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Abstract: For intelligent transportation systems (ITSs), reliable and accurate real-time traffic flow
prediction is an important step and a necessary prerequisite for alleviating traffic congestion
and improving highway operation efficiency. In this paper, we propose an improved hybrid
predicting model including two steps: decomposition and prediction to predict highway traffic
flow. First, we adopted the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) method to adaptively decompose the original nonlinear, nonstationary, and complex
highway traffic flow data. Then, we used the improved weighted permutation entropy (IWPE) to
obtain new reconstructed components. In the prediction step, we used the gray wolf optimizer (GWO)
algorithm to optimize the least-squares support vector machine (LSSVM) prediction model established
for each reconstruction component and integrate the prediction results of each subsequence to obtain
the final prediction result. We experimentally validated the effectiveness of the proposed approach.
The research results reveal that the proposed model is useful for predicting traffic flow and its
changing trends and also allowing transportation officials to make more effective traffic decisions.

Keywords: highway traffic flow prediction; improved weighted permutation entropy; complete
ensemble empirical mode decomposition with adaptive noise; machine learning; least-squares support
vector machine (LSSVM); optimization model; gray wolf optimizer

1. Introduction

Reliable and accurate real-time traffic flow prediction is crucial for intelligent transportation
systems (ITSs). It is a necessary prerequisite for alleviating traffic congestion, realizing traffic
management, traffic control, traffic guidance, and improving road operation efficiency. Traffic flow
prediction is the basis of inducing effective traffic management and alleviating traffic congestion [1,2].
The characteristics of traffic flow are periodic, randomness, temporal, and spatial correlations.
Accurately predicting traffic flow and grasping the dynamic change trend of traffic flow are key
steps of ITSs, which are of great significance for alleviating traffic congestion, developing reliable
traffic control and guidance strategies, and studying vehicle–road collaboration and autonomous
driving [3–6]. Experience has shown that the monitoring and management of traffic states predicting
in advance are often less effective than on-site deployment measures, and the benefits obtained by
on-site deployment measures are more obvious [7,8]; therefore, traffic flow forecasting with big data
technology has become the hottest research topic in the domain of traffic prediction [9,10].

Under the efforts of relevant scholars, the traffic flow prediction techniques so far approximately
include three major methods: linear statistics, nonlinear theory, and machine learning methods.
The prediction method based on linear statistics originated earlier, mainly using time-series methods
for traffic flow prediction, including the regression model (AR), moving average model (MA),
autoregression moving average model (ARIMA), and the Kalman filter method. Williams et
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al. constructed a dynamic traffic flow prediction model for single-points on the strength of the
ARIMA, through the Box–Jenkins parameterized time-series model, which solves the problem
of model parameters of traffic condition data [11]. Some scholars combined the ARIMA model
with other methods to predict the traffic flow variation tendency [12]. Okutani et al. applied the
Kalman theory model to traffic flow prediction for the first time and, based on the Kalman filter
theory, proposed two short-term traffic flow prediction models with minor prediction errors [13].
Subsequently, some researchers combined the Kalman filter theory with other methods to establish
various hybrid prediction methods [14,15]. Statistical models have the advantages of simple calculation
and easy operation; however, for complex nonlinear traffic flow data, its changing characteristics
cannot be fully captured, resulting in low prediction accuracy. To overcome this shortcoming, relevant
scholars began to explore the application of nonparametric methods. The classical nonlinear prediction
models mainly include the chaos theory model and wavelet analysis model, etc. Frazier et al. applied
chaos theory to traffic systems and proved that the prediction performance was better than that of
the nonlinear least-squares method [16]. Considering the urban road traffic network, Adewumi et al.
verified that the traffic flow has the characteristics of chaos and constructed an urban road network
traffic flow prediction model based on chaos theory [17]. In recent years, with the rise of machine
learning methods, scholars have begun to explore machine learning methods and deep learning in
traffic flow prediction technology. Castro-Neto et al. proposed a short-term highway multi-scenario
traffic flow prediction based on online-support vector regression (OL-SVR) technology for traffic
operating conditions under normal and abnormal situations [18]. Dimitriou et al. proposed a traffic
flow modeling and short-term prediction method for urban road traffic networks on account of the
adaptive hybrid fuzzy rules system (FRBS) [19]. El-Sayed et al. studied the traffic flow characteristics
under the heterogeneous vehicular networks environment and improved the support vector machine
(SVM) method. The experiment results indicate that the improved-SVM forecasting accuracy is high,
which is superior to other traffic flow forecasting methods [20]. Bratsas et al. conducted multi-scenario
experimental verification on the random forest model, support vector regression model, and multi-layer
perceptron method to compare their prediction performance [21]. SVM is a classic traffic flow prediction
method. Scholars improved the SVM algorithm and obtained its improved model, such as support
vector regression (SVR) [22], least-squares support vector machine (LSSVM) [23,24], and least-squares
support vector regression (LSSVR) [25]. In recent years, inspired by neural networks, new technologies
such as deep neural networks and deep learning have been developing rapidly, and traffic flow
prediction technologies are also constantly updated and improved [26–28].

