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Abstract: Sonchus oleraceus is becoming a hard-to-control weed in Australian cropping systems,
especially in glyphosate-tolerant cotton and during summer fallows. Several biotypes of this
weed have developed resistance to glyphosate as a result of common management practices under
conservation agriculture systems in the country. A series of pot experiments were conducted to
evaluate the effect of temperature on glyphosate efficacy and performance of several post-emergence
and pre-emergence herbicides on a glyphosate-resistant (GR) and a glyphosate-susceptible (GS)
biotype of S. oleraceus. At low temperatures (19–24 ◦C), no plants of the GS biotype survived
glyphosate application at 570 g/ha; however, in the high-temperature regime (28–30 ◦C), 83% of
the plants survived this rate of glyphosate. Similarly, for the GR biotype, up to 58% of the plants
survived at 2280 g/ha of glyphosate when applied during the high-temperature regime and no plants
survived this rate during the low-temperature regime. A number of post-emergence herbicides were
found to be effective for S. oleraceus control. However, herbicide application delayed to the six-leaf
stage compared with the four-leaf stage reduced control, especially for bromoxynil and saflufenacil
herbicides. Glufosinate and paraquat were the most effective herbicides for S. oleraceus control,
resulting in no seedling survival for both biotypes. Isoxaflutole, pendimethalin or s-metolachlor
efficacy was not reduced by the presence of crop residue, suggesting that these herbicides could be
used to control S. oleraceus in conservation agriculture systems. The results of this study suggest that
growers will need to reduce over-reliance on glyphosate for weed control in summer fallows and use
alternative post-emergence herbicides.
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1. Introduction

Weeds are among the most important biological constraints to crop production in Australian
agricultural systems. They cost Australian grain growers more than AUD 3.3 billion/year in yield losses
and control measures. Sonchus oleraceus L. is a major weed of global importance and is threatening the
sustainability of conservation agriculture systems of Australia. The national ranking of S. oleraceus is
eighth in terms of acreage infested, with a revenue loss of AUD 5 million/annum [1].

In a recent study conducted in the state of Queensland, 43 to 52 plants/m2 caused a yield reduction
of 50% in wheat [2]. In the same study, this weed produced up to 193,000 seeds/m2. S. oleraceus seeds
are known to have little to no dormancy, enabling them to germinate immediately after dispersal [3].
More than two decades ago, it was mainly a winter weed, but now, it is present throughout the year,
especially in the southeastern part of Australia. In competition with 164 plants/m2 of mungbean
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(a summer crop), each plant of S. oleraceus produced around 4000 seeds [4], suggesting that crop
competition may not be able to provide effective control of this weed species. In another summer crop,
soybean, 18 to 20 S. oleraceus plants/m2 caused a 50% yield loss [5]. High competitiveness, prolific
seed production, low seed dormancy and wind-blown dispersal have led to an increased prevalence
of this weed in conservation agriculture systems of Australia. Lack of tillage in these systems has
favoured small-seeded species like S. oleraceus, which generally emerge at or close to the soil surface [6].
As a result, S. oleraceus is rapidly increasing in prevalence throughout the cotton-growing areas of
subtropical Australia [6].

A fallow phase between two crops is common in Southeast Australia, which may last from 6 to
15 months, depending on soil moisture [7,8]. This fallow phase enables soils to accumulate moisture
and nutrients but weeds growing in fallow fields can use a considerable amount of these resources,
resulting in reduced yield potential of subsequent crops [9]. Therefore, glyphosate is commonly used
to control these weeds during this fallow phase. However, the continuous use of this herbicide has led
to the evolution of glyphosate-resistant biotypes of S. oleraceus [10]. Surveys in the glyphosate-tolerant
cotton system also showed its prevalence as a hard-to-control weed using glyphosate [11]. Glyphosate
efficacy can be affected by environmental factors, including temperature. For example, glyphosate
efficacy was reduced on Echinochloa colona (L.) Link at 30 ◦C compared with 20 ◦C [12]. As S. oleraceus
can emerge throughout the year, applications of glyphosate may experience different temperatures
in different months. However, information on glyphosate efficacy on S. oleraceus when applied at
different times of the year is very limited.

