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Abstract: Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in
1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste,
79% is either in landfills or the environment. The purpose of the review is to establish the current
global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable
plastics. This integrative and consolidated review thus builds on previous studies that have focused
either on one or a few of the aspects considered in this paper. Three broad items to strongly
consider are: Biodegradable plastics and other alternatives are not always environmentally superior
to fossil-based plastics; less investment has been made in plastic waste management than in plastics
production; and there is no single solution to plastic waste management. Some strategies to push
for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or
using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one
has its own challenges, and country-specific scientific evidence is necessary to justify any suggested
solutions. In conclusion, governments from all countries and stakeholders should work to strengthen
waste management infrastructure in low- and middle-income countries while extended producer
responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in
plastic waste management, as they have been found to be effective in Australia, France, Germany,
and Ecuador.

Keywords: biodegradable plastics feedstocks; deposit refund scheme; extended producer
responsibility; marine litter; plastic pollution impacts; single use plastics

1. Introduction

Plastics are materials that exhibit a degree of flowability during their production such that
they can be extruded, molded, cast, spun, or used as coatings [1]. The term plastic is therefore
derived from the Greek word “plastikos”, which means moldable [2]. Plastics are synthesized
through polymerization. During polymerization, small molecules, monomers, chemically combine to
form macromolecules that are interlinked to form a chain-like or network molecule, referred to as a
polymer [3,4]. Bakelite was the first synthetic polymer to be produced in 1907, and this marked the
beginning of the “Plastic Age”, although mass production of various items would only commence
over 30 years later [1,5]. Global plastics production in 1950 reached about 2 million tonnes. However,
this pales in significance when compared with the production statistics for 2015, which are estimated at
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380 million tonnes [6], indicating an increase of 378 million tonnes, as shown in Table 1. The 2015 plastic
production estimate is equivalent to the weight of 66% of the world’s human population assuming
an average individual weight of 75 kg [7]. This marked growth in the plastics industry is due to
the versatile nature of plastics, which has resulted in their application and use in varied industries.
Plastics can be used over a wide range of temperatures, are biologically inert, corrosion resistant,
cheap, have a high specific strength, are good heat and electrical insulators, and are durable [1,5,8].
The plastics industry has contributed significantly to economic growth, creating employment for
over 60 million people globally [2]. Plastics used in the medical, transportation, manufacturing,
water, and sanitation and food packaging sectors have enabled, respectively: the manufacture of
medical instruments and artificial organs, reduction in fuel costs, potable water supply and storage,
as well as a reduction in food wastage, as food is preserved for longer periods [1,8]. Plastics are
commonly produced from petroleum-based feedstock. It is estimated that about 4% of the world’s oil
is used in plastics manufacturing, while a further 3–4% is used to provide energy to produce these
plastics [9]. It is expected by 2050 that the whole plastics industry will constitute 20% of the world’s
total oil consumption [10].

Table 1. Global plastic statistics from 1950 to 2015, based on data from [6].

Total plastic production in 1950 (million tonnes) 2

Total plastic production in 2015 (million tonnes) 380

Cumulative plastic production up to 2015 (billion tonnes) 8.3

Cumulative plastics that outlived usefulness and became waste (billion tonnes) between 1950 to 2015 6.3

Percent of plastics sitting in landfills/natural environment 79

Percent of plastics incinerated 12

Percent of plastics recycled 9

1.1. The Plastic Waste Management Challenge or Problem

Despite the many benefits attributed to plastic use, unsustainable production, consumption,
and disposal patterns will lead to the depletion of non-renewable resources, environmental degradation,
climate change, as well as negatively impacting the survival of humans and animals. In 2015,
petroleum-based plastics emitted 1781 Mt of carbon dioxide equivalent during their life cycle, as shown
in Figure 1, and if a business-as-usual scenario is maintained, the petroleum-based plastic emissions
are set to increase to 6500 Mt CO2 eq by 2050 [11].
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Figure 1. Emissions of carbon dioxide equivalent in 2015, based on data from [11].
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Between 1950 and 2015, 79% of plastic waste was reported to have been mismanaged, as shown
in Table 1. This implies that an estimated 5 billion tonnes of plastic are either in landfills or natural
environment. By 2050, it is estimated that the cumulative amount of plastics ever produced will reach
34 billion tonnes, with 12 billion tonnes of plastic waste either in landfills or the environment as litter
at current consumption levels [6,12]. In Sub-Saharan Africa, one of the regions that is regarded as
inadequately resourced in waste management, waste generated will increase the fastest, by 300%,
in 2050, in tandem with the boom in plastic production expected in this region signaling the needed
urgency to intervene [13].

Due to its stability, plastic can be classified as a persistent pollutant. Figure 2 shows the time it takes
for various plastic items to degrade. For example, plastic bottles degrade after 450 years [7], and even
then, they form microplastics, which are ingested [14] by marine animals and have landed on our
tables in the form of sea food as well as table salt and water [5]. Approximately 51 trillion microplastics
are floating in the oceans, and this is 500 times more than the stars in our galaxy [15]. Synthetic textiles,
car tires, city dust, road markings, marine coatings, personal care products, and plastic pellets all
contribute towards the load of microplastics in the ocean, accounting for 35%, 28%, 24%, 7%, 3.7%,
2%, and 0.3%, respectively [16]. Larger marine animals may ingest macroplastics ([17], Figure 3,
and Ritchie and Roser [7], cite de Stephanis et al. [18], who reported that a rope (9 m in length), a hose
(4.5 m), 2 flowerpots, and plastic sheets have been ingested by sperm whales). A significant number of
animals are also entangled [19] in plastics, as shown in Figure 4. According to the United Nations
Educational, Scientific, and Cultural Organization (UNESCO) [20], over a million sea birds and more
than 100,000 marine animals die yearly from plastic waste ingestion or entanglement.
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Figure 2. Plastic degradation timeline, based on data from [7].

Mato et al. [21] highlight the adsorption of toxic chemicals such as pesticides by plastic,
which contaminates marine food chains, while Tanaka et al. [22] detected high levels of polybrominated
diphenyl ethers (PBDEs) in 3 out of 12 sea birds analyzed. These chemicals, used as flame
retardants in plastics, were also detected in the plastic matter found in the stomachs of these birds,
indicating transference of plastic additives to marine animals [22]. Although there are concerns about
potential human health impacts associated with consuming marine species that may be laden with
toxins [23], the impacts are not yet fully understood [7,24], which is worrying, and therefore there is an
urgent need for such potential impacts assessments to be conducted.

Land animals such as cattle, donkeys, sheep, and goats face a similar danger of plastic ingestion,
which blocks the gastrointestinal tract leading to death. Chemicals may also leach out from these
plastics and in turn affect the meat and milk from the livestock [25], and the impact on humans is also
not yet clear. In addition, plastic waste pollution has been associated with an increase in flooding
episodes in communities from blocked storm water drainage systems, parasitic diseases by serving as
breeding grounds, respiratory diseases from indiscriminate burning, and eventual deaths in people [13].
A plastic-waste-induced global loss of around US$13 billion per year has also been reported for tourism
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(due to reduced aesthetics and therefore recreational activities) and fishing industries, together with
losses from clean-up campaigns [26]. These socio/health, environmental, and economic impacts of
mismanaged plastics have also been discussed at length in another publication by the authors [27].
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1.2. Inventory of Plastic Management Systems

This review presents an integrative assessment of the current and important issues surrounding
the generation of plastic and its management to consolidate them and identify gaps in the field for
future research. Key words and phrases were used in computer-based searches of various academic
databases, Google, and Google Scholar to acquire the relevant literature. This review covers key
temporal and special scale statistics on plastics, considering their entire life cycle and the associated
negative socio-economic, human health, and environmental impacts emanating from the unsustainable
plastics production, consumption, and disposal patterns. A review of the most commonly littered
plastic items, life cycle assessment studies on alternatives to traditional plastics, the importance of
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oceans in carbon sequestration, brief description on bioplastics, followed by an in-depth analysis
on the advantages and disadvantages of bio-based biodegradable plastics and various renewable
feedstocks previously studied was undertaken. Descriptions of EPR and DPR are given in order to
determine where these tools fit in relation to plastic waste management. In addition, conventions,
commitments, and declarations that have been drafted globally in the fight against plastic pollution
are also compiled and listed to provide a readily available database for policy analysts on plastic and
its waste management.

This integrative and consolidated review thus builds on previous studies that have focused either
on one or a few of the aforementioned aspects. For example, Alabi et al. [28] reviewed the environmental
and health impacts of mismanaged plastic waste and ways to manage this waste. They report that
bioplastics would be better for the environment, despite not providing an adequate assessment to make
this bold claim. Narancic and O’Connor [29] reviewed bio-based biodegradable plastics, specifically
polyhydroxyalkanoates and polylactide and their biodegradability, but their scope did not address other
shortcomings of these plastics, which are highlighted in greater detail in this article. Cheng et al. [30]
only reviewed polylactide in their work, while Walker and Rothman [31] conducted a review on life
cycle assessments of bio-based and fossil-based plastics only. This review article will therefore not only
be a helpful guide to use for researchers in the field, policy makers, and other stakeholders, but will
also provide detailed critical issues relating to plastic and its management, thereby giving insights for
possible future research gaps.

The review study therefore specifically seeks:

• To conduct an integrative review on plastic and its management and post-consumer use that
provides the current status quo globally as well as establishes where more resources should be
channeled in order to mitigate the impacts of mismanaged plastic waste on humans, animals,
and the environment.

• To assess the possibility of reclaiming plastic waste that is currently circulating in the environment,
both on land and in the marine environment.

• To comparatively evaluate if alternative materials to traditional plastics are more environmentally
sustainable and provide the potential associated consequences of replacing plastics.

• To determine the strengths and shortcomings of some bio-based biodegradable plastics on the
market as well as assess the areas of application where they are best suited.

• To determine whether EPR and DRS are beneficial tools in plastic waste management.

2. Data Sources

A desktop review was conducted using selected relevant literature. A total of 108 peer-reviewed
articles covering the scope of the study were used, while other information came from books,
book chapters, and grey literature. For peer-reviewed articles, both research and review articles were
considered, with initial screening done by assessing abstracts. The literature search was conducted
between November 2019 and August 2020 with literature from the year 2000 to the present considered.
Where other researchers reviewed a subject of interest, these were cited in the study. Due to the
multi-faceted nature of this study, that is, dwelling on many aspects in one study, the list of reviewed
articles per each reviewed aspect is not exhaustive.

The study also necessitated the need for accessing grey literature, as not all information could be
located in academic databases. For example, information on declarations and conventions, bioplastics,
some properties of biodegradable plastics, socio-economic impacts of mismanaging plastic waste,
plastic bans, EPR, and DPR was acquired from grey literature. The authors also identified a number
of gaps, which are highlighted at the conclusion of the paper. Table 2 shows the search engines,
academic research databases, and search terms used in this study. Searches on biodegradable
plastics were performed in the ScienceDirect database with and without the Boolean operators
AND, OR, NOT, and the return of results was similar.
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Table 2. Search engines, academic databases, and key words/phrases used.

Search Engines and Database Key Words and Phrases

Search Engines

• Google
• Google scholar

Academic Research Databases

• American Chemical Society (ACS) Publications
• MDPI
• National Center for Biotechnology Information

(NCBI)
• ScienceDirect
• Scopus
• SpringerLink
• Statista
• Wiley Online Library

• global plastics trends,
• plastic pollution impacts,
• single use plastics,
• marine litter,
• plastic waste management,
• bioplastics, bio-based polymers,
• biodegradable plastics,
• advantages and disadvantages of biodegradable plastics,
• synthesis and feedstocks of biodegradable plastics,
• biodegradable polycarbonates synthesis feedstocks,
• biosynthesis characterization feedstock for PHA,
• synthesis of polylactic acid from agricultural residues,
• Extended producer responsibility,
• Deposit refund scheme,
• mechanical recycling,
• plastic pollution declarations, agreements and conventions.