Through the revision and analysis of existing traffic flow prediction research methods, it can be
found that due to the nonlinearity and randomness characteristics of highway traffic flow, traditional
traffic flow prediction models cannot accurately reflect the complex traffic flow systems. Although the
traffic flow prediction method based on deep learning can completely extract traffic flow operating
characteristics from a large amount of traffic flow data, the time it takes to train it is relatively high,
making it unsuitable for small sample traffic flow data. The original traffic flow data obtained
contains certain noise that may impose a negative effect and degrade the performance for prediction
models. In recent years, the quality of predictive model data has attracted much scholarly attention.
Huang et al. proposed empirical mode decomposition (EMD) to decompose signals into characteristic
modes, which can be used to analyze nonlinear and nonstationary signal sequences with high
signal-to-noise ratio and good time-frequency focusing [29]. The EMD method decomposes nonlinear
and nonstationary signals into a finite number of intrinsic mode functions (IMFs) without using any
defined functions as the basis, and each IMF component represents the sample characteristics on
different time scales [30]; however, EMD will produce serious “modal mixing” phenomena during the
decomposition process. To solve this shortcoming, Wu improved on the EMD method and proposed
an improved ensemble empirical mode decomposition (EEMD) method [31]. The EEMD method
takes advantage of the uniform frequency distribution of white noise and adds normally distributed
white noise to the original time series during the decomposition process, so that the signal is evenly
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distributed at the interval of extreme points in the whole frequency band and has continuity at different
scales, thus reducing or suppressing the modal mixing effect. Nevertheless, its disadvantage is that
the decomposition loses its completeness, and reconstruction error easily occurs after adding white
noise. To eliminate or reduce the reconstruction error generated by the EEMD method, the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method was proposed [32].
CEEMDAN is the evolution of EMD and EEMD algorithms. It provides a method that can accurately
reconstruct the original signal and achieve better IMF spectrum separation. It not only overcomes
the modal mixing problem of EMD but also solves the problem of the EEMD decomposition method
losing completeness and causing reconstruction errors. It can accurately reconstruct the original signal,
obtain a better modal separation, and reduce the computational cost; therefore, we use the CEEMDAN
method to decompose the traffic flow time series to improve the quality of the input data of the
prediction model.

In this study, to propose a simple but efficient traffic flow prediction model, we innovatively
combined traffic flow data decomposition and prediction methods by utilizing decomposition prediction.
More specifically, we introduced the complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) model to adaptively decompose the complex, nonlinear, and nonstationary traffic
flow time series into several stationary time series with different frequencies from high to low. We then
improved the permutation entropy, using the mean of its elements as the weight, and proposed
an improved weighted permutation entropy (IWPE) method to calculate the entropy of each IMF,
which can fully measure the complexity of the component to recombine the IMFs and obtain new
recombined components. During the prediction stage, we established predictive models based on the
LSSVM model for each recombined component obtained in the decomposition stage. We introduced
the gray wolf optimizer (GWO) algorithm to optimize the parameters of LSSVM prediction models.
We verified the proposed framework performance in both data cleansing and prediction procedures.
The research findings can deliver prompt and accurate traffic flow data in advance, which can provide
a solid and scientific decision-making basis for traffic managers. It can also enable travelers to choose
less congested roads, thereby avoiding or alleviating traffic congestion.

This study paper is arranged as follows: Section 2 introduces the methods and relevant theories
to the research; Section 3 introduces the proposed model for traffic flow prediction and prediction
framework proposed in detail; Section 4 verifies the proposed prediction model is effective; Section 5
concludes the study and presents future research opportunities.

2. Methodology

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

The complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method
can accurately reconstruct the original signal, obtain a better modal separation, and reduce the
computational cost. Considering the advantages of the CEEMDAN model, we used the CEEMDAN
model to decompose the traffic flow time series to improve the quality of the input data of the
prediction model.

The principles of decomposition using CEEMDAN are described as follows. First, given the
original traffic flow time series x(t), E j(·) is defined as the operator that produces j−th mode
component generated by EMD decomposition. vi(t) represents the white noise sequence that
conforms to the standard normal distribution added at the i(i = 1, 2, · · · , I) time during decomposition.
The coefficient βi is the signal-to-noise ratio at each stage in the decomposition of original traffic flow
data. The decomposition steps are shown as follows:

(1). A certain amount of different Gaussian white noises vi(t) are added to the original traffic flow
time sequence x(t) at the i−th time, and the traffic flow sequence can be expressed as follows:

xi(t) = x(t) + βivi(t) (1)
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Set ˜IMFk(t) for the k−th mode component of x(t), obtained as the average of the corresponding:

˜IMFk(t) =
1
I

I∑
i=1

IMFi
k(t) (2)