Once a weed biotype has developed resistance to glyphosate, it becomes very difficult to control it
without using an alternative herbicide program. For example, different post-emergence herbicides
provided up to 70% control of glyphosate-resistant Amaranthus rudis L., which was otherwise not
controlled by glyphosate [13]. Therefore, there is a need to evaluate different post-emergence herbicides
that provide effective control of S. oleraceus. Herbicide efficacy can be affected by weed growth stage.
Setaria viridis (L.) Beauv. and Avena fatua L. control was greater when tralkoxydim was applied at
the 2–3 leaf stage compared with the 4–5 leaf stage [14]. Similarly, the efficacy of different herbicides
was found to be lower when applied at the eight-leaf stage of four grass weed species compared with
the four or six-leaf stage [15]. These results indicate the importance of early herbicide application.
However, such information is very limited on S. oleraceus.

As mentioned above, conservation agriculture systems are common in Australia, wherein
S. oleraceus has become a problematic weed species. In these farming systems, crop residues are
retained on the soil surface. Depending on rainfall predictions, growers usually apply pre-emergence
herbicides to keep the field weed-free during the fallow phase or before crop planting. The crop residue
present on the soil surface may adsorb a significant amount of pre-emergence herbicides, resulting
in reduced herbicide efficacy [16–19]. A significant gap exists for information on the performance of
pre-emergence herbicides on S. oleraceus under different amounts of crop residue. Knowledge gained
from such studies can be used to develop effective weed management programs for S. oleraceus control
in conservation agriculture systems.

A study was conducted to evaluate glyphosate efficacy at different times of the year,
the performance of different post-emergence herbicides at different growth stages and the interaction
effect of sorghum residue and pre-emergence herbicides on the emergence and biomass of S. oleraceus.

2. Materials and Methods

2.1. Seed Collection

Sonchus oleraceus seeds were collected from two locations: Gatton, Queensland
(glyphosate-susceptible, GS) and Gunnedah, New South Wales (glyphosate-resistant, GR). Glyphosate
at 720 g a.e./ha was sprayed at the 4-leaf stage of both biotypes (GR and GS) to confirm their resistance
status. These biotypes were grown in the same condition at Gatton in 2017 and seeds collected from
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these plants were used in this study. All experiments were conducted in the Weed Science Screenhouse
Facility of the University of Queensland at Gatton. Plants in all experiments were watered four times
per day using an automated sprinkler system. However, watering was stopped 24 h before herbicide
spray and continued 24 h after spray.

2.1.1. Experiment 1. Effect of Temperature on Glyphosate Efficacy

To determine the effect of temperature on glyphosate efficacy, a pot trial was conducted four
times in 2019–20 in a naturally lit screenhouse. Temperature was not regulated in the screenhouse but
average and minimum temperatures during the trial duration (planting to harvest) were measured
(Table 1). Based on these temperatures, the four runs were assigned as high temperature (Run 1 and 2)
and low temperature (Run 1 and 2) experiments (Table 1). In preliminary trials, this experiment was
conducted in growth chambers set at different temperatures (low and high). However, the growth of
S. oleraceus was very slow at low temperatures and plants were lanky. Therefore, this experiment was
conducted in a screenhouse.

Table 1. Dates (planting, spray and observation), temperature (minimum and average) and assigned
details for the temperature and glyphosate resistance study.

Trial
Dates Temperature (◦C)

Assigned Details
Planting Spray Observation Min Av

1 14 Feb 2019 25 Mar 2019 22 Apr 2019 17.3 28.1 High temperature—Run 1
2 14 May 2019 20 June 2019 17 Jul 2019 8.6 19.0 Low temperature—Run 1
3 14 Aug 2019 11 Sep 2019 10 Oct 2019 9.0 23.7 Low temperature—Run 2
4 14 Nov 2019 4 Dec 2019 2 Jan 2020 18.2 30.1 High temperature—Run 2

Ten seeds of each biotype were planted in 20-cm diameter plastic pots containing standard potting
mix (Centenary Landscaping, Mt Ommaney, Queensland). Immediately after emergence, seedlings
were thinned to keep three plants per pot. At the 4–5 leaf stage, seedlings were treated with glyphosate
at rates of 0 to 2280 g a.e./ha, with four replicates of each rate. Glyphosate was applied using a research
track sprayer with a water volume of 108 L/ha. Standard flat fan nozzles (110015) were used in the
sprayer. At 4 weeks after herbicide application, plant survival was recorded with the criterion of new
green leaf tissues on treated plants. Surviving plants were cut at the surface level, placed in paper bags
and dried in an oven at 70◦ C for 72 h. Biomass was weighed and converted to biomass/plant.