3. Inventory of Plastic Production and Its Waste Management

Figure 5 shows the number of plastic objects found globally on shorelines in 2018.

1 
 

 

Figure 5. Number of plastic waste objects found globally on shorelines by packaging material, based on
data from [32].

The amount of plastic generated per capita varies from country to country. Ritchie and Roser [7]
reported that for high-income countries, this figure is higher compared to low income countries.
However, despite this disparity, the most important aspect that determines how much plastic enters
the environment as waste, are waste management systems utilized in various countries. Consequently,
low income countries will not necessarily contribute less plastic waste compared to high income
countries [7]. The authors reported that plastic waste management infrastructure is quite effective in
high income countries and as such, their plastic waste leakage into oceans is rare.
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The authors also argue that, as any plastic in these countries that does not undergo recycling
and incineration is put in closed landfills, no plastic waste can be classified as mismanaged.
Figures 6 and 7 also show lower plastic leakages for high income countries [33] but on the other hand
Figure 8 shows that the United States of America (USA) landfilled 75.8% (24,330,695 metric tonnes) of
its plastic waste from municipal solid waste, incinerated 15.8% (5,071,163 metric tonnes) for energy
recovery, and only recycled 8.4% (2,685,267 metric tonnes) [34].
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Therefore, the suggestion that high income countries are outperforming low income countries
may not be an accurate narrative, because storing plastic waste in a landfill where it will degrade
and eventually generate microplastics or even leach out potentially harmful chemicals, which can
contaminate the soil and water [12], is merely delaying a problem and not solving it. Morin et al. [35]
reported that plastic waste contributes the highest load of Bisphenol-A (BPA) in landfill leachate.
In addition, plastic bags, which are light weight and balloon shaped, including Styrofoam, can also be
blown away by the wind from landfills onto land or oceans [12].

Furthermore, high-income countries were also shipping off their plastic waste into Asia, specifically
China, for over 20 years [36], prior to China’s National Sword Policy implemented in 2018, as shown in
Figure 9. China has imported 106 million tonnes of plastic waste since 1992, accounting for 45.1% of all
cumulative imports, [37] which it repurposed into valuable synthetic products in order to meet the
demands of its growing economy [5]. Other smaller Asian countries did not have as much capacity to
handle such waste imports, which inevitably resulted in plastic waste mismanagement [5,38]. Therefore,
the exporting of waste by countries may have also given an illusion that minimal leakage of plastic
from high income countries is a consequence of effective waste management policies. According to
the 5 Gyres institute, shipping of waste to developing countries is done because of the low prices of
oil and lack of profitable markets for recycled plastics, making it more attractive to produce virgin
plastics in developed countries. Hence, plastic waste is sent to developing countries, most of which do
not have the recycling infrastructure to handle this waste, thus leading to its mismanagement [39].
A good example is the recent report by BBC, where waste from the United Kingdom was found
illegally dumped and burnt on the roadside in Turkey [40].

The passing of the Sword Policy left many nations scrambling to deal with trash in their own
backyards [41]. The 2019 amendment to the Basel Convention on the Control of Transboundary
Movements of Hazardous Wastes and their Disposal to include contaminated plastic wastes will also
make it more difficult for developed nations to export plastic waste to less developed ones, as this
will require Prior Informed Consent (PIC) from the receiving country [42]. This legally binding
framework will ensure that countries are held accountable for their own waste and will come into
effect in January 2021.

In Sub-Saharan Africa and globally, plastic waste in Municipal Solid Waste (MSW) accounts for
about 13% and 10%, respectively [43], as shown in Figure 10.

In South Africa, the largest share of plastic is channeled towards packaging [44], as evident in
Figure 11. This is not only unique to South Africa, but Europe as well (Figure 12) [44], with South
Africa utilizing 53%, compared to 39.9% for Europe in 2015.
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Globally, the outlook on plastic waste generated in 2015 is also consistent with the plastic packaging
market share, with packaging contributing the most waste: 141 million tonnes [6] (Figure 13) out of the
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Current global trends for 2019, indicated in Figure 14, also confirm that packaging contributes to
the bulk of plastics ever manufactured [45].

Denkstatt [46] attributes the prominence of packaging to its ability to preserve foods by extending
their shelf life, thereby preventing food wastage. The author argues that the environmental benefits of
packaging outweigh the environmental costs. Plastic packaging such as Styrofoam does present a huge
challenge in the management of plastic pollution. Often, it is contaminated with organic material after
short-term use, making its recycling unfeasible and uneconomical [12]. This results in huge volumes of
plastic packaging ending up in landfills or indiscriminately dumped, burnt, or buried [10], creating a
never-ending vicious cycle of plastic pollution. Approximately US$80–120 billion, which represents
95% of plastic packaging value, is lost to the economy yearly as a result. According to the Ellen
MacArthur Foundation [10], as much as 40% of packaging is landfilled, and 32% leaks into the
environment [10].
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4. Marine Environment

Various interventions have long been proposed by nations to try to prevent plastic waste
pollution in the marine environment. In 1972, the OSLO Dumping Convention [47] and the London
Convention [48] were drafted. This was followed by the MARPOL [49], Paris [50], and Barcelona
Conventions [51] in 1973, 1974, and 1976, respectively. Almost 50 years later, more conventions,
together with commitments and declarations, have been drafted, as well as amendments made to
older conventions. This is commendable and an indication that the world is well aware of the need to
contain plastic waste.

There has however been concern about the continued leakage of single use plastics such as
straws, cotton bud sticks, lollipop sticks and wrappers, beverage bottles and lids, cigarette butts,
disposable cutlery, food packaging, and wrappers [52–54], as well as condiment packages and milk
carton seals, as shown in Figures 15–27 [53]. Five patches of garbage, formed from rotating currents
referred to as gyres, have been identified in the North and South Pacific, the North and South Atlantic,
and the Indian Ocean. These patches contain both microplastics and macroplastics, and the largest is
commonly referred to as the Great Pacific Garbage Patch, in the Pacific Ocean [55]. Marine sources
such as fishing ropes, lines, and nets also account for 28% of that plastic waste and make up 50% of
the waste in the Great Pacific Garbage Patch (GPGP) [55]. In 2016, it was estimated that there were
17,760 pieces of plastic per square kilometer floating in the ocean [20].
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Overall, 8 million tonnes of plastic reportedly enters the oceans annually, adding to the 150 million
tonnes of plastic already in the marine environment [53]. UNEP [26], however, gives a figure of
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10 to 20 million tonnes of plastic entering the oceans every year [26]. At this rate, the United
Nations’ Sustainable Development Goal (SDG) 14 target to prevent and reduce marine pollution
by 2025 may not be met. Furthermore, oceans must be protected, because they absorb 30% of
the carbon dioxide produced by humans, thereby mitigating the global warming effects [56]. It is
reported that plankton in the oceans are crucial in absorbing carbon dioxide from the atmosphere and
water and sequestering it deep under the ocean. However, their survival is also being threatened by
microplastics [57]. Cole et al. [57] studied the effect of microplastic ingestion on copepods, belonging to
the class of zooplanktons, and found that microplastics decreased the ingestion rate of carbon by
these organisms. Furthermore, when exposed to microplastics for a long period, copepods release
smaller eggs, which have a lower successful hatching rate (increased mortality). The authors therefore
concluded that microplastics in marine environments affect copepod feeding even at concentrations as
low as 75 microplastics mL−1 [57]. Although the extent of impacts is currently under investigation [57],
such evidence cannot be ignored. In addition, oceans also provide a means for survival to more than
three billion people [56].

Alternatives to Conventional or Single Use Plastics

Judging by the top 10 materials commonly littered worldwide [53], it suffices to say that single use
plastics have propagated a “throw-away culture”. Solutions are required to ensure that this problem
does not continue unabated. Materials such as paper, biodegradable polymers, reusable plastic,
raffia (made from raffia palm tree), cotton [58], steel, and glass [59] are some alternatives that
have been studied as potential replacements for fossil-based single use plastics, while in other
studies, thicker or more durable conventional plastics have been proposed as replacements instead [60].
Harding et al. [61] conducted a life cycle assessment (LCA) by studying the production processes for two
conventional plastics: polypropylene (PP) and polyethylene (PE), as well as polyhydroxy-β-butyrate
(PHB), a biodegradable polymer. The authors reported that PHB outperformed polypropylene across
all the environmental impact categories analyzed. Although PE had lower environmental impacts
in the acidification and eutrophication categories than PHB, the biodegradable polymer was more
beneficial in all the remaining categories. Harding et al. [61] did not analyze these three plastics
from cradle to grave, but argued that, even if this were to be done, PHB would still have the least
environmental impact.

On the other hand, Ross et al. [60] conducted life cycle sustainable assessments to determine
the most sustainable alternative to single-use plastic bags in South Africa. The authors looked at
socio-economic (impact on employment and affordability) and environmental aspects of 16 carrier
bags; 12 being single use and four reusable bags. Of the 12 single use bags; one was made of paper,
five were HDPE bags of 24 µm thickness with 100%, 75%, 50%, 25% and 0% recycled content, while the
7th bag was made of LDPE with 0% recycled content. The remaining single use bags were made of
HDPE but with a bio-additive, composites of poly butyl succinate (PBS) and polybutylene adipate
terephthalate (PBAT) and composites of PBAT and starch.

The reusable fossil-based plastics were composed of HDPE with 100% recycled content (70 µm
thick), polypropylene with 0% recycled content, and woven and non-woven polyester with 100% and
85% recycled PET, respectively. In their assessment, Ross et al. [60] made the assumption that the
single use bags would be used once, while reusable bags would be used 52 times during the year.
The authors found that for the South Africa scenario, reusable bags had the most favorable outcomes,
with the 70 µm HDPE bag being the best. The authors also however highlighted that the higher the
recycled content in a bag and the more the number of times that a bag can be used, including those
meant for once-off use, the less its impact on the environment [60]. Therefore, in such a case, single use
plastics would be more favorable when compared to reusable plastics, as reusable plastics are made
with more material, which leads to higher environmental impact.

In this study, although the four biodegradable plastic bags had the lowest persistence indicator
in the environment due to their ability to decompose under the right conditions, the bags ranked
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poorly overall. Out of the 16 bags tested, PBAT/starch imported composite was at position 7 followed
by PBAT/starch local composite, PBAT/PBS imported composite, and PBAT/PBS local composite at
positions 12, 15, and 16, respectively. Paper had a low persistence indicator as well as the most job
creation opportunities but ranked 14th overall out of all the 16 carrier bags assessed [60].

In another LCA study, commissioned by the Danish Environmental Protection Agency [EPA] [62],
14 carrier bags comprising of four variants of LDPE (40–50 µm thick), recycled PET (600 µm),
virgin polyester (100 µm), woven (350 µm) and non-woven PP (500 µm), 1 biopolymer (40 µm),
bleached and unbleached paper (120 µm), traditional cotton (930 µm) and organic cotton (1400 µm),
and a 700 µm composite (jute, cotton, PP) were compared. In contrast to the study by [60], the authors
concluded that low density polyethylene bags were the most favorable environmentally, even after
one-off primary reuse.