The EMD method is used to decompose each xi(t) independently, and the residual rk(t) is obtained
after decomposition.

rk(t) = rk−1(t) − IMFk(t) (3)

When k = 1, the first mode function ˜IMF1(t) is calculated as:

˜IMF1(t) =
1
I

I∑
i=1

IMFi
1(t) = IMF1(t) (4)

The first-stage only residual component is calculated as:

r1(t) = x(t) − ˜IMF1(t) (5)

(2). Add the noise component β1E1
(
vi(t)

)
decomposed by EMD to the residual r1(t) to obtain the

sequence r1(t) + β1E1
(
vi(t)

)
. Then, perform EMD decomposition on sequence r1(t) + β1E1

(
vi(t)

)
until

the first IMF mode component is obtained. The second IMF mode component is calculated as:

˜IMF2(t) =
1
I

I∑
i=1

E1
(
r1(t) + β1E1

(
vi(t)

))
(6)

Calculate the second residue as:

r2(t) = r1(t) − ˜IMF2(t) (7)

(3). Similarly, for k = 2, 3, . . . , K, the formula for the k−th residual component is as follows:

rk(t) = rk−1(t) − ˜IMFk(t) (8)

Add a white noise sequence βkEk
(
vi(t)

)
to the k−th residual and get rk(t) + βkEk

(
vi(t)

)
. Repeat

step 2 to get the (k + 1)−th IMF mode component:

˜IMFk+1(t) =
1
I

I∑
i=1

E1
(
rk(t) + βkEk

(
vi(t)

))
(9)

(4). Repeat steps (2) to (4) until the obtained residual sequence is no longer capable of being
decomposed and thus satisfies the requirements. At this point, the number of extreme points of the
residual cannot exceed 2. The final residual sequence is:

R(t) = x(t) −
K∑

k=1

˜IMFk(t) (10)

The reconstructed traffic flow can be represented as follows:

x(t) =
K∑

k=1

˜IMFk(t) + R(t) (11)
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2.2. Improved Permutation Entropy (PE)

Traffic flow timing sequences are nonlinear, random, and nonstationary. CEEMDAN can
decompose them into several components with different frequencies, which can reduce the
nonstationarity of the original traffic flow and the predicting error generated by data input;
however, the complexity of different intrinsic mode function (IMF) components is different, and the
impact on the forecasting effect is also different. If the forecasting model is developed individually for
all components decomposed by CEEMDAN, the calculation and the complexity of modeling will be
greatly increased, and the correlation between different components will be ignored. Entropy can be
used to measure the uncertainty and complexity of the time series. The more regular the time series are,
the smaller the corresponding entropy is; the more complex the time series is, the higher its entropy
value is [33]. The permutation entropy is sensitive to faint changes and has a low computational cost
and strong anti-noise ability; therefore, we reconstruct the components by calculating the permutation
entropy (PE) of the IMF components. Considering that permutation entropy only considers the
permutation position of the element and ignores element value information, we introduce the weighted
idea to improve it based on the PE method and get an improved weighted permutation entropy called
IWPE. The principles of PE are described as follows, and we also introduce steps to improve it.

2.2.1. Permutation Entropy

The implementation steps of the permutation entropy (PE) method can be demonstrated as follows:
1. Firstly, q(i), i = 1, 2, . . . , N is the time component with length N. It is the first step to reconstruct

the phase space for each traffic time-series component decomposed by the CEEMDAN method.

Z =



Qm
1

Qm
2
...

Qm
k
...

Qm
K


=



q(1) q(1 + τ) · · · q(1 + (d− 1)τ)
q(2) q(2+τ) · · · q(2 + (d− 1)τ)

...
...

...
...

q(k) q(k + τ) · · · q(k + (d− 1)τ)
...

...
. . .

...
qK q(K + τ) · · · q(N)


where d is the embedding dimension. τ is time delay. K = N − (d− 1)τ, 1 ≤ k ≤ N − (d− 1)τ.
After reconstruction, the phase space matrix K × d is obtained, that is, K d -dimensional subsequences
are formed.

2. After the phase space reconstruction, rearrange the elements in each reconstructed subsequence
in ascending sort order of values as q(k + ∂1τ) ≤ q(k + ∂2τ) ≤ · · · ≤ q(k + ∂dτ), where 1 ≤ ∂i ≤ d and
∂i , ∂ j. If two or more elements in a subsequence are equal, they are arranged according to their
sequence positions, that is, if q(k + ∂iτ) = q

(
k + ∂ jτ

)
exists, and the position q(k + ∂iτ) is ahead of

position q
(
k + ∂ jτ

)
, q(k + ∂iτ) ≤ q

(
k + ∂ jτ

)
. The rank is the permutation of Q(k), denoted as an ordinal

pattern Le
Q(k){∂1, ∂2, · · · , ∂d}, e = 1, 2, 3, . . . , d!, and Le

Q(k) represents the element value arrangement

mode subscript index sequence of the k−th reconstructed subsequence Q(k), where 1 ≤ k ≤ K.
The subscript index number of reconstructed subsequences with length d has d! different mapping
symbol sequences in total.