2.1.2. Experiment 2. Performance of Different Post-Emergence Herbicides

Fifteen seeds of each S. oleraceus biotype were planted in 20 cm diameter pots containing
standard potting mix (Centenary Landscaping, Mt Ommaney, Queensland) and after emergence,
eight seedlings/pot were maintained. Nine post-emergence herbicides were sprayed on S. oleraceus
plants at two growth stages: 4-leaf and 6-leaf. The height of these plants was 7 to 9 cm and 11 to 13
cm, respectively. Each herbicide was applied at two rates (Table 2) and each treatment was replicated
three times. There was a control treatment in which plants were not sprayed (non-treated control).
Herbicides were applied as mentioned above. At 4 weeks after herbicide application, plant survival and
biomass were determined as mentioned above. This experiment was conducted twice. An additional
trial was conducted to evaluate the effect of different rates (0, 175, 350, 700, 1400 and 2800 g/ha) of 2,4-D
on both biotypes of S. oleraceus. The herbicide was applied at the 4–5 leaf stage of S. oleraceus. Survival
and biomass data were collected as described above. These experiments were conducted outdoors
from March to August 2019, when the minimum and maximum average temperatures were 10.8◦ C
and 26.0◦ C, respectively.
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Table 2. Post-emergence and pre-emergence herbicides and their rates used in Experiment 2 and 3.

Experiment 2: Post-Emergence Experiment 3: Pre-Emergence

Herbicides Rates (g a.i. or a.e./ha) Herbicides Rates (g a.i./ha)

2,4-D 700 Isoxaflutole 75
2,4-D 1050 Isoxaflutole 150

2,4-D + picloram 75 Pendimethalin 910
2,4-D + picloram 112.5 Pendimethalin 1820

Bromoxynil 280 S-metolachor 960
Bromoxynil 420 S-metolachlor 1920
Fluroxypyr * 66.7
Fluroxypyr * 100
Glufosinate 500
Glufosinate 750
Glyphosate 496
Glyphosate 741
Metsulfuron 2
Metsulfuron 3

Paraquat 400
Paraquat 600

Saflufenacil ** 15.9
Saflufenacil ** 23.8

* Spraying oil (BS1000) was added at 1% v/v. ** Adjuvant (Hasten) was added at 1% v/v.

2.1.3. Experiment 3. Effect of Sorghum Residue Amount on Efficacy of Pre-Emergence Herbicides

Twenty seeds of each S. oleraceus biotype were planted on the surface of potting mix in 20-cm
diameter pots and covered with small pieces (1–2 cm) of sorghum plant residue (cv. MR Bazley) at
rates equivalent to 0 (no cover), 3 and 6 tons/ha. These plant residues had been oven-dried at 70 ◦C for
72 h before use in this experiment. These pots were then irrigated using a sprinkler system. After 24 h,
three pre-emergence herbicides were applied at two rates (Table 2). There was also a control treatment
in which no herbicide was applied. Herbicides were applied as mentioned above in the temperature
experiment. At 7 weeks after herbicide application, plant survival and biomass were determined as
described above. In this experiment, the observation date was extended (7 weeks vs. 4 weeks for
post-emergence herbicides) to allow plants to accumulate sufficient biomass. This experiment was
conducted twice and each treatment was replicated three times in each run. Temperatures during the
experimental duration are given in the previous section.

2.2. Statistical Analyses

All experiments were conducted using a randomized complete block design. The data for
seedling emergence or plant survival and plant biomass were pooled over the two runs for Experiment
2 and 3 as there was no significant difference between the two experimental runs [20]. For the
temperature experiment (Experiment 1), data are presented separately for each run to show the
impact of temperature, occurring in different months, on glyphosate efficacy. The Fisher’s protected
least significant difference (LSD) was used to determine the difference among means at the 5% level
of significance.