Woven PP bags, non PP bags, PET bags, polyester bags, biopolymer bags, unbleached paper,
bleached paper, organic cotton, conventional cotton, and composite bags would have to be reused
a minimum of 45 times, 84 times, 35 times, 42 times, 43 times, 43 times, 20,000 times, 7100 times
and 870 times, respectively, for them to have the same low environmental impacts as LDPE when all
environmental indicators are considered. The authors also reiterate that if the LDPE bag is reused
more than once, the minimum number of times of reuse for the other bags would increase. Two other
life cycle assessments carried out by the UK Environment Agency and the Quebec government found
that plastic bags resulted in lower environmental impact compared to alternatives, with paper the
worst performing, as it had the highest global warming potential [63,64].

Chitaka et al. [59] carried out an LCA study to determine the best drinking straw to use in
South Africa. The authors assessed single use straws made of PP, paper, and polylactide (PLA),
as well as reusable variants made from stainless steel and glass. Paper had the least environmental
impact among the one-off use straws, while among the reusable straws, glass outperformed stainless
steel. The authors attribute the high impact of polypropylene on climate change, due to the use of
coal in PP production; hence, these results may not be the same as other regions (Europe and USA),
which use crude oil or natural gas in PP manufacturing [59].

Bentley Waste Management Consultants [65], who conducted a socio-economic study on the
impact of different carrier bag materials in South Africa, also reported that differences in project
scope parameters, methods used, and objectives of the project, as well as differences in geographical
and environmental aspects, made it impossible to infer conclusions from outcomes of studies done
in Europe and America, and that any such attempts to make comparisons produces flawed results.
In a review carried out by Walker and Rothman [31], the authors could not draw conclusions on the best
performing polymer between bio-based and petroleum-based polymers due to the many variations in
methodology in all the studies conducted. Based on these studies, it can be concluded that any material
can potentially be sustainable, depending on the weighting of impacts considered to be more important
by a country or region. However, the scope of this review paper covers bio-based biodegradable
plastics only in order to gain more understanding of their uses, advantages, and disadvantages,
as well as the various raw materials that can be used in their manufacturing that have been proposed
and or reviewed in various studies.

5. Bioplastics

Bioplastics comprise three categories, which are either bio-based and biodegradable, bio-based
and non-biodegradable, or lastly fossil-based and biodegradable. Bio-based biodegradable bioplastics
include polylactide (PLA), polyhydroxyalkanoates (PHAs), starch blends, bio-based polycarbonate,
and poly butyl succinate. Bio-based non-biodegradable bioplastics include bio-based or partially
bio-based variants of PET, polypropylene (PP), and polyethylene (PE), which are referred to as
“drop-in solutions”. These bio-based (drop-in) plastics have properties like their fossil-based
counterparts and can be recycled in the existing mechanical recycling lines [66,67]. A good example of
a partially bio-based PET bottle is Coca Cola’s plant bottle made from monoethylene glycol derived
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from sugarcane and terephthalic acid from petrochemicals [68]. Other non-biodegradable bioplastics
include polyethylene furanoate (PEF), polytrimethylene terephthalate (PTT), and polyamide (PA) [69].
Polycaprolactone (PCL) is an example of a fossil-based biodegradable plastic [70]. One advantage of
bio-based polymers is that they do not make use of non-renewable fossil fuel stocks; consequently,
in the future when fossil fuel depletion becomes a determining factor, there will be a shift towards
bioplastics and away from conventional plastics [61,71,72].

Figure 28 indicates the bioplastics production in 2019; with bio-based non-biodegradable plastics
accounting for 44.5% (0.94 million tonnes) of the total production of bioplastics in 2019 versus
55.5% (1.17 million tonnes) for both bio-based and fossil-based biodegradable plastics. From the
55.5% bio-based biodegradable plastics, PLA, PHA, starch blends, and PBS account for 40.7%
(0.48 million tonnes) [69]. In addition, in terms of production capacities in the same year, Asia was
the top producer of bioplastics with 45%, followed by Europe, North America, and South America
with 25%, 18%, and 12%, respectively (Figure 29) [69], while consumption per region was 55%,
25%, 19%, and 1% for Western Europe, Asia and Oceania, North America, and the rest of the world,
respectively [73]. The Institute for Bioplastics and Bio-composites (IFBB) projects the bioplastics
production share in 2022 for Asia, Europe, North America, South America, and Australia/Oceania to
be 65.3%, 20.4%, 9.3%, 4.8%, and 0.2%, respectively [74]. No data for Africa could be found indicating
the need for documentation of African statistical data such that a clear picture can be ascertained.Sustainability 2020, 12, x FOR PEER REVIEW 18 of 59 
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5.1. Need for Review of Bio-Based Biodegradable Plastics

The focus on bio-based biodegradable plastics in this study stems from the growing interest
in these plastics as potential replacements for conventional plastics. This is a result of countries
across the globe continuing to tighten regulations on the use of single use fossil-based plastics such as
plastic bags and straws, the need to reduce consumption of fossil fuels by governments, as well as
the consumer’s need to use sustainably manufactured products [75,76]. Furthermore, South Africa
is currently in the process of launching a US$1.8 million, Japan-funded bioplastics manufacturing
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project in collaboration with the United Nations Industrial Development Organization (UNIDO) [77,78].
Therefore, this review is also expected to contribute to the implementation of the project initiative.
In addition, the project is also expected to be rolled out to other countries in the Southern African
Development Community (SADC) region [78]; consequently, these countries will benefit from the study
findings as they plan toward their country specific bioplastics manufacturing projects. The review also
arrives with the backdrop of the South African Plastics Pact, an initiative launched on 3 February 2020
by the World Wide Fund for Nature (WWF-SA), the South African Plastics Recycling Organization
(SAPRO), and the Waste and Resources Action Programme (WRAP), based in the United Kingdom
(UK) [79], which manages the United Kingdom (UK) Plastics Pact [80]. The goal of the pact is to
push for a circular economy in South Africa as outlined in the broader Global Plastics Pact by the
Ellen MacArthur foundation, and the replacement of single use plastics (SUPs) is high on the agenda.
Besides tackling SUPs, the pact’s other targets are as follows: by 2025, all packaging used must be
reusable, recyclable, and compostable, 70% of packaging should be recycled, and all packaging must
contain approximately 30% recycled material [79]. A lot of effort is required to ensure that these
ambitious targets are met within five years.
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The biodegradable plastics market value is expected to increase from US$3.02 billion in 2018 to
US$12.4 billion in 2027, representing a four-fold increase, evidence that there is indeed movement in
this industry, as shown in Figure 30 [81]. The increasing demand for biodegradable packaging for
fruits and vegetables, water and beverages, dried snacks and sweets, and baked goods has resulted
in significant growth in the packaging sector. Another sector that is growing rapidly is agriculture
and horticulture, where biodegradable plastics are used as mulch [82] for conserving soil moisture,
reducing the growth of weeds, maintaining favorable soil temperature, and improving soil health,
fertility, and aesthetics [82,83]. Biodegradable mulches also reduce labor and disposal costs, as they
can be ploughed back into the soil after their use [71,76].

Biodegradation is the process by which matter is broken down by microorganisms either in the
presence of oxygen (aerobic digestion) or absence of oxygen (anaerobic digestion) into water, biomass,
and gas (either methane or carbon dioxide) [84,85]. According to Hackett [86], some biodegradable
plastics may decompose in backyard bins, soil, freshwater, and sea water, while the majority require
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controlled conditions in industrial composting facilities. The need for such facilities together with
infrastructure for the collection of these plastics is crucial for the benefits of these plastics to be
realized [87].

Sustainability 2020, 12, x FOR PEER REVIEW 19 of 59 

currently in the process of launching a US$1.8 million, Japan-funded bioplastics manufacturing 

project in collaboration with the United Nations Industrial Development Organization (UNIDO) 

[77,78]. Therefore, this review is also expected to contribute to the implementation of the project 

initiative. In addition, the project is also expected to be rolled out to other countries in the Southern 

African Development Community (SADC) region [78]; consequently, these countries will benefit 

from the study findings as they plan toward their country specific bioplastics manufacturing projects. 

The review also arrives with the backdrop of the South African Plastics Pact, an initiative launched 

on 3 February 2020 by the World Wide Fund for Nature (WWF-SA), the South African Plastics 

Recycling Organization (SAPRO), and the Waste and Resources Action Programme (WRAP), based 

in the United Kingdom (UK) [79], which manages the United Kingdom (UK) Plastics Pact [80]. The 

goal of the pact is to push for a circular economy in South Africa as outlined in the broader Global 

Plastics Pact by the Ellen MacArthur foundation, and the replacement of single use plastics (SUPs) is 

high on the agenda. Besides tackling SUPs, the pact’s other targets are as follows: by 2025, all 

packaging used must be reusable, recyclable, and compostable, 70% of packaging should be recycled, 

and all packaging must contain approximately 30% recycled material [79]. A lot of effort is required 

to ensure that these ambitious targets are met within five years. 

The biodegradable plastics market value is expected to increase from US$3.02 billion in 2018 to 

US$12.4 billion in 2027, representing a four-fold increase, evidence that there is indeed movement in 

this industry, as shown in Figure 30 [81]. The increasing demand for biodegradable packaging for 

fruits and vegetables, water and beverages, dried snacks and sweets, and baked goods has resulted 

in significant growth in the packaging sector. Another sector that is growing rapidly is agriculture 

and horticulture, where biodegradable plastics are used as mulch [82] for conserving soil moisture, 

reducing the growth of weeds, maintaining favorable soil temperature, and improving soil health, 

fertility, and aesthetics [82,83]. Biodegradable mulches also reduce labor and disposal costs, as they 

can be ploughed back into the soil after their use [71,76]. 

 

Figure 30. Market value of biodegradable plastics worldwide from 2018 to 2027 in billion U.S. dollars, 

based on data from [81]. 

Biodegradation is the process by which matter is broken down by microorganisms either in the 

presence of oxygen (aerobic digestion) or absence of oxygen (anaerobic digestion) into water, 

biomass, and gas (either methane or carbon dioxide) [84,85]. According to Hackett [86], some 

biodegradable plastics may decompose in backyard bins, soil, freshwater, and sea water, while the 

majority require controlled conditions in industrial composting facilities. The need for such facilities 

together with infrastructure for the collection of these plastics is crucial for the benefits of these 

plastics to be realized [87]. 

Figure 30. Market value of biodegradable plastics worldwide from 2018 to 2027 in billion U.S. dollars,
based on data from [81].

The following conditions are necessary for biodegradation to occur [88]:

• The presence of microorganisms such as bacteria, fungi, and actinomycetes
• Oxygen (aerobic environment), moisture, and mineral nutrients
• Temperature range 20 ◦C to 60 ◦C (55–60 ◦C for industrial composting)
• Frequent mixing
• A pH between 5 and 8

Further, there are also other factors that influence the rate of the biodegradation process, which can
take anywhere from several days to years, and these include polymer morphology, its crystallinity,
molecular weight, flexibility, presence of functional groups, blends or copolymers, hydrophobicity,
tacticity (repeated arrangement of units), additives, and environment (climate, geographical situation,
or steps taken by households in home composting) [72,88,89].