3. Rearrange all the reconstructed subsequences separately and record the subscript index
sequence Le

Q(k) of each subsequence Q(k). There are in total J permutations. Then, count the occurrence
times of the index sequence Le with subscripts and calculate the occurrence probability P of each

symbol sequence, denoted as
{
P1, P2, · · · , P j

}
, 1 ≤ j ≤ J. P

(
L j

)
=

number of{Q(k) hastype Le}

N−(d−1)τ .
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4. Afterward, calculate the Shannon entropy of each reconstructed subsequence as follows:

HP(d) = −
J∑

j=1

P j ln P j (12)

For convenience, the above Equation (12) is normalized as follows:

LPE(d) =
HP(d)
ln(d!)

(13)

2.2.2. Improved Weighted Permutation Entropy

It can be found that PE simply performs a probability calculation on the numerical permutation
mode of the reconstructed phase space subsequence, and just pays attention to the position of elements,
ignoring the numeric characteristics of elements in the sequence from the calculation process of PE.
As a result, PE cannot fully reflect the complexity of time series. For example, when two subtime series
have the same permutation structure but different element values, according to the PE method, the PE
of two subsequences is the same, although the two subsequences may differ greatly in numerical
values. That is the main drawback of permutation entropy.

Therefore, in this study, we introduce the idea of weighting to improve the PE method.
When calculating the permutation pattern of subsequences, the element values of subsequences
are considered. The specific implementation steps are as follows:

$k =
1
d

d∑
i=1

(
q(k + (i− 1)τ) −Qm

k

)2

(14)

where $k is the weight of the k−th reconstructed subsequence. d is the embedding dimension.
q(i), i = 1, 2, . . . , N is the time component with length N. Qm

k represents the k−th reconstructed

subsequence. Qm
k is the mean of the elements in the k−th subsequence, and Qm

k = 1
d

d∑
i=1

q(k + (i− 1)τ).

The improved weighted permutation entropy (IWPE) considers both the element value and
the element permutation mode of the reconstructed sequence; therefore, the probability of each
permutation in the weighted permutation entropy is then calculated as:

P$(L j) =

∑
weights $ of

{
Q(k) hastype Le}∑

weights $ of all the reconstructed subsequences
(15)

where P$(L j) is the probability of each permutation’s appearance.
The weighted permutation entropy HWP(d) is calculated as follows:

HWP(d) = −
J∑

j=1

P$(L j) ln P$(L j) (16)

After normalization processing, the weighted entropy of each time-series component after
normalization is obtained:

LWPE(d) =
HWP(d)
ln(d!)

= −
1

ln(d!)

J∑
j=1

P$(L j) ln P$(L j) (17)

where LWPE(d) is the weighted permutation entropy after normalization.
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The improved weighted permutation entropy is more sensitive and comprehensive in reflecting
the dynamic characteristics of the time series than the PE. The IWPE value of each time sequence
component is calculated, subsequently recombining the IMF components that have similar IWPE
values to obtain a new subsequence.

2.2.3. Least-Squares Support Vector Machine (LSSVM) Model

The least-squares support vector machine (LSSVM) [34] is an improvement of the SVM [35] model.
The LSSVM model applies kernel to ridge regression by fitting all samples with the least-squares error.
LSSVM uses the least-squares linear system as the loss function instead of the quadratic programming
method used by the traditional SVM and replaces the inequality constraint in SVM with an equality
constraint, which greatly simplifies the solution process. The LSSVM model introduces error variables
ei to each sample and adds error variables’ regular terms to the original function. Compared to other
prediction models, the LSSVM model can improve the shortcomings of over-learning and long training
time and has better precision and accuracy when solving nonlinear problems. The LSSVM model is
described as follows:

minω,eR(ω, e) =
1
2
ωTω+

1
2
γ

N∑
i=1

e2
i (18)

s.t.
f (xi) = ωTϕ(xi) + b + ei , i = 1, 2, . . . , N (19)

where γ represents the penalty coefficient of the LSSVM model and is used to measure the penalty
intensity of training error and adjust the model complexity. γ determines the quality of the model. If γ
is too large, the error tolerance of the sample data will be smaller, and the punishment will be greater.
The trained model will be excessively dependent on the training samples and prone to overfitting,
resulting in insufficient model generalization ability. If γ is too small, the degree of constraint on the
sample will be small, the training error will increase, the model training will be insufficient, the fitting
of the sample will decline, and the prediction effect will be poor.

Use the Lagrange multiplier method of L(ω, b, e, α) = R(ω, e) −
N∑

i=1
αi

{
ωTϕ(xi) − b + ei − yi

}
.

Take the derivative of ω, b, ei,αi separately and take the derivative to be zero.