3. Results and Discussion

3.1. Experiment 1. Effect of Temperature on Glyphosate Efficacy

As described above, this experiment was conducted four times in a screenhouse in different months.
Two trials (Trial 1 and 4) experienced high average and high minimum temperatures (high-temperature
runs) and the other two runs (Trial 2 and 3) experienced low average and low minimum temperatures
(low-temperature runs) during their growing duration (Table 1).
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In both runs in the low-temperature regime, there was no survival for the GS biotype at 570 g
glyphosate/ha; however, in the high-temperature regime, 83% plants survived glyphosate application
at this rate (Figure 1). Similarly, for the GR biotype, 42 to 58% plants survived the application of
glyphosate at 2280 g/ha (three times the recommended rate) when applied during the high-temperature
regime (Figure 1). However, no plants of the GR biotype survived this rate when glyphosate was
applied during the low-temperature regime. Similar results were found for S. oleraceus biomass
(Figure 2). The GR biotype produced 4 to 10% biomass of the control treatment at a glyphosate rate of
2280 g/ha during the high-temperature regime but no biomass was produced at this glyphosate rate
during the low-temperature regime. Similarly, at the lower glyphosate rate (1140 g/ha) too, the GR
biotype produced greater biomass during the high-temperature regime (12 to 15% of their non-treated
control) compared with the low-temperature regime (4 to 5% of their non-treated control). The GS
biotype did not produce biomass at a glyphosate rate of 570 g/ha during the low-temperature regime
but produced 17 to 28% biomass of the non-treated control treatment during the high-temperature
regime at that glyphosate rate.
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Figure 1. Effect of temperature (high and low) and glyphosate rate on seedling survival of
glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes of Sonchus oleraceus. The vertical
bars are the standard error of means (n = 3). These experiments were conducted in a screenhouse four
times (high temperature—Run 1 and 2; low temperature—Run 1 and 2) in 2019/20.

Undoubtedly, these results suggest that glyphosate efficacy is reduced at high temperatures.
Similar results were reported for E. colona in South Australia, in which glyphosate resistance increased
at 30 ◦C compared with 20 ◦C [12]. The authors suggested that a reason for this response at the high
temperature was reduced glyphosate absorption, which would reduce the herbicide concentration
in the leaf and its ability to enter the chloroplast. This explanation could be true for our study also;
however, we did not evaluate the absorption and translocation of glyphosate. A recent study in the USA
also reported that all the GR E. colona plants treated with glyphosate at 840 g/ha died when subjected
to 15/10 ◦C alternating day/night temperature but the GR plants did not show any phytotoxicity at this
herbicide rate when subjected to higher temperatures, 25/20 ◦C and 35/30 ◦C [21].

Another study on broadleaf weed species also indicated that the control of Chenopodium album L.
and Conyza canadensis (L.) Cronquist by glyphosate could be reduced under projected future climatic
conditions as both weed species were less sensitive to glyphosate under the higher temperature
regime (32/26 ◦C) compared with the lower temperature regime (18/12 ◦C) [22]. These authors also
suggested that altered glyphosate translocation might be the basis for reduced weed sensitivity at high
temperatures. Our study was conducted in a naturally lit screenhouse, in which photoperiod and light
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intensity also differed during the four runs. Light intensity may affect the thickness of the leaf and
therefore herbicide absorption and efficacy.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 14 
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Figure 2. Effect of temperature (high and low) and glyphosate rate on seedling biomass of
glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes of Sonchus oleraceus. The vertical
bars are the standard error of means (n = 3). These experiments were conducted in a screenhouse four
times (high temperature—Run 1 and 2; low temperature—Run 1 and 2) in 2019/20.

Sonchus oleraceus, considered mainly a winter weed in the past, is now a common weed throughout
the year in Australia, especially in the Southeast Australian region, where rainfall is distributed
throughout the year. In Queensland and New South Wales, growers usually grow one crop in a
year, depending on rainfall; therefore, they need to manage weeds during the fallow phase. Due to
sustainability of conservation agriculture systems, growers do not like to till their farm to control
weeds and they rely on glyphosate during the fallow phase. Our results suggest that summer fallows
will experience more glyphosate failures compared with winter fallows. S. oleraceus plants may
survive glyphosate application during the summer months and produce seeds. As this weed can grow
throughout the year, plants produced from these seeds may also become harder to control during the
winter months, especially the GR populations. Therefore, over-reliance on glyphosate for weed control
in summer fallows may result in more weed control failures [22], especially for weeds like S. oleraceus,
which occur throughout the year.

Additionally, weather conditions in Southeast Australia are quite variable [23]. There can be hot
days during autumn and winter months in this region, which may affect glyphosate efficacy. Therefore,
growers need to check temperature conditions before glyphosate applications. Higher rates may be
recommended to improve glyphosate activity on plants exposed to high temperatures.

3.2. Experiment 2. Performance of Different Post-Emergence Herbicides

As expected, glyphosate at both rates failed to provide effective control of the GR biotype (Tables 3
and 4). All seedlings of the GS biotype were killed by glyphosate application when applied at the
four-leaf stage but a delayed application to the six-leaf stage resulted in 36 to 88% seedling survival
(Table 3). These seedlings, however, produced only 3 to 10% of the biomass in the non-treated control
(Table 4). Similar results were reported for C. canadensis, which was found to be more susceptible to
glyphosate at the seedling stage than at the large rosette stage [24].