5.1.1. Polyhydroxyalkanoates (PHAs)

PHAs are polyesters [90] that are produced through bacterial fermentation of sugars or oils
(lipids) [91,92]. Various types of PHAs can be produced from the over 150 monomers available from
this polymer group [91,92]. More than 300 bacterial species can be used during the synthesis of PHAs
as carbon and energy reserves [93]. PHAs are formed as granules in cells; this, however, complicates
the recovery process, making the whole process expensive [91]. Israni and Shivakumar [94] report
that the production costs for PHAs are 5 to 10 times higher than those of petroleum-based plastics,
thus hampering their large scale production. Israni and Shivakumar [94] attributed 50% of the cost to
the feedstock, thus highlighting the need for alternative feedstocks [95]. Ivanov et al. [90] attributed
the high costs currently associated with PHA production to the use of pure cultures (aseptic cultures)
where sterile conditions are required, expensive carbon sources, and the use of organic solvents [90].
Poly-3-hydroxybutyrate (P3HB) is the most common variant of PHAs [91,96,97]. It offers good barrier
properties to moisture and aroma, thus making it an excellent choice for food packaging [91,96].
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The density of P3HB ranges from 1.18 to 1.26 g/cm3, and its melting point varies from as low
as 40 ◦C [96] to 180 ◦C, while thermal degradation temperature is 185 ◦C; therefore, it cannot be
used in high temperature applications. Although its mechanical properties are almost equivalent to
polypropylene (PP) [98], P3HB is stiff and is less ductile, with its elongation to break at 5% compared
to PP, which is approximately 400% [91,95]. However, the flexibility and impact strength of this
polymer can be improved by increasing valeric acid content during production to form a copolymer
of hydroxybutyrate and hydoxyvalerate [91,99]. This enables its use in flexible packaging [91].
This copolymer also reportedly degrades faster than the homopolymer hydoxybutyrate [91,99].

Blends of PHAs can be used to simulate the properties of low density polyethylene (LDPE),
poly vinyl chloride (PVC), as well as polystyrene (PS) [91]; as a result, this polymer has varied
applications in the biomedical (implants, bone and blood vessel replacements, engineered heart
valves, sutures, controlled drug release devices), agricultural, and packaging sectors (disposable films).
However, the most common is in the production of flexible packaging [91,92,97]. Compared to
other bioplastics, PHAs are more resistant to photodegradation. Polyhydroxyalkanoates undergo
biodegradation either aerobically or anaerobically (slower) in home and industrial composting,
soil, and marine or fresh water. The rate of degradation is influenced by microbial concentration,
polymer crystallinity, temperature (60 ◦C maximum), moisture content, surface area exposed, pH,
and molecular weight [91,99–101]. According to Rudnik [100], 85% of PHAs biodegraded within
seven weeks. In aquatic environments, the timelines could be longer due to low levels of oxygen
and lower temperatures [102]. For example, in a study conducted in Lake Lugano in Switzerland
with temperatures below 6 ◦C, biodegradation took approximately 36 weeks. However, this study
also attests to the fact that PHAs are biodegradable over wide temperature ranges [102]. In addition,
degradation of PHAs occurs faster than that of PLA. A market growth in 2025 from 29,500 tonnes to
53,100 tonnes is expected [91].

Shortcomings of PHAs

The ability to use PHA polymers in varied applications where fossil-based plastics are leading
may also present a challenge in that although fossil-based plastics already have waste management
systems in place (collection and recycling), PHA polymers lack such infrastructure. This may inevitably
lead to contamination of the well-established recycling streams of conventional plastics by PHAs.
In addition, due to PHAs’ brittle nature, they cannot be used in the construction and automotive
industries where load carrying is necessary. Furthermore, in food packaging where thermal sterilization
may be required, PHAs may not be suitable due to their low melting point [96]. Moreover, the cost of
PHA granules ranges between US$2000 to US$4500 per tonne [91] compared to about $1200 per tonne
for polypropylene [103].

Table 3 shows the various feedstocks that have been tested and proposed by various researchers.

5.1.2. Polybutylene Succinate (PBS)

Bio-based succinic acid and 1,4-butanediol are used to produce biodegradable PBS via fermentation
of microorganisms on renewable feedstocks. PBS is a thermoplastic with high ductility (elongation to
break is 560%), impact strength, chemical resistance, high yield strength, and good thermal
stability [88,133–135]. Its yield strength is 3.64 and 1.1 times higher than that of LDPE and polypropylene,
respectively [136]. The melting point of PBS is around 112–116 ◦C, and thermal degradation occurs
around 200 ◦C [133]. The properties of PBS are almost like low density polyethylene [134], and it can
be processed using the existing process equipment for conventional plastics [137]. PBS is commonly
utilized in the agricultural industry for mulching and in retail for manufacture of supermarket
bags and food packaging films [133]. It is also used in the manufacture of compostable bags [108],
catering products, and foam, as cited by [97]. Due to its excellent melt processability, PBS is used in the
textile industry to produce nonwoven fabric [135], whose high absorbency makes it ideal for filtration
applications, sanitary towels, and disposable diapers [138].
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Table 3. Polyhydroxyalkanoates (PHAs) feedstocks as reviewed by the authors.

Polyhydroxyalkanoates (PHAs)

Feedstock Year Authors

Glucose 2007 [104]
Paper mill wastewater 2008 [105]

Fermented olive oil mill wastewater 2009
2019

[106]
[107]

Fermented sugar cane molasses 2010
2010

[108]
[109]

Crude palm kernel oil 2012 [110]
Tallow 2013 [111]

Cassava starch 2014 [112]
Municipal solid waste 2016 [113]

Fermented cheese whey

2014
2017
2018
2019

[114]
[115]
[116]
[117]

Xylan 2016 [118]
Leguminous and fruit processing water 2016 [119]

Crude glycerol from bio-diesel production 2016
2018

[120]
[121]

Macroalga (seaweed)

2017
2018
2019
2020

[122]
[123]
[124]
[125]

Primary & secondary municipal wastewater sludge and Food waste 2018 [126]
Calophyllum inophyllum (native to Asia & Wallacea)-a large ever-green plant. 2018 [127]

Spent coffee grounds 2018 [128]
Wastepaper from municipal solid waste 2019 [129]

Corn starch 2019 [130]
Kenaf (Hibiscus cannabinus)

Grows in the wild in Africa. India, Thailand and China are leading producers. 2019 [131]

Ragi husks (finger millet), sesame oil cake 2020 [94]
Sucrose 2020 [132]

Shortcomings of PBS

A drawback of PBS is its poor stiffness [139]. Its modulus of elasticity is between 500 and 700 MPa,
which is significantly lower than its biodegradable counterpart, PLA, at 3500 to 4150 MPa [88].
In addition, PBS has a low melt viscosity (flow behavior), slow degradation rate (especially in
natural compost, sea, and water) [136], and low tensile strength [129,139,140], which further limits its
applications. The high price of PBS is also prohibitive [88] at US$4660 per tonne [76], compared to
approximately US$1000 per tonne for LDPE [141]. In addition, PBS lacks good gas barrier properties,
which may limit its use in the food industry. Ingress of gases such as oxygen into the packaging may
lead to deterioration or degradation of the packaged food [142].

Some of the feedstocks that have been proposed by various researchers are shown in Table 4.

5.1.3. Polylactide/Polylactic Acid (PLA)

Biodegradable polylactide, also referred to as polylactic acid, is synthesized from bio-based
lactic acid through bacterial fermentation of carbohydrate or sugars. Corn starch, tapioca roots,
and sugar cane are mainly used as feedstocks in the United States, Asia, and the rest of the world,
respectively [157]. Sustainably sourced lactic acid has the following advantages [158]:

• Environmental impact is minimal
• Production costs are reduced
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• Reduced dependency on petroleum
• Reduced carbon dioxide emissions
• The process uses a biocatalyst

The melting temperature of this polymer is between 150 and 175 ◦C, and its mechanical properties
reportedly lie between those of polystyrene and PET, although comparatively similar to PET [91,159].
The first use of PLA was in the manufacture of bio-medical devices due to its excellent biocompatibility
properties [30,160]. In the human body, PLA takes 6 to 24 months to degrade into lactic acid, which is
not toxic to humans [82]. PLA is also used in the food industry for the manufacture of tea bags,
take away food containers, flexible packaging, disposable cups and other utensils; in the agro-industry,
it is used for mulching and planter boxes, in the hygiene industry for sanitary towels and disposable
diapers, and for 3D printing in various sectors due to its ease of processing and low temperature
requirement [82,91,161,162]. With PLA packaging, the shelf life of foods such as vegetables and fruits
can be extended, as food is kept fresh for an extended period [76,162]. Under industrial composting
conditions, PLA takes 3 to 6 months to degrade [82]. Other end of life options that can be used for PLA
are anaerobic digestion, mechanical or chemical recycling, and energy recovery [162]. According to
Hagen [163], PLA also has an added advantage in that it can be manufactured using the existing
equipment for fossil-based plastics; as a result, resin manufacturers do not need to make significant
modifications to their plants. The only change that is required is the drying of PLA resin granulate,
as it can quickly degrade in the presence of moisture and temperatures up to 240 ◦C.

Table 4. Polybutylene succinate (PBS) feedstocks, as reviewed by the authors.

Polybutylene Succinate (PBS)

Feedstock Year Authors

Cheese whey 2007 [143]
Sugar cane molasses 2008 [144]

Straw 2009 [145]
Wheat 2009 [146]

Corn fiber 2011 [147]
Rapeseed meal 2011 [148]

Pinewood 2014 [149]
Carob pods 2016 [150]
Duckweed 2016 [151]
Citrus peels 2017 [152]

Apple pomace (solid waste from cider & apple juice making) 2018 [153]
Grape pomace (main by-product of the wine & grape juice industries) 2018 [154]

Sweet potato waste 2019 [155]
Coconut water 2019 [156]

Shortcomings of PLA

A concern in the use of PLA is its similarity to PET, which makes it difficult to separate during
mechanical recycling using density separation. PLA has a density of 1.24 g/cm3 versus 1.38 g/cm3 for
PET. Therefore, advanced sorting technologies such as near infrared (NIR) are required, and these may
not be available in low income countries where hand and density sorting are prevalent. Contamination
of the PET stream by PLA renders the whole stream unrecyclable [91].

In addition, the degradation of PLA progresses faster above its glass transition temperature,
which is around 55 to 60 ◦C [163–165], with high moisture content and microbes. Therefore, under home
composting it degrades slowly, which necessitates the need for controlled conditions in an industrial
composting setup [88,91] for its end of life disposal. This also means that in landfills and aquatic
environments, degradation rates are also slow as a consequence of low levels of oxygen, temperature,
or microorganisms [91]. However, PLA blends with PCL, and some of its copolymers have higher
rates of degradation in home composts and other environments [88,91]. PLA will biodegrade in an
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industrial compost at 58 ◦C and 65% relative humidity, faster than PBS [88], although PBS can degrade
at temperatures as low as 35 ◦C and below [88].

The cost of PLA resin ranges from US$3500 to US$4500 per tonne [91], which may be prohibitive
when compared to PET at around US$1000 per tonne in 2019 [166]. The other drawbacks of PLA are its
high brittleness, with an elongation at break of 4 to 7% compared to PET with 20% [167], and low heat
distortion temperature of 55 ◦C versus 116 ◦C for PET [88,167], which limit the areas of application of
this polymer. Furthermore, due to the polymer’s low glass transition temperature, it cannot be used
where stiffness at high temperatures is needed, for example, in the manufacture of containers for hot
drinks or automotive industry [165]. Hence, it is blended with other bio-based and/or biodegradable
plastics to improve its properties. Although PLA packaging is suitable for fruits and vegetables, its low
water vapor barrier property renders it unsuitable for bottled water [76].

Table 5 shows the various potential renewable feedstocks that can be used to produce PLA.
These were reviewed by [161].

Table 5. Polylactide (PLA) feedstocks, information acquired from [161].