∂L
∂ω = 0 → ω =

N∑
i=1

αiϕ(xk)

∂L
∂b = 0 →

N∑
i=1

αk = 0

∂L
∂ei

= 0 → αi = γei, i = 1, 2, . . . , N
∂L
∂αi

= 0 → ωTϕ(xi) + b + ei − yi = 0, i = 1, 2, . . . , N

(20)

By solving Equation (20), we can obtain α = [α1,α2, . . . ,αi]
T and b.[

0 1T
v

1v Ω + I/y

] [
b
α

]
=

[
0
y

]
(21)

where Ωi = ϕ(xi)
Tϕ(x) = K(xi, x), i = 1, 2, . . . , N, and I is an identity matrix.

The LSSVM prediction model is shown as follows:

y(x) =
N∑

i=1

αiK(x, xi) + b (22)

where α, b are the solution to Equation (22), K represents the corresponding kernel function,
and K(x, xi) = ϕ(xi)

Tϕ(x).
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The Gaussian (RBF) kernel function is used as the kernel function of the LSSVM. σ controls the
radial range of the function. The correlation between samples is weaker as the parameter σ is smaller,
and the easier it is to lead to overfitting. The larger parameter σ is, the stronger correlation between
sample data will be and is thus prone to underfitting.

In the LSSVM model of traffic flow prediction, the selection of regularization parameters γ and
Gaussian kernel parameters σ is the task of key importance in kernel-based technology; therefore, it is
necessary to select an appropriate optimization method to find and select these two parameters to
improve the prediction performance.

2.2.4. Parameter Optimization for LSSVM

The gray wolf optimizer (GWO) is an intelligent optimization algorithm that was developed as an
optimized search method inspired by gray wolf predation activities. It has been widely considered
by scholars for its strong convergence performance, few parameters, and easy realization and has
been commonly applied to parameter optimization, image classification, and other fields [36,37].
Given the advantages of the GWO, we used the GWO optimization method to optimize parameters of
regularization parameters γ and Gaussian kernel parameters σ for the LSSVM prediction model in
this study.

The GWO optimization algorithm simulates the predation behavior of wolves, including the
processes of social hierarchy, encircling, and attacking prey. The gray wolf group is divided into four
social hierarchies from the highest to the lowest, including the head wolf (or dominant wolf) α, which is
mainly responsible for making decisions on the activities of wolves and has the strongest management
ability. Other wolves should follow their orders; the β wolf obeys α wolves; the δ wolf, obeying the
α and β wolf, controls the remaining levels. The ω wolf, at the bottom of the class, is subject to the
decision-making of the wolves of all other social levels.

(1). Mathematical description. For the GWO model, α is the optimal solution, β and δ are the
suboptimal solutions, and ω is the candidate solution. The GWO optimization process is mainly
guided by α, β, and δ whereas ω just follows them to track, surround, and attack the prey.

(2). Encircling Prey. When gray wolves search for prey, they will gradually approach and surround
the prey and then keep iterating on this process, leading to the globally optimal solution. The update
formulas for wolf predation position are described briefly below:

→

D =

∣∣∣∣∣→C ·→Xp(t) −
→

X(t)
∣∣∣∣∣ (23)

→

X(t + 1) =
→

Xp(t) −
→

A ·
→

D (24)

→

A = 2
→
a ·
→
r 1 −

→
a (25)

→

C = 2 ·
→
r 2 (26)

where t represents the present iteration.
→

D is the distance between the gray wolves and the corresponding

prey.
→

X(t) is the position of the wolf. Correspondingly
→

Xp(t) is the position of prey.
→

A and
→

C is the

coefficient vector of synergy.
→
a is the linear decline parameter, decreasing from 2 to 0 at each iteration.

r1 and r2 are the random vectors ranging from 0 to 1, respectively.
(3). Hunting Prey. Gray wolves can identify the location of potential prey (the optimal solution),

and the search process is mainly completed by the guidance of α, β, and δ; however, the spatial
characteristics for the solution of many problems are unknown, and the gray wolf is unable to
determine the exact location of the optimal solution. α, β, and δ in the current population were
kept, then the direction of movement towards the prey was determined according to their position
information. The positions of α, β, δ, and ω were updated and adjusted. The first three optimal values
of the history are preserved during the iteration process, and other individuals in the population
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constantly update their positions through the location of the optimal value. The following is the
mathematical representation of the gray wolves hunting procedure:

→

Dα =

∣∣∣∣∣→C1 ·
→

Xα(t) −
→

X(t)
∣∣∣∣∣ (27)

→

Dβ =

∣∣∣∣∣→C2 ·
→

Xβ(t) −
→

X(t)
∣∣∣∣∣ (28)

→

Dδ =

∣∣∣∣∣→C3 ·
→

Xδ(t) −
→

X(t)
∣∣∣∣∣ (29)