Sustainability 2020, 12, 8311 7 of 13

Table 3. Performance of post-emergence herbicides on seedling survival of glyphosate-resistant (GR)
and glyphosate-susceptible (GS) biotypes of Sonchus oleraceus when applied at 4- and 6-leaf stages.
The means (n = 6) were separated using least significant differences (LSD) at the 5% level of significance.

Herbicide Rates (g a.i./ha)

Seedling Survival (%)

4-Leaf Stage 6-Leaf Stage

GR GS GR GS

Control 100 100 100 100
2,4-D 700 100 92 100 100
2,4-D 1050 83 29 100 100

2,4-D + picloram 75 0 0 0 100
2,4-D + picloram 112.5 0 0 0 78

Bromoxynil 280 0 0 100 100
Bromoxynil 420 0 0 100 100
Fluroxypyr 66.7 100 100 100 100
Fluroxypyr 100 100 100 100 100
Glufosinate 500 0 0 0 0
Glufosinate 750 0 0 0 0
Glyphosate 496 100 0 100 36
Glyphosate 741 54 0 100 88
Metsulfuron 2 100 100 100 100
Metsulfuron 3 96 92 100 100

Paraquat 400 0 0 0 0
Paraquat 600 0 0 0 0

Saflufenacil 15.9 0 0 49 71
Saflufenacil 23.8 0 0 89 64

LSD 10.8 13.8 16.6 18.5

Table 4. Performance of post-emergence herbicides on seedling biomass of glyphosate-resistant (GR)
and glyphosate-susceptible (GS) biotypes of Sonchus oleraceus when applied at 4- and 6-leaf stages.
The means (n = 6) were separated using LSD at the 5% level of significance. Values in parentheses are
percent biomass reduction compared with the control treatment.

Herbicide Rates (g a.i./ha)

Biomass (g/plant)

4-Leaf Stage 6-Leaf Stage

GR GS GR GS

Control 0.34 0.54 0.27 0.38
2,4-D 700 0.23 (34) 0.16 (71) 0.18 (34) 0.21 (44)
2,4-D 1050 0.12 (66) 0.05 (91) 0.17 (39) 0.31 (20)

2,4-D + picloram 75 0 (100) 0 (100) 0 (100) 0.10 (75)
2,4-D + picloram 112.5 0 (100) 0 (100) 0 (100) 0.21 (45)

Bromoxynil 280 0 (100) 0 (100) 0.20 (27) 0.13 (66)
Bromoxynil 420 0 (100) 0 (100) 0.15 (46) 0.12 (68)
Fluroxypyr 66.7 0.22 (37) 0.30 (44) 0.22 (21) 0.30 (21)
Fluroxypyr 100 0.22 (35) 0.34 (37) 0.23 (16) 0.40 (−4)
Glufosinate 500 0 (100) 0 (100) 0 (100) 0 (100)
Glufosinate 750 0 (100) 0 (100) 0 (100) 0 (100)
Glyphosate 496 0.05 (87) 0 (100) 0.14 (48) 0.04 (90)
Glyphosate 741 0.03 (92) 0 (100) 0.20 (26) 0.01 (97)
Metsulfuron 2 0.37 (−8) 0.07 (87) 0.30 (−10) 0.19 (52)
Metsulfuron 3 0.47 (−36) 0.07 (88) 0.30 (−9) 0.17 (56)

Paraquat 400 0 (100) 0 (100) 0 (100) 0 (100)
Paraquat 600 0 (100) 0 (100) 0 (100) 0 (100)

Saflufenacil 15.9 0 (100) 0 (100) 0.08 (71) 0.05 (88)
Saflufenacil 23.8 0 (100) 0 (100) 0.05 (81) 0.06 (84)

LSD 0.058 0.087 0.084 0.092
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Irrespective of growth stage and herbicide rate, glufosinate and paraquat were the most effective
post-emergence herbicides for S. oleraceus control, resulting in no seedling survival (Table 3) and
biomass production (Table 4). In the USA, glufosinate has been reported as an alternative herbicide
option for control of GR Ambrosia trifida L. [25]. A later study also reported glufosinate (700 g/ha) as an
option for controlling GR Sorghum halepense L., with 77% control at soybean harvest [26]. An early
study reported that control of C. album with glufosinate was most effective when applied at the 10-cm
weed height compared to the 15-cm weed height [27]. In another study, glufosinate provided greater
control (88%) of GR C. canadensis compared with paraquat (55 to 63%) [28]. Paraquat in our study
provided excellent control of S. oleraceus but weeds may develop resistance to this herbicide due to
restricted translocation [29]. Therefore, plants need to be monitored after paraquat application for
possible escapes in the field.