Polylactide (PLA)

Feedstock Year Authors

Corn cob molasses 2010 [168]
Sugar cane juice 2011 [169]
Sugar cane beet 2012 [170]

Crustacean waste 2012 [171]
Bread Stillage 2013 [172]

Waste Curcuma longa biomass 2013 [173]
Cotton seed 2013 [174]

Sugar cane molasses 2013 [175]
Xylo-oligosaccharides 2015 [176]

Corn stover 2015 [177]
Sweet sorghum juice 2016 [178]

Tobacco waste 2016 [179]
Coffee pulp 2016 [180]

Pulp mill residue 2016 [181]
Sugar cane bagasse 2017 [182]

Corn cob 2018 [183]
Dairy waste 2018 [184]

Potato stillage 2018 [185]
Kodo millet bran residue 2018 [186]

Wheat straw 2018 [187]
Brewer’s spent grain 2018 [188]

5.1.4. Polycarbonates (PCs)

The manufacture of polycarbonate commonly involves the use of Bisphenol-A (BPA) and phosgene
(COCl2) [189,190]. There have been ongoing debates on the safety of BPA exposure in humans in
low doses [191], with studies showing that the chemical affects the reproductive system of laboratory
animals by acting as a hormone [192]. Furthermore, Ribeiro et al. [191] reported that occupational
exposure to BPA resulted in similar outcomes as those reported for the laboratory animals investigated.
For pregnant women, this also caused low birth weight in babies. The authors concluded that these risks
associated with occupational exposure to BPA should be thoroughly considered. Industry has begun
removing polycarbonates from children’s products such as milk bottles [193]. Regarding phosgene,
although the process has been attractive on the basis of ease of processing of the polymer, low cost
of production, as well as the generation of polycarbonates with exceptional properties and some
advantages including easy synthesis and reasonable reaction conditions, it is toxic [189]. It is formed
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from heating chlorine containing hydrocarbons at high temperatures, is also used in the manufacture
of pesticides. This chemical exists as a poisonous gas at room temperature. The Center for Disease
Prevention and Control (CDC) [194] reports that this chemical was used during World War 1 as a
choking medium and caused the majority of deaths. Accidental release of phosgene can cause breathing
difficulties, pulmonary edema (water in the lungs), heart failure, chronic bronchitis, and emphysema.
Some symptoms may occur up to 48 h after exposure, while some occur due to long term exposure [194].

Based on the above, bio-based polycarbonates could provide a much safer product than their
current counterpart. The potential pathway for synthesis of bio-based polycarbonate involves using
renewable feedstocks such as crops and their residues, food waste, and by-products from industrial
processes together with carbon dioxide [195].

Generally, polycarbonate is transparent, has high impact resistance, is dimensionally stable,
has exceptional flammability resistance, and thermally degrades beyond 135 ◦C [196,197]. Therefore,
due to its versatility, polycarbonate has wide ranging applications. It is used in the construction
(safety helmets, power tools, windows, skylights, stadium roofs) and automobile industry
(headlamp lenses, wheel covers, bumpers), manufacturing of glasses and eye lenses due to its
transparent nature, food packaging, table ware (plastic plates, bowls, cups, cutlery), and polycarbonate
polyols (coatings, adhesives, elastomers/urethanes) [195–200]. Its transparent nature also offers a better
alternative to glass, which can easily break and become a danger to people [193].

Considering the above, the bio-polycarbonate to substitute the fossil-based polycarbonates has to
have similar or superior properties. The bio-polycarbonates market is still in its infancy, and the bulk
of research that has been done is at laboratory scale [195]. Approximately 20,000 tonnes of this polymer
were produced in 2019 by a Japanese company, Mitsubishi. However, interest in bio-polycarbonates as
a potential replacement of BPA polycarbonates has been growing, not only due to its biodegradability,
but also its excellent biocompatibility, which may enable its use in drug delivery devices and tissue
engineering [190]. Furthermore, the release of carbon dioxide and water upon degradation, which are
not acidic and therefore will not promote harmful reactions in the body as well as the low rates
of degradation of these carbonates, have increased their interest in the medical field. Moreover,
the absence of BPA and phosgene will once more attract its use in the food packaging industry.
Another advantage of bio-polycarbonates is their resistance to photodegradation due to the absence of
benzene rings, which implies that no discoloration can occur.

Shortcomings of Bio-Polycarbonates

Cui et al. [195], highlight the need to improve thermal and mechanical properties of
bio-polycarbonates to similar levels as their fossil-based counterparts, although some promising ones
have been produced at laboratory scale [195]. For example, Park et al. (Year) successfully produced a
bio-polycarbonate that is reportedly superior to the conventional polycarbonate in terms of transparency,
strength, and other physical properties, which were shortcomings of the biopolymers [193]. The tensile
strength of this new bio-polycarbonate is 93 MPa versus 55 to 75 MPa for the fossil-based polycarbonate
and 64 to 79 MPa for the existing bio-based variant currently on the market. Therefore, this material
can be used in all the afore mentioned applications where the petroleum-based polycarbonates are
being used as well, as in baby products and food packaging. Toxicity tests conducted in mice showed
that the plastic did not pose a risk in mice [193]. Park et al. [193], however, do not address the end of
life disposal/treatment option for their generated polycarbonate. In addition, rate of biodegradation is
slow [195], and studies in that area are lacking. Increase in productivity of bio-polycarbonates will also
be crucial [195] to meeting the demand of millions of tonnes of fossil-based polycarbonates currently
being produced annually on a global scale.

A breakdown of potential feedstocks to produce bio-polycarbonates as reviewed by Cui et al. [195]
is given in Table 6.
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Table 6. Polycarbonates (PCs) feedstocks, information acquired from [195].

Polycarbonates (PCs)

Feedstock Year Authors

Glycerol 1994
2008

[201]
[202]

Plant oils
1999
2012
2015

[203]
[204]
[205]

Lignocellulosic biomass, corn, sugar cane

2006
2013
2015
2017

[206]
[207]
[208]
[209]

Oats, sugar cane, bagasse 2009
2015

[210]
[211]

Castor oil plant 2010 [212]

Citrus oils, oak and pine tree
2015
2016
2017

[213]
[214]
[215]

Crude glycerol, plant oils, food wastes 2017 [216]

6. Extended Producer Responsibility (EPR)

Extended producer responsibility (EPR) is a policy initiative where the producer is
given responsibility for their products from cradle to grave, thus shifting the burden from
municipalities [217,218]. In other words, the producer is accountable for financially and/or physically
treating, recycling, or disposing of products at the end of their life [217]. Therefore, EPR seeks to ensure
that products are produced and managed in a sustainable manner, consequently reducing their impact
on the environment. This encourages producers to design their products with end of life management
methods in mind [218], for example by manufacturing durable, recyclable, or reusable products [219].
EPR may either be on a voluntary basis or mandatory [217].

It is estimated that 2 billion people worldwide (one in four people globally) lack waste collection
services and as a result resort to illegal dumping on either roads, vacant land, or drains, while for
another 1 billion people, waste is collected but disposed unsafely due to the absence of disposal
systems/facilities. This constitutes 93% of waste for low income countries and only 2% of waste for
high income countries that is indiscriminately dumped or buried [13]. In 2016, 61% of the total waste
that leaked into the oceans was attributed to uncollected waste while the balance of 39% came from
mismanaged waste after collection. This share of uncollected waste is set to increase to 70% in 2040 in
a business as usual scenario [220]. Scenes such as those depicted in Figures 31–35 show the reality
of what is currently transpiring in low income countries and this will remain all too prevalent in the
absence of rubbish collection or its safe disposal.
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However, an EPR policy could help to curb plastic waste pollution and its associated impacts,
especially in low income countries, through companies providing the required investment for waste
management [9,24]. The impacts of dengue fever (caused by mosquitoes) in an area reportedly decrease
by 95% when there is adequate water and/or waste management [13].

Although the Organization for Economic Co-operation and Development (OECD) [217] reports
the difficulties encountered in trying to determine the benefits of an EPR scheme, for example due
to lack of data as well as the presence of many EPR schemes in different industries, which makes
comparisons difficult to make, several countries that have implemented EPR schemes have attested
to their success. In Australia, the National Television and Computer Recycling Scheme, in which
companies that manufacture these products (e-waste) fund the collection and recycling services of end
of life televisions and computers, has resulted in a reduction in amount of e-waste sent to landfills
through increased recycling as well as a recovery of valuables that would have otherwise been disposed
of. Recycling opportunities have also increased, covering all regions of Australia including rural
areas [221].

In Japan, the Packaging Recycling Act, which targets plastic and paper packaging, aluminum tins,
glass bottles, and PET containers, has resulted in a decrease in the amount of waste packaging that
is disposed in landfills. This is a positive outcome for Japan, where land to construct new landfills
is scarce. In addition, this has also incentivized producers to develop a number of mechanical and
chemical recycling technologies for waste packaging [222].

In France, which had 14 EPR schemes as of 2014, over 3000 jobs and 30 plants were created through
the Waste Electrical and Electronic Equipment (WEEE) recycling scheme. Furthermore, EPR has
capacitated recycling startups as well as making such activities sustainable financially by injecting
a steady flow of money until the business can sustain itself. EPR schemes in the country have also
removed financial burden from the municipalities as well as the public (taxpayers) [223].

In South Africa, the launching of the PET Recycling Company (PETCO) in 2004 to act as an
industry led producer responsibility organization (PRO) or voluntary EPR initiative, which manages
the collection and recycling of polyethylene terephthalate (PET), boosted the rates of PET recycling in
the country significantly, Figure 36. The organization also funds recyclers when there is a need, such as
depressed market prices of PET recyclables [224,225]. Bottle manufacturers pay a non-mandatory
recycling fee, while subsidies are paid by brand owners, retailers, and producers of PET resin [224].

Sustainability 2020, 12, x FOR PEER REVIEW 28 of 59 

However, an EPR policy could help to curb plastic waste pollution and its associated impacts, 

especially in low income countries, through companies providing the required investment for waste 

management [9,24]. The impacts of dengue fever (caused by mosquitoes) in an area reportedly 

decrease by 95% when there is adequate water and/or waste management [13]. 

Although the Organization for Economic Co-operation and Development (OECD) [217] reports 

the difficulties encountered in trying to determine the benefits of an EPR scheme, for example due to 

lack of data as well as the presence of many EPR schemes in different industries, which makes 

comparisons difficult to make, several countries that have implemented EPR schemes have attested 

to their success. In Australia, the National Television and Computer Recycling Scheme, in which 

companies that manufacture these products (e-waste) fund the collection and recycling services of 

end of life televisions and computers, has resulted in a reduction in amount of e-waste sent to landfills 

through increased recycling as well as a recovery of valuables that would have otherwise been 

disposed of. Recycling opportunities have also increased, covering all regions of Australia including 

rural areas [221]. 

In Japan, the Packaging Recycling Act, which targets plastic and paper packaging, aluminum 

tins, glass bottles, and PET containers, has resulted in a decrease in the amount of waste packaging 

that is disposed in landfills. This is a positive outcome for Japan, where land to construct new landfills 

is scarce. In addition, this has also incentivized producers to develop a number of mechanical and 

chemical recycling technologies for waste packaging [222]. 

In France, which had 14 EPR schemes as of 2014, over 3000 jobs and 30 plants were created 

through the Waste Electrical and Electronic Equipment (WEEE) recycling scheme. Furthermore, EPR 

has capacitated recycling startups as well as making such activities sustainable financially by 

injecting a steady flow of money until the business can sustain itself. EPR schemes in the country 

have also removed financial burden from the municipalities as well as the public (taxpayers) [223]. 

In South Africa, the launching of the PET Recycling Company (PETCO) in 2004 to act as an 

industry led producer responsibility organization (PRO) or voluntary EPR initiative, which manages 

the collection and recycling of polyethylene terephthalate (PET), boosted the rates of PET recycling 

in the country significantly, Figure 36. The organization also funds recyclers when there is a need, 

such as depressed market prices of PET recyclables [224,225]. Bottle manufacturers pay a non-

mandatory recycling fee, while subsidies are paid by brand owners, retailers, and producers of PET 

resin [224]. 

