0.324 18.59

Enercon E2 100 6.7 1.39 1.22 29.1 0.455 0.467 0.983 0.102 0.458 0.334 16.08
Enercon E4 50 6.08 6.03 0.03 14.74 0.909 0.053 0.781 0.003 0.022 0.323 18.84

Gamesa 110 6.79 4.45 0.38 37.15 0.364 0.527 0.85 0.032 0.702 0.354 11.06
Goldwind 100 6.7 4.94 3.16 41.89 0.455 0.467 0.829 0.263 0.845 0.398 Ref.

Hanjin 110 6.79 7.53 1.2 34.46 0.364 0.527 0.716 0.1 0.62 0.332 16.58
Leitwind 50 6.08 6.01 0.33 14.79 0.909 0.053 0.782 0.028 0.024 0.323 18.84
Nordex 100 6.7 7.08 1.93 40.17 0.455 0.467 0.736 0.161 0.793 0.378 5.03
Sinovel 60 6.24 8.92 1.18 27 0.818 0.16 0.656 0.098 0.394 0.329 17.34

Vestas V110 100 6.7 7.72 2.27 42.45 0.455 0.467 0.708 0.189 0.862 0.389 2.26
Vestas V112 50 6.08 13.4 0.33 23.85 0.909 0.053 0.461 0.028 0.298 0.326 18.09

Windtec 110 6.79 9.1 5.75 41.61 0.364 0.527 0.648 0.479 0.837 0.385 3.27

6. Concluding Remarks

Wind energy has shown significant growth during the past years due to its potential to provide
clean and green energy for a sustainable future. Efficient harnessing of wind energy from a wind
farm depends on several factors, one of which is the selection of turbines that are installed on the site.
This selection should be done in an optimal way so as to ensure that the selected turbines are compatible
with the geographic and topographic characteristics of the site. The selection process depends on
several decision criteria, thus demanding the need to have a methodology that not only allows the
criteria to be aggregated for an effective decision, but also provides flexibility to the decision-maker
in developing the decision rule. This flexibility solicits formulation and evaluation of decision rules
that require AND, OR, and AND-OR type rule constructions. Unfortunately, the present MCDM
techniques, such as goal programming, weighted sum approach, TOPSIS, VIKOR, AHP, PROMETHEE,
ELECTRE, and many otherss, are not capable of handling the OR or AND-OR type decision rules, thus
making them ineffective for flexible decision making.

Considering the above aspects, this paper proposes a rule-based methodology developed on the
concepts of fuzzy logic for multi-criteria selection of wind turbines while considering site-specific
data. The s-norm and t-norm type fuzzy operators allow forming rules that can effectively handle
AND, OR, and mixed AND-OR type decision scenarios. To illustrate the applicability of the
proposed methodology, several example rules were developed considering different possible scenarios.
The Unified AND-OR operator, which has shown to implement both s-norm and t-norm type decision
rules, was chosen as the underlying mathematical function to map a rule into a quantifiable entity.
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A preliminary analysis was provided with two example rules to prove the effectiveness of the
methodology. Furthermore, while a specific decision model with five criteria was considered, the
proposed methodology is robust and scalable to accommodate any number of decision criteria as well
as any number of turbine types.

To further test the validity of the proposed methodology, we intend to continue the work in several
research directions. The methodology will be tested on more sets and variety of rules. Other problem
models with more or different decision criteria will be evaluated and mutually compared. Furthermore,
sensitivity analysis of the parameter ν which is associated with the UAO operator will be done.
In addition, more potential sites with more turbines types will be assessed. Furthermore, it is also a
potential direction of research to investigate if other MCDM techniques can be adapted to deal with
different structures of decision rules, such as the ones discussed in this study.
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Nomenclature and Abbreviations

µt Membership function for turbine t
µh Membership function for hub height
µw Membership function for wind speed
µz Membership function for percentage of zero output
µr Membership function for percentage of rated output
µn Membership function for net capacity factor
ν Parameter of UAO operator
µA Membership function for Criterion A
µB Membership function for Criterion A
MCDM Multi-criteria decision-making
HH Hub height (in meters)
WS Wind speed (in m/s)
ZO Percentage of zero output
RO Percentage of rated output
NCF Net capacity factor (in percentage)
Height(x) Hub height of a solution x
Wind(x) Wind speed of a solution x
Zero(x) Percentage of zero output of a solution x
Rated(x) Percentage of rated output of a solution x
Capacity(x) Net capacity factor of a solution x
hmax Maximum Hub height (in meters)
hmin Minimum Hub height (in meters)
wmax Maximum Wind speed (in m/s)
wmin Minimum Wind speed (in m/s)
zmax Maximum Percentage of zero output
zmin Minimum Percentage of zero output
rmax Maximum Percentage of rated output
rmin Minimum Percentage of rated output
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nmax Maximum Net capacity factor
nmin Minimum Net capacity factor
UAO Unified AND-OR operator
FL Fuzzy logic
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