No seedlings of S. oleraceus survived when 2,4-D + picloram, bromoxynil and saflufenacil were
applied at the four-leaf stage. However, a significant number of seedlings survived when these
herbicides were applied at the six-leaf stage. The results were more evident for bromoxynil, resulting
in 100% seedling survival at both herbicide rates for both biotypes (Table 3). Compared with the
non-treated control, bromoxynil at both rates reduced biomass by 27 to 46% for the GR biotype and 66
to 68% for the GS biotype (Table 4).

Similarly, late application of saflufenacil resulted in 49 to 89% seedling survival for the GR biotype
and 64 to 71% for the GS biotype. However, these surviving plants did not grow very vigorously after
herbicide application. Compared with the non-treated control, saflufenacil at both rates reduced 71 to
81% biomass for the GR biotype and 84 to 88% biomass for the GS biotype. A study from the USA
suggested that saflufenacil could provide 90% control of rosette and bolted Parthenium hysterophorus L.
at 6 to 27 g/ha, a range similar to our study [30]. The author also suggested that saflufenacil could
be an effective burndown herbicide for control of P. hysterophorus populations resistant to glyphosate.
In another study, the height of C. canadensis had little effect on saflufenacil efficacy, which provided
95 to 99% control of the weed when applied to small plants or >25-cm tall plants [31]. The authors
suggested that the time of day of application had a greater effect on weed control with saflufenacil
than weed height or weed density; however, we did not evaluate the effect of time of application on
saflufenacil efficacy.

Irrespective of herbicide rate and growth stage, fluroxypyr and metsulfuron did not reduce plant
survival compared with the non-treated control treatment (Table 3). These herbicide treatments resulted
in 0 to 44% biomass reduction for fluroxypyr and 0 to 88% biomass reduction for metsulfuron (Table 4).
The results show that there was a differential response between the two biotypes to metsulfuron.
No reduction in biomass was observed for the GR biotype, indicating that the GR biotype may also
be resistant to metsulfuron. Both fluroxypyr and metsulfuron are recommended for S. oleraceus
control in Australia but they did not provide effective control of this weed. S. oleraceus biotypes
resistant to chlorsulfuron (acetolactate synthase inhibitor) and 2,4-D (synthetic auxins) have been
reported in Australia but no resistant biotypes to fluroxypyr (synthetic auxins) and metsulfuron
(acetolactate synthase inhibitor) are known [10]. Our results suggest that there is a need to screen
different populations of S. oleraceus against these herbicides to evaluate their resistance status.

Except for the higher herbicide application rate at the four-leaf stage for the GS biotype, 2,4-D
also proved ineffective in reducing the survival percentage of S. oleraceus (Table 3). The effect of
2,4-D was more suppressive on S. oleraceus biomass than on its seedling survival. At the lower rate,
2,4-D application at the four-leaf stage reduced biomass by 34 and 71% for the GR and GS biotype,
respectively (Table 4). This biomass was further reduced by 66 and 91% for the GR and GS biotypes,
respectively, at the higher 2,4-D rate (i.e., 1050 g/ha). Delayed 2,4-D application, however, resulted in
only 20 to 44% reduction in biomass, depending on biotype and 2,4-D rate.

As 2,4-D is used to manage a range of broadleaf weeds, its failure at the highest rate warranted a
dose–response study. Fortunately, both biotypes were controlled completely at 1400 and 2800 g/ha of
2,4-D (data not shown). The herbicide 2,4-D on its own is not recommended for S. oleraceus control in
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fallows and our results support this recommendation. Therefore, 2,4-D needs to be mixed with other
compatible herbicides to achieve complete control of S. oleraceus.

In general, a delayed herbicide application reduced S. oleraceus control. This was particularly
true for bromoxynil and saflufenacil. Our study found a number of alternative herbicide options to
control GR biotypes of S. oleraceus; however, these herbicides need to be applied at an early stage to
achieve effective weed control. Growers tend to delay herbicide application to maximise weed seedling
emergence from the seed bank so that all the weeds can be treated at the same time but this tendency
may result in the build-up of herbicide-resistant weed seed banks.