 

Figure 36. PET Recycled between 2005 and 2018. Data sourced from [224]. 

Deposit Refund Scheme 

Figure 36. PET Recycled between 2005 and 2018. Data sourced from [224].



Sustainability 2020, 12, 8360 28 of 57

Deposit Refund Scheme

A number of tools can be used in the implementation of an EPR scheme, and these include deposit
refund schemes, instituting advance disposal fees on products (paid by the consumer), as well as
product take-back programs, or a mix of these [217]. This paper will briefly discuss the DRS, which has
been around for over 40 years, is practiced in over 38 countries globally, and has an estimated 350 million
people using this scheme [226]. In the DRS, a deposit is paid upfront during the purchase of a product,
and once the container is returned by the buyer, a refund is given. DRS has the following advantages
as observed in countries where it is practiced: it increases the capture rate of the targeted plastic
material (Figure 37), especially when recycling rates have stalled, thereby also promoting conservation
of resources through reducing the volume of virgin plastics required, minimizing contamination of the
target stream of plastic, and reducing littering, probably by altering littering behavior, as the public
recognizes the value in plastic waste that they would have otherwise thrown away [226].
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Figure 37. Comparison of recycling rates between countries with a DRS and the United Kingdom,
which does not have a DRS system for PET in 2016 [226] (based on data from CM Consulting).

Priestland et al. [227] cite Infinitum, which also attests to the effectiveness of DRS in Norway,
which started in 1999 for beverage bottles and cans, where the public returns the empties and is paid
through reverse vending machines. This has reportedly reduced GHG emissions by 185,000 tonnes
through reduction in virgin plastics production. In Germany, return and recycling rates for PET bottles
are at 98.5%, compared to 43–54% from household recycling systems [227]. In Ecuador, recycling rates
increased from 30% in 2011 to 80% in 2012, while in South Australia and New Territories states
(Australia), beverage bottles constitute 2.9% (three-fold reduction) and 2.8% of litter, respectively [226].
A cost benefit analysis conducted in Israel in 2010, 9 years after DRS’ introduction, showed that the
total benefits of DRS outweighed the total costs incurred by approximately 35%, with greater margins
expected for larger bottles [228]. On the other hand, in UK, where DRS is not practiced, 700,000 plastic
bottles are littered on a daily basis, while of the 13 billion plastic bottles used in the country annually,
only 57% (7.5 billion), Figure 37 are recycled. From the balance of 5.5 billion plastic bottles, 2.5 billion
plastic bottles are landfilled and 3 million incinerated [229].

Therefore, as this scheme could lower the risk of plastic leakage into the environment, such a model
could work in countries where waste collection services are limited [228]. Furthermore, although SA
has voluntary EPR in the PET sector, and managed to recycle 61.4% of PET bottles in the year 2019, if the
DRS system could also be implemented, this should improve their recycling rates further, potentially
to 80% or higher as observed in countries implementing the system. Consequently, scenes such as
those depicted in Figure 38 taken in a suburb in South Africa may not be a common sight. The littering
of macroplastics such as plastic containers has been reported to encourage further littering of smaller
items as it normalizes such a behavior [229].
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Figure 38. (a–c): Typical sightings of Littered beverage bottles in Johannesburg, South Africa
(credit: Mazhandu).

Coca-Cola South Africa has recently rolled out a deposit refund scheme for its 2 L PET bottles
in the Eastern Cape, Northern Gauteng, Limpopo, and Mpumalanga Provinces. In this scheme,
the consumers will pay about US$0.52 (R9) extra to the price of the beverage, then upon returning the
container to participating retailers, the same amount is deducted from their next purchase [230,231].
The costs associated with bottle manufacture, collection, washing, and refilling are included in the
purchase price of the beverage. This program is expected to be rolled out to the rest of the country in
five years [231], and its effectiveness will be exposed as time progresses.

Despite the aforementioned benefits of implementing EPR and DPR schemes, the authors are
cognizant of the fact that implementation of EPR and its associated tool of DRS are not without
challenges and would require an in-depth study [232], but lessons can certainly be learned from
countries that have had outstanding achievements in this regard.

7. Summary of Mismanaged Plastic Waste Impacts

Mismanaged plastic waste is detrimental, not only to flora and fauna, but to humans too. In the
marine environment, plastic debris can result in entanglement, which can immobilize an animal and
eventually result in its death by starvation or predators, smothering of both marine animals and plants,
as well as plastic ingestion, which may also result in death. Harmful additives that are sometimes
added to plastics, as well as the toxins absorbed by plastics from water, can either accumulate in or be
lethal to marine animals. Destruction of habitats is also possible, as well as transportation of species to
areas where they will not survive, see Figure 39.
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On land, animals such as cattle, donkeys, sheep, and goats face a similar danger of plastic ingestion,
which blocks the gastrointestinal tract leading to death. Chemicals from plastic may also leach out and
affect the meat and milk from cattle and possibly goats [25], see Figure 40.Sustainability 2020, 12, x FOR PEER REVIEW 31 of 59 
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Figure 40. Plastic on land (generated by the authors).

Humans are exposed to plastic through consumption of animals and salt as well as water, Figure 41.
Breathing in microplastics has also been discussed by various researchers as another pathway to human
exposure [233]. However, the health impacts on humans upon consumption of such chemicals from
plastic and microplastics are not yet understood.
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Figure 41. Some sources of microplastics in humans (credit: unsplash.com). (a) Expossure to
microplastics from drinking water; (b) Exposure to microplastics from salt; (c) Exposure to microplastics
from seafood.

In addition, the likelihood of water-borne diseases is increased, as the plastic waste becomes a
breeding ground for pathogens, flooding from blocked drainage systems, and respiratory diseases
from indiscriminate burning of this waste. Revenue losses are also incurred through failure to recycle
post-consumer plastic, reduced tourism, and fishing, as well as de-littering campaigns.

8. Discussion and Conclusions

The statistics on the management of post-consumer plastics are quite concerning, with a meagre
9% of the 8.3 billion tonnes of plastics ever produced having been recycled by 2015. Plastic waste
leakage is a symptom of the failure to draw out value from post-consumer plastics in the form of the
material itself or energy recovery, see Figure 42 [54].

In addition, the rate of manufacturing of these plastics is not on par with the rate of capture of
plastic wastes through various means, and this leads to overflows [54]. This further demonstrates
that although significant investments are being made in plastic production, less money is spent in
managing plastic waste, see Figure 43.
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Figure 43. Comparisons between manufacturing and capture rate and investments made (generated by
the authors).

The side effects of poor plastic waste mismanagement have mostly been felt in low- and
middle-income countries, where infrastructure is limited, and therefore priority should be given to
assist these countries [13]. Currently, in low income countries, only 20% is allocated towards the
municipalities’ budget, which results in their failure to provide comprehensive waste collection services
or a safe waste disposal infrastructure. In addition, for countries at war, fighting for survival becomes
top priority and not plastic waste management, which poses a huge challenge. This, coupled with the
absence of trash capture technologies in storm water systems and water/wastewater treatment, littering,
and wind transport of lightweight plastic products, among other pathways, aggravates the problem.
However, channeling sufficient resources towards waste management is less costly than mitigating
plastic waste pollution health and environmental impacts [234]. Furthermore, a fully functioning waste
management infrastructure can significantly contribute to the uplifting of such economies through job
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creation for their citizens. A good example of this is the Solid Waste Collection and Handling (SWACH)
cooperative in Pune, India, which was formed by waste pickers. This cooperative signed an agreement
with the municipality to carry out door to door collections of waste and recyclables, and to date has
provided jobs to over 3000 people. Further, the program has led to a saving of around US$7.9 million
per annum by the municipality [13].

If plastic pollution is not curtailed, then severe socio-economic and environmental impacts will
result, as summarized in Figure 44.
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8.2. Potential Mitigation Measures and Challenges Expected

Plastic waste management is a complex problem that requires, a confluence of methods/techniques
to address it, and some of these measures and associated challenges are discussed below.

8.2.1. Mechanical Recycling

In mechanical recycling, post-consumer plastics are recovered and processed to produce feedstock
for various plastic products. This feedstock can also be blended with virgin plastic resin material to
make products with a certain percentage of recycled content. Therefore, increasing the quantity of
post-consumer plastic that is recycled, beyond the current 9% level, will go a long way in reducing
the amount of plastic that is lost to the environment. However, mechanical recycling has its inherent
limitations. For example, mechanical recycling does not represent the finality of plastic waste, as plastic
cannot be recycled infinitely [6]. Most plastics can only be recycled once or twice before they are
either landfilled, incinerated, or downcycled (made into lower value products). The repetitive nature
of thermal treatment in the recycling process degrades the polymer structure over time [235]. It is
estimated that, globally, a mere 10% of plastic has been recycled more than once, beyond which
it is either incinerated, landfilled, or ends up in the environment [6]. In addition, there is also a
misconception that mechanical recycling reduces the generation of more plastic waste; however,
this can only be true if it reduces the production of new plastics, which is not always the case.
For example, in the food packaging industry, virgin products instead of recycled products are used to
ensure food safety [76].

Moreover, this type of recycling is hampered significantly by contamination. Contamination could
be due to organics such as food waste or from other plastic wastes and is propagated by ineffective
separation of waste at source or the lack thereof, as well as unwashed post-consumer plastics [235].
Sometimes there are inadequate markets for recycled material, and, as a result, not all material that
is collected will be accepted by the recycling centers. Therefore, demand and quality of recyclables
become limiting factors. Furthermore, there are some plastics that are unrecyclable due to design.
For example, in South Africa, multi-layered plastic packaging such as detergent bags, dog food
bags, and packets for wipes are not recycled and therefore make up a fraction of municipal solid
waste that is disposed of in landfills [236,237]. Multi-layered plastics are either made of different
plastic types or are bonded to a thin sheet of aluminum foil. Countries such as Belgium, Denmark,
Norway, and the United States of America are resorting to incineration for energy in addition to
mechanical recycling and landfilling [34,238]. This is in contrast to developing countries like South
Africa, where incineration of plastic waste for energy is not practiced [239]. In its National Waste
Management Strategy, South Africa emphasizes that mechanical recycling is the preferred method
of dealing with post-consumer plastic. However, as energy recovery supersedes landfilling in the
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country’s waste hierarchy, discussions between the government and various stakeholders on its
possible implementation are currently underway [240].

8.2.2. Reclamation of Plastic Waste from Land and Marine Environments

Waste plastics on land could be reclaimed from illegal dumps or landfills when it is deemed
safe, as is common practice in South Africa [241], as well as conducting de-littering campaigns.
Drainage channels and canals may also harbor significant plastic waste, and therefore these can also
be targeted. Evidence of this is the flooding incident in Surulere, Nigeria, which occurred in June
2020 and washed out piles of plastic waste from drainage channels, leaving the suburb submerged in
plastic waste [242]. Cleaning of drainage systems will in turn prevent flooding episodes, which are
rampant in low income countries. Further, if there is no mismanaged plastic waste, this not only
mitigates socio-economic impacts but also reduces the burning associated with respiratory diseases
or cancers and incidences of stagnant water such that diseases causing pathogens will not have a
breeding ground.