→

X1 =
→

Xα −
→

A1 ·
→

Dα (30)
→

X2 =
→

Xβ −
→

A2 ·
→

Dβ (31)

→

X3 =
→

Xδ −
→

A3 ·
→

Dδ (32)

→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(33)

where
→

Xα ,
→

Xβ, and
→

Xδ represent the position vector of α, β, and δ, respectively, at the present iteration.
→

Dα ,
→

Dβ ,
→

Dδ are the distance vectors between ω and α, β, and δ, respectively, at the present iteration.
→

X1 ,
→

X2, and
→

X3 are the location updating procedure under the leadership of α, β, and δ, respectively.
→

A is the convergence factor. When
∣∣∣∣∣→A∣∣∣∣∣ > 1, wolves scatter in search of the target, allowing the GWO to

perform global searches; when
∣∣∣∣∣→A∣∣∣∣∣ < 1, the wolves concentrate their search on the target.

→

C is also a

random vector. Figure 1 depicts the gray wolf update search location.
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Figure 1. The gray wolf position update process for hunting prey.

(4). Attacking Prey. The purpose is to capture the target, that is, to complete the GWO. According to

Equation (28), the decrease in the value of
→
a will cause the value of

→

A to fluctuate accordingly and
→

A ∈ [−1, 1].

3. Highway Traffic Flow Forecasting Model

3.1. The Proposed Highway Traffic Flow Prediction Model

In the study, we established an improved hybrid model based on the CEEMDAN and LSSVM
methods to predict highway traffic flow. The core of the prediction method is decomposition and
prediction. First, the original traffic flow time series is decomposed by the CEEMDAN method into a
certain number of time-series components from high to low frequency, and then these components are
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reorganized according to IWPE. Prediction models are constructed for these recombined components,
and the prediction results are combined as the final traffic flow forecast result. Figure 2 shows the
structure of the proposed model. The specific implementation steps are described as follows.
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Step 1. Original data decomposition. The original nonstationary highway traffic flow data
collected per 5-min intervals is decomposed by the CEEMDAN method, and K IMF components and a
residual component R(t) are obtained. The CEEMDAN method overcomes modal aliasing and reduces
the difficulty and complexity of expressway short-term traffic flow data prediction. The decomposed
components are simpler than the original traffic flow data. The error obtained by predicting the
decomposed components is smaller than the original number, and the complexity is not so high.

Step 2. Subsequences reorganization. Entropy can describe the complexity of the time series.
In this paper, the permutation entropy is improved to obtain an improved weighted permutation
entropy. Through calculating the IWPE of each component, the complexity of each subsequence is
obtained. Then the sequences with similar IWPE are combined to form a new component, which
reduces the number of components and avoids repeated calculations, thereby reducing the amount of
calculation in the prediction stage.

Step 3. Traffic flow prediction. The LSSVM model components are used for prediction.
The regularization parameters of LSSVM and Gaussian kernel function parameters determine the effect
of the prediction model; therefore, we use the GWO optimization algorithm to improve the LSSVM.
To minimize RMSE of the prediction result, finding the optimal parameter combination avoids artificial
selection of parameters, thereby improving the prediction accuracy. Finally, the traffic flow prediction
results are added together to obtain the final prediction result.

3.2. Performance Criteria

In the study, we used three important evaluation criteria to measure the performance of the
prediction model: mean absolute error (MAE), root mean square error (RMSE), and equilibrium
coefficient (EC).

(1) MAE
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The value range of MAE is [0, +∞). When the prediction value is the same as the actual data, it is
equal to 0, indicating that the established model is perfect. The greater the error between the true data
and predicted result, the greater the value.

MAE =
1
N

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (34)

(2) RMSE
The value range of RMSE is [0, +∞). When the prediction value is the same as the actual data, it is

equal to 0, indicating that the established model is perfect. The greater the error between the true data
and prediction result, the greater the value.

RMSE =

√√√√
1
N

N∑
i=1

(ŷi − yi)

2

(35)

(3) EC
EC represents the fitting degree. EC > 0.85 means the prediction effect is good; EC > 0.9 means

that the prediction effect is very good. The following is the calculation formula:

EC = 1−

√
N∑

i=1
(ŷi − yi)

2

√
N∑

i=1
yi2 +

√
N∑

i=1
ŷi2

(36)

4. Experimental Verification

4.1. Experimental Data Description

Extensive experiments were performed to quantitatively verify the performance of our proposed
method. For this study, we adopted the data from the California Department of Transportation Caltrans
Performance Measurement System (PeMS) collected from the detector no. VDS-1209092 on I405-N
freeway in the City of Irvine [38]. The PeMS can collect, filter, process, aggregate, and examine traffic
data in real-time. We used the datasets collected from 1 May to 7 May 2019, per 5-min interval,
containing information such as traffic flow, speed, and occupancy rate, for a total of 2016 data points
to train and modify the prediction models. The datasets were divided into two parts. The first part
(1 May 2019 to 5 May 2019) was used as training data to train the proposed model. The second part,
from 6 May 2019 to 7 May 2019, was used to adjust the model parameters. Then, we used the trained
model to predict the traffic flow of 8 May 2019, and the predicted value was compared with the actual
value of 8 May 2019. Figure 3 illustrates the data collection location and relevant details. Figure 4
reveals the raw traffic flow and speed data from 1 May to 7 May 2019.