3.3. Experiment 3. Effect of Sorghum Residue Amount on Efficacy of Pre-Emergence Herbicides

The interaction effect of herbicide treatments and sorghum residue amount was significant for the
seedling emergence (Table 5) and biomass (Table 6) of both biotypes of S. oleraceus. In the non-treated
control treatment, covering the seeds with sorghum residue did not affect the seedling emergence
or biomass of both biotypes. Compared with the non-treated control, across residue amount, only a
few herbicide treatments were able to reduce seedling emergence but a greater number of herbicide
treatments were able to reduce seedling biomass. These results suggest that seedlings that survived
herbicide application were not able to grow vigorously.

Table 5. Interaction of pre-emergence herbicides and sorghum residue amounts (0, 3 and 6 t/ha) on
seedling emergence of glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes of Sonchus
oleraceus. The means (n = 6) were separated using LSD at the 5% level of significance.

Herbicide Rate (g a.i./ha)

Seedling Emergence (%)

GR GS

0 t/ha 3 t/ha 6 t/ha 0 t/ha 3 t/ha 6 t/ha

Control - 82 63 70 75 87 87
Isoxaflutole 75 13 38 50 37 72 62
Isoxaflutole 150 5 17 22 27 17 22

Pendimethalin 910 75 75 65 78 75 72
Pendimethalin 1820 68 20 30 78 33 25
S-metolachor 960 63 62 70 87 80 77
S-metolachlor 1920 30 58 72 40 78 80

LSD 21 19

Table 6. Interaction of pre-emergence herbicides and sorghum residue amounts (0, 3 and 6 t/ha) on
seedling biomass of glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes of Sonchus
oleraceus. The means (n = 6) were separated using LSD at the 5% level of significance. Values in
parentheses are percent biomass reduction compared with the control treatment.

Herbicide
Rate

(g a.i./ha)

Biomass (g/plant)

GR GS

0 t/ha 3 t/ha 6 t/ha 0 t/ha 3 t/ha 6 t/ha

Control - 0.0400 0.0466 0.0285 0.0159 0.0211 0.0302
Isoxaflutole 75 0.0006 (99) 0.0005 (99) 0.0035 (88) 0.0007 (96) 0.0025 (88) 0.0056 (81)
Isoxaflutole 150 0.0001 (100) 0.0067 (86) 0.0012 (96) 0.0016 (90) 0.0001 (100) 0.0001 (100)

Pendimethalin 910 0.0074 (82) 0.0038 (92) 0.0028 (90) 0.0283 (−78) 0.0229 (−8) 0.0210 (30)
Pendimethalin 1820 0.0067 (83) 0.0028 (94) 0.0053 (81) 0.0114 (28) 0.0129 (39) 0.0094 (69)
S-metolachor 960 0.0115 (71) 0.0239 (49) 0.0219 (23) 0.0180 (−13) 0.0262 (−24) 0.0223 (26)
S-metolachlor 1920 0.0034 (92) 0.0096 (79) 0.0203 (29) 0.0065 (59) 0.0134 (34) 0.0283 (6)

LSD 0.0187 0.0106

Isoxaflutole at 75 g/ha provided effective control of seedling emergence of both biotypes when
applied without crop residue cover; however, the addition of sorghum residue reduced the efficacy of
isoxaflutole at this rate, resulting in an increased amount of seedling emergence (Table 5). Isoxaflutole
at 150 g/ha was required to overcome the problem of increased seedling emergence with the addition
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of crop residue. These differential responses were not found for seedling biomass of both biotypes
(Table 6). Seedling biomass was similar across both rates of isoxafluotole. Regardless of sorghum
residue amount, herbicide rate and weed biotype, isoxaflutole provided 81 to 100% suppression of
S. oleraceus biomass.

Isoxaflutole is a soil-applied isoxazole herbicide used for the control and suppression
of selective broadleaf and grass weeds in sugarcane, chickpea and fallows by inhibiting the
4-hydroxyphenyl-pyruvate-dioxygenase (4-HPPD) biochemical pathway. In a previous study, lower
degradation of isoxaflutole was found under conservation tillage than under conventional tillage [32].
Our results suggest that the presence of crop residue in conservation agriculture systems will not affect
isoxaflutole efficacy on S. oleraceus biomass. In fallows, surviving seedlings may grow and produce
seeds if follow-up treatments are not applied. S. oleraceus seedlings may emerge following isoxaflutole
application but may not be able to produce enough biomass in competitive sugarcane or chickpea crops.
In the USA, isoxaflutole was found to be an option for use in maize, especially for atrazine-resistant
weeds [33]. In Australia, this herbicide needs to be evaluated for weed control in maize; however,
a carryover from isoxaflutole applications in maize may require plant back restrictions for certain
sensitive crops [34].