On the other hand, the removal of plastic waste from the oceans presents its own challenges,
and attempts to do so have also not been without controversy. The Ocean Clean Up is an
organization [243] aiming to clean the Great Pacific Garbage patch using a floating boom [7,243].
After conducting several trials from 2018, the organization is preparing to launch the final ocean
clean-up system in 2021 [243]. However, reservations that this system may be harmful to marine
ecosystems have also been raised, due to the possibility of the boom entangling or trapping marine
species, as well as the likelihood of invasive species being transported with the captured plastic [244].
The Ocean Clean Up has also designed and is currently piloting an equipment known as Interceptors
which targets the removal of plastic waste in rivers before it reaches the oceans. Conducting beach
clean ups to remove plastic waste that has washed ashore can also help to rid the oceans of some
plastic. It is urgent that similar investments as those made in the production of plastic are also made
toward post-consumer initiatives such as these. This could possibly lower the impact of traditional
plastics on the environment as summarized in Figure 47. The reclamation of plastic wastes from the
environment and subsequent processing will require producers to also contribute financially towards
these initiatives.
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However, it should also be noted that, even if the problems associated with generation of
microplastics from plastics were to be solved, there remain other contributors such as tires, dust,
road markings, and marine coatings [16].

8.2.3. Banning of Problematic Plastics

Banning of difficult to recycle single use plastics such as mulches, plastic bags, and multilayered
plastics, as well as those plastics used in areas where the likelihood of contamination with organic
waste is high, has been touted as an option to consider [245]. Several countries are instituting or have
bans on plastic bags and other single use items. In Oceania, Australia has a target to ban SUPs by
2025 as outlined in its National Waste Policy Action Plan of 2019 [246], while Papua New Guinea
has a ban on non-biodegradable plastic bags [12]. In North America, Canada is also set to follow suit
in banning some single use plastics in 2021 [247], while some states in USA, such as California and
Maine, have bans on plastic bags and Styrofoam containers, respectively [248]. Styrofoam contains
styrene and benzene, which may leach into food and drinks. These chemicals are known carcinogens,
and can also damage reproductive organs, the nervous system, and lungs [12]. In Asia, Bangladesh
has introduced a ban on plastic bags. At the local level, some states in India and Indonesia have also
introduced plastic bag bans [12].

Karnataka (2016) and New Delhi (2017) in India have gone a step further by also banning plastic
cutlery [249,250]. Africa, the world’s second most populous continent [251], stands out as the continent
that has introduced the most plastic bag bans, by 25 countries in 2018. These countries include Benin,
Burkina Faso, Cameroon, Kenya, Rwanda, and South Africa, among others [12]. South Africa banned
plastic bags of sizes less than 30 µm, and the country is also aiming to replace all SUPs by 2025 through
the South African Plastic Pact initiative. Countries like Zimbabwe have also banned Styrofoam.
In Europe, a ban has been proposed on some of the top 10 single use plastics found on its beaches by
2021 in a bid to reduce littering and consequently marine litter from its region. It is estimated that the
region will save US$27.45 billion through environment protection and prevent 3.4 million tonnes of
carbon dioxide (CO2) equivalent emissions by 2030. The plastics to be banned include earbud and
balloon sticks, disposable cutlery, plates, straws, and stirrers. The initiative is also expected to create
jobs through the production of alternative materials [252].

However, bans are only as good as their enforcement. For example, despite the plastic bag ban in
Bangladesh, single use plastic bags are still being used and mismanaged due to lack of enforcement
by responsible authorities [12]. In other instances, cheap imports may still find their way into the
country illegally, and when consumers are not given alternative options to use or when these options
are unaffordable, this may compound the problem [12].

8.2.4. Feasibility of Replacing Fossil-Based Plastics with Alternatives

As various reviewed LCA studies have shown, there is no hard and fast rule that can be applied
to the decision of whether to replace conventional plastics or not. Each material, fossil-based plastic,
biodegradable plastic, metal, glass, or wood, has its own environmental impacts [76], and the outcome
depends on which factors a study weights the most. What is also clear from these studies is that
the more times that an item is reused, the less its environmental impact, regardless of its material
of manufacture [59–62]. This view is also supported by Herberz et al. [253], who highlight that
all single use products are unsustainable, because they cannot be used for long periods of time
and are discarded after a few minutes upon use. However, it is also not always a guarantee that
consumers will reuse their plastic items in a sustainable manner. McLellan [254], highlighted that
many people in South Africa were not reusing their plastic bags but instead were using them as bin
liners, a practice that takes away the benefit of producing thicker plastic bags, since they end up being
landfilled after a single use [254], the reason being, recyclers in the country are not keen on accepting
contaminated bags. Therefore, the production of thicker bags and increased price did not result in
behavioral change by consumers [254]. However, in Denmark, where incineration is used in waste
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management, the secondary use of carrier bags as bin bags reportedly lessens the environmental
impact of the bag, an indication that available end of life options for single use post-consumer plastic
items also have an influence when determining the best performing material. Given the above,
in countries where incineration is not part of solid waste management, as is the case in South Africa,
using non-biodegradable plastic bags as bin bags may not be beneficial.

Overall, since all alternative materials including plastic are currently using non-renewable
energy sources at some point in their life cycle [162] either during raw material acquisition,
product manufacturing, or post-consumer use management, efforts should also be channeled into
improving energy efficiencies and lowering the environmental impacts of products.

8.3. Bio-Based Biodegradable Plastics Analysis

The ability to use biomass together with carbon dioxide [255] in the manufacture of biodegradable
plastics points to the sustainability of this industry. This preserves the limited fossil fuel reserves,
which can then be used in applications where their actual value or fundamental properties are
utilized rather than being thrown away after one-off use [256], as is the case with small sized food
packaging such as chewing gum wrappers and condiment packets that can easily leak through the
waste management chain if there is no dedicated collection [54]. The same also applies to earbuds and
candy sticks, bread and milk carton seals, straws, and beverage lids. Biodegradable plastics may also
reduce the amount of waste to landfill, as they can be composted, which is beneficial, especially in
areas where land availability is limited [86]. Some biodegradable plastics such as polylactide play
an important role in the biomedical field due to their biocompatibility and biodegradable nature.
Biodegradable plastics used in mulching have also been reported to reduce labor costs compared to
polyethylene (PE) mulches, as they do not need to be removed after the cropping season and can be
ploughed back into the soil. PE mulches also have to be made thicker than is necessary, in order to
enable ease of removal after use [76]; this potentially increases their environmental impact if they cannot
be reused. Oever et al. [76] also cite Roma [257], who reported in 2016 that if engineering plastics such
as acrylonitrile butadiene styrene (ABS) were replaced by bio-based polycarbonate in a Renault Clio’s
dashboard part, this would result in a saving of US$0.47 per part. However, these savings may not
always hold true, as they are detected by crude oil prices [76]. A summary of the potential benefits of
bio-based biodegradable plastics is shown in Figure 48.
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Despite the aforementioned potential benefits of biodegradable plastics, a lot of groundwork
is required for the benefits of biodegradable plastics to be realized. First, there is a need for proper
infrastructure for their sorting, collection, recycling, and composting [258]. The high cost of setting up
end of life options for the biodegradable plastics is also reportedly restricting the growth in demand for
biodegradable plastics [73]. This infrastructure is critical in order to avoid comingling with fossil-based
plastics, which may lead to contamination of existing recycling streams where differentiating between
the plastics during sorting is not easy [39]. However, another school of thought mentions that recyclates
in general are not 100% pure and contain 10% to 15% of other plastics notwithstanding the sorting
method (manual or automated); therefore, contamination with small quantities of biodegradable
plastics such as PLA should not hinder the mechanical recycling process [76]. Oever et al. [76] studied
the effect of adding 10% PLA in a recyclate blend and found that there were no negative changes to
the properties of the recyclate. The impact strength of the blend increased instead. The authors [76]
also argue that currently, the amount of PLA on the market is not high enough to result in significant
contamination. PLA was also found not to be detrimental to the quality of recycled PET unlike poly
vinyl chloride (PVC) [76]. It would also be important to investigate the effects of contamination beyond
10%, as well for other biodegradable plastics, which could be a possibility as the demand for these
plastics increases. In addition, without proper collection and end of life options, these plastics may end
up in landfills, polluting or persisting in the environment where they end up generating microplastics
or posing a risk to marine animals similarly to their traditional counterparts [60,259].

There are also concerns that, similarly to the fossil-based plastics, biodegradable plastics may also
contain additives such as stabilizers, antioxidants, and antimicrobial agents meant to enhance their
physical properties and make them versatile enough to be used in varied applications. For example,
additives can reduce the brittleness of PLA by increasing the elongation at break of PLA to above
10%, while plasticizers also improve its permeability and thermal stability. However, this reportedly
may hinder their biodegradability when compared to the pure polymer, and consequently leads to the
generation of microplastics as the plastics degrade through other means such as photodegradation.
Moreover, these additives, which can be toxic, may leach into the soil and water [260].

There are also concerns that the introduction of biodegradable plastic products may worsen
littering behavior if the public are of the view that these plastics have less or no environmental impact
than the conventional plastic and in turn neglect to act responsibly for the benefit of the environment
and the society around them [84]. Furthermore, the release of greenhouse gases during decomposition
of these plastics adds on to the negative environmental impacts [87].

Other drawbacks associated with biodegradable plastics are their high cost of manufacture and less
superior properties [84] in some instances when compared to the conventional plastics, and this has also
limited their use in high temperature applications and areas where gas barrier or mechanical strength
is required [261]. Inferior gas barrier can result in changes in taste and quality of food, including a
short shelf life for the packaged products [261]. A summary of limitations of bio-based biodegradable
plastics is shown in Figure 49. Studies are underway to investigate potential biodegradable polymer
blends that have improved properties. In order to narrow the scope of the review, these have not been
reviewed in this paper.

What Will Drive Growth in the Industry?

Aside from the availability of infrastructure, the continued growth of the biodegradable plastics
market will depend on the economic sustainability of the manufacturing process, which can improve
with an increase in demand [76], availability of raw materials [258] that do not compromise food
security in contradiction to the United Nations’ Sustainable Development Goal 2 of “Zero Hunger”
or require large tracts of land to meet demand, and crude oil prices [258], because when they are
low, manufacturing costs for fossil-based plastics will be competitive over biodegradable plastics
manufacture. Competition with food is not expected, because only 5% of the harvested biomass will
be consumed at the peak of bioplastics production. Using bio-wastes and inedible plant matter will
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also reduce this percentage [76]. With regards to land usage, in 2017, bioplastics accounted for 0.016%
of the agricultural area available globally, and this is expected to grow slightly to 0.021% in 2022 [262].
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We have also seen that in some countries, waste management services for conventional plastics,
which is the bare minimum required, are already lacking. Therefore, any benefits attributable to
biodegradable plastics will not be realized if they are introduced prematurely. Capacitating waste
management systems in low-and middle-income countries will promote growth in the biodegradable
plastics industry. This can be achieved through implementing mandatory Extended Producer
Responsibility schemes to ensure that companies also contribute towards the management of their
products post-consumer use [13].

8.4. Socio-Economic and Environmental Benefits of Fossil-Based Plastics and Effects of Their Ban

There is also no doubt that conventional plastics have brought about significant socio-economic
benefits by creating employment for millions of people worldwide. In the transportation sector,
due to the lightweight nature of fossil-based plastics, the carbon footprint of these products during
transportation is low compared to alternative bulkier materials such as glass, as fewer cars are required
to transport them [263]. Furthermore, these plastics have resulted in the growth of the clean energy
sector where wind turbines and solar panels are utilized. In the health sector, fossil- based plastics have
proved vital in saving countless lives through their use in the manufacture of drug delivery devices
such as syringes or drips, artificial organs, and mosquito nets [54]. In light of this, it is clear that and
abrupt ban of some traditional plastics, albeit seemingly rational, could result in previously unforeseen
negative outcomes [264].