4.2. Traffic Flow Time-Series Decomposition and Reconstruction with the CEEMDAN-IWPE Method

The CEEMDAN decomposition method was used to decompose the highway traffic flow data.
Figure 5 shows the decomposition results. The CEEMDAN method can decompose the traffic flow
data into 12 subsequences, including 11 IMF components, and 1 residual component. To highlight
the performance of CEEMDAN, both EMD and EEMD methods were used to process the same traffic
flow data. Figure 6 and show the decomposition results of the EMD and EEMD methods, respectively.
Figure 6 shows that the EMD model decomposes the road traffic flow into 11 subsequences, including
10 IMFs, and 1 residual. Similarly, Figure 7 shows that EEMD decomposes the road traffic flow
into 12 subsequences, including 11 IMFs, and a residual. The results indicate that the EMD, EEMD,
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and CEEMDAN models can effectively decompose the complex original highway traffic flow data
sequence into a certain number of components from high frequency to low frequency. It is worth
noting that each IMF component decomposed by the CEEMDAN method is relatively independent,
and the mode mixing phenomenon has been significantly improved. At the same time, Figure 8a–c
show the iterations for realizing each IMF component of CEEMDAN, EEMD, and EMD methods.
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Figure 5. The results of the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) method.
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Figure 7. The results of the short-term highway traffic flow decomposed by the empirical mode
decomposition (EMD) model.
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If we directly establish prediction models for all components decomposed by CEEMDAN, multiple
errors will be introduced into the models, thus, the final prediction error will increase, the prediction
will be inaccurate, and the calculation time will increase; therefore, to reduce the prediction error and
calculation cost, we used the IWPE method proposed in Section 2 to calculate the IWPE value of IMFs
and reconstruct the components.

When calculating each IMF component’s IWPE, it is necessary to reconstruct the phase space of
each IMF component separately. In the process of time series phase space reconstruction, we used
the classical C-C method to determine the two important parameters of phase space reconstruction,
namely the delay parametric and the embedded dimension. According to the C-C method, the delay
time τ is the time corresponding to the first local minimum, and the relationship between embedding
dimension d and delay time τ is τω = (d − 1)τ, where τω is the time corresponding to the global
minimum. Figure 9 shows the relationship between the delay time τ and the embedded dimension d
of each IMF component time series decomposed by CEEMDAN. Table 1 shows the τ, d, and the IWPE
value for each IMF component.
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Figure 9. The relationship between the delay time τ and the embedded dimension d of each IMF
component using the C–C method.

Figure 10 shows the IWPE values of all components. The IWPE value of the IMF component
obtained by CEEMDAN decomposition reduces with the decrease of the IMF frequency, which shows
that it is effective to measure the complexity and randomness of the IMF component by using the
IWPE method. Then, we reorganize the IMF according to the IWPE value of each IMF component
and merge the IMF components with similar IWPE values into a new subsequence. In this way,
the number of components is greatly reduced, thereby reducing the computational complexity and
time overhead of the prediction phase. In Figure 10, the subsequences IWPE value of IMF1, IMF2,
IMF3, IMF4, and IMF5 are similar, and the differences are small, so they can be merged, integrated,
and reconstructed into a new subsequence, named IMFr 1, to input into the GWO-LSSVM for training
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and forecasting. The IWPE values of IMF8 and IMF9 are similar, thus IMF8 and IMF9 can be combined
into a new sequence. The IWPE values of IMF6, IMF7, IMF10, IMF11, and residual are quite different
and remain their original values. After the reconstruction is completed, the number of subsequences is
reduced from 12 to 7. The reconstructed sequences are shown in Figure 11.

Table 1. The parameters τ, d, and improved weighted permutation entropy (IWPE) value calculated
for each IMF component.

Component τ d PE IWPE Value Normalized IWPE

IMF1 6 7 1.31962 1.18967 0.18082
IMF2 4 8 1.30611 1.18989 0.18086
IMF3 2 37 1.31503 1.18881 0.18069
IMF4 4 13 1.31713 1.18144 0.17957
IMF5 8 6 1.27613 1.16850 0.17760
IMF6 10 8 1.02311 1.03449 0.15724
IMF7 18 9 0.88203 0.92609 0.14076
IMF8 20 11 0.52279 0.59146 0.08990
IMF9 31 7 0.49014 0.59723 0.09077
IMF10 12 10 0.31855 0.41780 0.06353
IMF11 16 12 0.16218 0.30883 0.04694