Pendimethalin at 910 g/ha did not affect the seedling emergence of either biotype (Table 5).
Increasing the rate to 1820 g/ha also did not affect seedling emergence in the no-residue treatment;
however, integration of pendimethalin at 1820 g/ha with residue retention resulted in decreased
seedling emergence of both biotypes compared with the non-treated control treatments. The response
was different between the biotypes for seedling biomass (Table 6). Pendimethalin application resulted
in significant reductions (81 to 94%) in the seedling biomass of the GR biotype compared with the
non-treated control treatments and there was no difference between the two rates of the herbicide.
For the GS biotype, however, seedling biomass was similar between the non-treated control and
pendimethalin treatments. These differential responses of the two biotypes to pendimethalin suggest a
need to evaluate the performance of this herbicide on several biotypes of S. oleraceus.

Pendimethalin is a soil-applied dinitroaniline herbicide used for the control of some broadleaf
and grass weeds by inhibiting mitosis. A study from the USA suggested that the use of biochar as
a soil amendment could decrease pendimethalin efficacy by adsorbing a significant amount of the
herbicide [35]. In another study similar to our study, pendimethalin application (1 and 2 kg ai/ha) in
the presence of rice residue cover resulted in lower control of Cyperus iria L. than in the absence of
residue15. This study suggested that some weed species may escape pendimethalin application in
conservation agriculture systems. However, such adverse results of the crop residue on pendimethalin
efficacy were not found in our study with S. oleraceus.

The herbicide s-metolachlor at 960 g/ha did not affect the seedling emergence of either biotype at
different residue levels compared to their respective non-treated control treatments (Table 5). However,
increasing the herbicide rate to 1920 g/ha resulted in decreased emergence in the no-residue cover
condition. Covering the seeds with residue cover negated the effect of this herbicide rate on seedling
emergence. A similar response was found for seedling biomass; however, both biotypes behaved
differently (Table 6). Application of s-metolachlor resulted in greater suppression of biomass for the GR
biotype compared with the GS biotype. Biomass of both biotypes was similar across s-metolachlor rates.

S-metolachlor is a soil-applied amide herbicide used for the control of some broadleaf and grass
weeds in certain crops by inhibiting very long-chain fatty acid biosynthesis. In a recent study, using
sorghum residue resulted in lower s-metolachlor efficacy on E. colona and Chloris virgata Sw., grass
weed species [19]. In our study, s-metolachlor efficacy was not reduced by the addition of sorghum
residue. Differential responses between the two studies could be due to the different irrigation systems
used in these studies. Plants in the previous study were sub-irrigated while plants in the current study
were irrigated using an overhead sprinkler system. A sprinkler irrigation system could have resulted
in washing off the herbicide from crop residue, which was then available to S. oleraceus. A study
from the USA suggested that integration of high-residue cover crops with s-metolachlor increased
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Amaranthus species control [36], suggesting that residue retention in conservation agriculture systems
may not reduce the efficacy of s-metolachlor.

4. Conclusions

Temperature influenced the efficacy of glyphosate on both biotypes (GR and GS) of S. oleraceus.
At high temperatures, glyphosate rates had to be increased to achieve a similar level of control obtained
at low temperatures using low glyphosate rates. Therefore, growers may need to increase glyphosate
rates for weed control in summer fallows to preserve the sustainability of conservation agriculture
systems. Over-reliance on glyphosate for control of fallow-weeds needs to be reduced to avoid weed
control failures in the future. There is a need to evaluate the efficacy of glyphosate on a range of GR
weeds at different temperature regimes. This study also found a range of alternative herbicides for
control of S. oleraceus, especially for GR biotypes. However, these herbicides need to be applied at
an early stage to achieve effective control. The efficacy of pre-emergence herbicides was mostly not
affected by the presence of crop residue, suggesting that effective control of S. oleraceus can be obtained
with pre-emergence herbicides in high crop residue retention systems. Surviving plants, however, need
to be managed with other weed management tools to avoid the build-up of weed seed banks. This trial
was conducted in pots using a potting mix under an automated sprinkler system. Performance of
soil-active herbicides is greatly affected by soil moisture and soil type; therefore, there is a need to
evaluate the performance of these herbicides in field conditions.
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