First, job losses in the plastics industry may occur [265]. Ross et al. [60] found that single use
plastic bags resulted in more jobs compared to reusable variants, which require fewer bags to be
manufactured. Other potential consequences include higher environmental impacts of alternative
materials such as paper or cotton unless they are reused many times [60,62,63], cross contamination of
food with bacteria such as Escherichia coli and other pathogens in the case of replacing single use plastic
bags with reusable bags [266], and increased food waste [267], which is currently at 30% for cereals,
40–50% for root crops, fruits, and vegetables, 20% for oilseeds, 30% for meat and dairy, and 30% for
fish [268].
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Reductions in sales have been observed in areas where bans are effected, especially in the case of
plastic bags, with shoppers opting to buy in other regions [264] or limiting their purchases to whatever
can be accommodated by reusable bags [265]. In addition, some plastics may be cheaper to manufacture
compared to alternatives such as aluminum or paper, and this not only increases the production costs
incurred by businesses, but also makes the product more expensive for consumers [264].

It is therefore critical that such information is communicated to policy makers when they draft or
make changes to existing conventions, commitments, and declarations [269–288], which are outlined
in greater detail in Table 7.

Table 7. Global Frameworks, Declarations and Conventions Signed to Date to Protect the
Marine Environment.

Framework/Declaration/Commitment Date
Signed/Launched

No. of
Signatories/Parties Targets/Goal Additional Comments

London Convention on the Prevention
of Marine Pollution by Dumping of

Wastes and Other Matter [48]
1972

As of March 2018,
there are 87

Contracting Parties
to the London

Convention

To control sea
pollution through
marine dumping

The United States of
America is a

contracting party

OSLO Dumping Convention [47] 1972 13 signatories

Convention for the
Prevention of

Marine Pollution
by Dumping from
Ships and Aircraft

control dumping of
harmful substances from
ships and aircraft into the

sea, including plastic

International Convention for the
Prevention of Marine Pollution from
Ships, 1973 (MARPOL 73/78) and its

revised Annex V [49,269]

1973
174 Member States

and 3 Associate
Members.

prevention of
pollution of the

marine
environment by

ships from
operational or

accidental causes.

complete ban imposed on
the disposal into the sea of

all forms of plastics.

Paris Convention [50,269] 1974 13 countries

for the prevention
of marine pollution

from land-based
sources

Replaced by OSPAR
Convention of 1992

Barcelona Convention (The Convention
for the Protection of the Mediterranean

Sea against Pollution) [51,269]

Initially adopted in
1976 and amended

in 1995.

22 countries as
signatories (a)

To reduce or
eliminate marine

pollution from sea
and land-based

sources.

Legally Binding Regional
Plan on Marine Litter

Management.
After amendment in 1995,

it became known as
“Convention for the

Protection of the Marine
Environment and the
Coastal Region of the

Mediterranean”

Convention on Migratory Species of
Wild Animals (Bonn Convention) [270] 1979 129 member states

preservation of
wildlife and

habitats

Marine animals such as
turtles & cetaceans

are included.

The Convention for Cooperation in the
Protection, Management and

Development of the Marine and Coastal
Environment of the Atlantic Coast of

the West, Central and Southern Africa
Region (Abidjan Convention)

1981 [271] 22 signatories

To protect the
marine area from

Mauritania to
South Africa which

(14,000 km).

Provides an inclusive legal
framework for all

programmes in West,
Central and

Southern Africa

United Nations Convention on the Law
of the Sea [269,272] 1982 168 parties&

European Union

Prevention and
control of marine

pollution

It is an international
agreement birthed during
the third United Nations
Conference on the Law of

the Sea (UNCLOS III)

Cartagena Convention for the
Protection and Development of the
Marine Environment of the Wider

Caribbean Region [273]

1983 26 parties out of 28
countries

Prevent, reduce
and control marine

pollution from
various activities.

It is legally binding.

Nairobi Convention [274] 1985 10 contracting
parties

To protect the
Western Indian
Ocean Region

It is a regional legal
framework
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Table 7. Cont.

Framework/Declaration/Commitment Date
Signed/Launched

No. of
Signatories/Parties Targets/Goal Additional Comments

The Convention for the Protection of
Natural Resources and Environment of

the South Pacific Region (Noumea
Convention/SPREP Convention) [275]

1986 12 Pacific Island
Countries

umbrella
agreement for the
protection, of the

marine and coastal
environment of the

South Pacific
Region.

Regional legal framework
of the Action Plan for
managing the Natural

Resources and
Environment of the South
Pacific adopted in 1982.

Basel Convention on the Control of
Transboundary Movements of
Hazardous Wastes and their

Disposal [42,269]

1992

187 members, 53
signatories. Haiti

and America
signed but yet

to ratify.

Minimise
movement of

hazardous waste
between countries,

especially from
developed

countries to less
developed ones.

Amended in 2019 in to
include contaminated

plastic waste.

Bucharest Convention [269,276] 1992

6 countries
(Bulgaria, Georgia,
Romania, Russia,
Turkey, Ukraine)

Convention on the
Protection of the

Black Sea Against
Pollution

To control land-based
pollution sources, waste
dumping and working

jointly, and to
clean accidents.

OSPAR Convention [269,277] 1992 15 signatories plus
the EU

The Convention for
the Protection of

the Marine
Environment of the
North-East Atlantic

Combined the Oslo and
Paris Conventions (1972 &

1974 respectively).

Helsinki Convention [269,278,279] 1992 10 contracting
parties

To prevent and
eradicate marine
pollution in the
Baltic Sea area

Also known as the
Convention on the

Protection of the Marine
Environment of the Baltic

Sea Area

Regional action plan on marine litter
management (RAPMALI) for the wider

Caribbean region [280]
2008

Management of
litter in the

Caribbean region
A regional framework.

Honolulu Strategy [269,281,282] 2011

Endorsed by 64
governments and

the European
Commission

It is a framework
for a

comprehensive and
global effort to
prevent, reduce

and control
marine litter.

Has three goals and
associated strategies

Manilla Declaration [283] 2012
65 Governments

and the European
Commission

Protection of the
Marine

Environment from
Land-based
Activities

Global Programme
of Action

Rio +20 Declaration [20,269,284] 2012

over 375
participants from
169 organizations
and 46 countries

Significant
reduction of
marine litter

Also referred to as Rio
Ocean Declaration

United Nations Environment Assembly
Resolution 1/6 (UNEA I) [285] 2014

Marine plastic
debris and

microplastics

Followed by another
resolution 2/11 (UNEA II)

in 2016 also addressing
similar issues.

G7 Action Plan to Combat Marine
Litter [286] 2015 7 countries

Combating marine
litter, specifically

plastic.

This was followed by
another Action Plan in
2017 by G20 countries.

CONVENTION ON BIOLOGICAL
DIVERSITY (CBD) XIII/10 [269,287] 2016 196 states

Addressing
impacts of

marine debris.

anthropogenic underwater
noise on marine and

coastal biodiversity is
also assessed

G7 Ise-Shima Leaders’ Declaration [269] 2016 7 countries

prevention and
reduction of
marine litter,

specifically plastic,
from land-based

sources.

Advocating for efforts on
resource efficiency and the

3Rs (Reduce, Reuse,
Recycle)
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Table 7. Cont.

Framework/Declaration/Commitment Date
Signed/Launched

No. of
Signatories/Parties Targets/Goal Additional Comments

G20 Action Plan on Marine Litter [269] 2017 19 countries and the
European Union.

To significantly
reduce and prevent

marine litter by
2025 in support of

the United Nations’
SDG 14 target.

It is voluntary, not legally
binding, countries do not

feel compelled to act.

Global Network of the Committed
(GNC) [269] 2017 19 countries and the

European Union.

A platform to assist
in the

implementation of
the G20 Action

Plan. Its goal is to
address marine

litter

Voluntary. Its linked to the
UNEP´s Global

Partnership on Marine
Litter (GPML)

Osaka Blue Ocean Vision G20 [288] 2019 19 countries and the
European Union.

To reduce
additional

pollution by
marine plastic litter

to zero by 2050
through a

comprehensive
life-cycle approach

Builds on to the 2017
Action Plan. Remains

voluntary. The importance
of plastic is also
acknowledged.

8.5. Key Lessons for South Africa’s Bioplastics Manufacturing Project

This review article has shown that there is a wide choice of potential renewable feedstocks
that can be used. Local shops such as Pick n Pay have introduced carrier bags made of maize and
potato starch that biodegrade within three to six months under home composting conditions [289].
However, in South Africa, composting industries and waste management services for post-consumer
biodegradable plastics are limited; as a result, such plastics are not attractive for waste pickers.
This results in biodegradable plastics either being disposed of in landfills as part of MSW or being
mismanaged [290]. For this project to be successful, the following is recommended:

• Setting up of adequate infrastructure for these plastics to avoid leakages is critical.
• Labels or pictograms indicating home or industrial composting suitability should be put on

products in order to avoid consumer confusion [76].
• Provision for compost bins or gardens to facilitate home composting as well as areas of application

for the generated compost [291].
• Both the consumers and composters should be educated about these materials and how to prevent

contamination of the compost by non-biodegradable material.
• Trials should also be done on all products before introduction onto the market to ensure that they

do not only partially decompose under the stated conditions [76].
• Biodegradable plastic blends should also be evaluated.

This review article has looked at the global plastic landscape to date and the state of the art
of some bio-based biodegradable plastics that have been studied with the aim of gaining a broader
understanding of the subject matter and proposing solutions, identifying areas for further research,
as well as contributing toward South Africa’s nascent bioplastics manufacturing project. The world is
facing a plastic waste problem, with low-and middle-income countries more hard-hit than high-income
countries. However, once plastic waste is in the marine environment, its origins may not matter,
as it is transported by ocean currents to other places, causing uncountable devastation along the
way. Therefore, the fight against plastic pollution requires a concerted effort between governments
from all countries and stakeholders such as plastic resin manufacturers, convertors, and product
manufacturing companies through funding provision in order to strengthen waste management
infrastructure and services in low- and middle-income countries where the bulk of mismanaged
plastic waste has been generated. Furthermore, the investments made in plastics production currently
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outweigh those in plastic waste management, and this has led to a reduced rate of capture of plastic
wastes. Increasing recycling rates, reclaiming plastic waste from the environment, implementing
bans, or replacing problematic plastics are some of the ways that are being used to lessen the negative
impacts of fossil-based plastics. However, each one has its own challenges, which need to be taken
into account before implementation. For example, replacing traditional plastics with alternatives
in the absence of country-specific cradle-to-grave life cycle assessments may result in unintended
consequences. With regards to biodegradable plastics, although they have shortcomings, they also
have advantages that can be explored so that they complement their fossil-based counterparts. Lastly,
EPR and DPR schemes can be implemented in plastic waste management as add-ons, as they have
been shown to be effective in reducing landfilling and littering, improving recycling rates, job creation,
and expansion of waste collection services.

9. Directions for Future Research

While previous studies have focused on a single or a few of the aspects that have been covered
within the scope of this paper, our study distinguishes itself in that it is an integrated review looking
at many crucial aspects in plastic waste management, thereby resulting in an encyclopedia that
other researchers can build on. Although the list of references used in our study is not exhaustive,
the following gaps have been identified:

• No data on bioplastics production and consumption patterns in Africa could be found during
the review. Without properly documented African statistical data, a clear picture cannot be
ascertained for the continent.

• Research on bio-based polycarbonates including end of life options and their properties when
compared to their traditional counterparts is still limited.

• More research on the negative impacts of reclaiming plastic waste from the marine environment
is also required.

• Research pertaining to presence of additives in biodegradable plastics is also lacking.
• More peer-reviewed research is required on the socio-economic and environmental impacts of

replacing fossil-based plastics as well as the effectiveness of plastic bans.
• Africa-based LCA studies on plastic waste incineration for energy are lacking.
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