RES 20 1 0.00203 0.00120 0.00001
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4.3. Highway Traffic Flow Forecasting Results and Analysis

4.3.1. Highway Traffic Flow Forecasting

After decomposing and reconstructing the original traffic flow time series, 7 GWO-LSSVM
prediction models were constructed, and 7 subsequences were used to train and modify the models.
After comparing and analyzing the kernel function for the LSSVM model, we decided to use the
Gaussian kernel function as the kernel function. The GWO algorithm was used to optimize the two
parameters of LSSVM to obtain the optimal parameter combination. The minimum RMSE index was
selected as the optimization target. The relationship between the number of iterations and the fitness
value in the optimization process is shown in Figure 12. We set the maximum number of iterations to
10; after 7 iterations, the objective function value tends to flatten to the minimum. Finally, we found
that the regularization parameter was 88.49, and the Gaussian kernel parameter was 1.74. The final
prediction result is shown in Figure 13. Figure 13 suggests that the predicted value is almost the same
as the actual value with a small error. The MAE is 0.92, and the RMSE is 1.22, indicating that the
proposed prediction model can effectively predict traffic flow.
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Figure 13. Highway traffic flow forecasting results based on the proposed model.

4.3.2. Comparison Models

To confirm the performance and superiority of the proposed hybrid prediction model (i.e., a hybrid
of CEEMDAN with IWPE for raw traffic data decomposition and GWO optimized LSSVM for prediction,
abbreviated as CEEMDAN-IWPE-LSSVM-GWO), the same highway traffic flow experimental data
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were employed for modeling. A total of 12 alternative forecasting models were constructed for
comparative analysis with the proposed hybrid model. Table 2 shows the instructions of comparison
models in detail.

Table 2. The instructions of comparison models. PE: permutation entropy.

Model Model Instruction Abbreviation

proposed model a hybrid model of CEEMDAN with IWPE for raw traffic data
decomposition and GWO optimized LSSVM for prediction CEEMDAN-IWPE-LSSVM-GWO

Model 1 Least-squares support vector machine model LSSVM

Model 2 Back-propagation neural network model BP

Model 3 Support vector machine model SVM

Model 4 Autoregression moving average model ARIMA

Model 5 GWO-optimized LSSVM model LSSVM-GWO

Model 6 a hybrid model of EMD with IWPE and GWO-optimized LSSVM EMD-IWPE-LSSVM-GWO

Model 7 a hybrid model of EEMD with IWPE and GWO-optimized LSSVM EEMD-IWPE-LSSVM-GWO

Model 8 a hybrid model of CEEMDAN with IWPE and LSSVM CEEMDAN-IWPE-LSSVM

Model 9 a hybrid model of CEEMDAN with PE and GWO optimized LSSVM CEEMDAN-PE-LSSVM-GWO

Model 10 a hybrid model of CEEMDAN with IWPE and BP CEEMDAN-IWPE-BP

Model 11 a hybrid model of CEEMDAN with IWPE and SVM CEEMDAN-IWPE-SVM

Model 12 a hybrid model of CEEMDAN with IWPE and ARIMA CEEMDAN-IWPE-ARIMA

Figure 14 and Table 3 show that the calculations of MAE, RMSE, and EC of the proposed model are
the best, and its forecasting accuracy is the highest. The detailed analysis and discussion are as follows.
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Figure 14. The comparison of the comparison models with the proposed model: (a) the comparison
of the Model 8 and Model 9 with the proposed model; (b) the comparison of the Model 10, Model 11
and Model 12 with the proposed model; (c) the comparison of the Model 6 and Model 7 with the
proposed model; (d) the comparison of the Model 1, Model 2, Model 3, Model 4 and Model 5 with the
proposed model.

Table 3. Model performance for traffic flow prediction.

Forecasting Model MAE RMSE EC Rank

Proposed model 1.9167 2.2623 0.992 1
Model 1 22.4542 28.1592 0.919 10
Model 2 24.6958 32.1445 0.907 12
Model 3 23.5438 29.7531 0.914 11
Model 4 26.0764 31.4462 0.875 13
Model 5 21.3694 26.6698 0.932 9
Model 6 19.8924 24.5237 0.946 7
Model 7 21.0938 25.4538 0.941 8
Model 8 7.7882 9.1956 0.981 3
Model 9 3.0799 4.0412 0.984 2
Model 10 12.3194 14.8003 0.978 4
Model 11 13.5625 15.7054 0.966 5
Model 12 14.3958 18.7354 0.953 6

(1). In Figure 14a, we compare Model 9 to the proposed model (CEEMDAN-PE-GWO-LSSVM),
which shows that the MAE and RMSE of the proposed model are improved by 37.77% and 44.01%,
respectively. The results show that the improved weighted permutation entropy can reduce the error
more effectively and is the most effective model in the data processing stage. This is because, in the



Sustainability 2020, 12, 8298 20 of 22

process of IMF component reconstruction, the weighted permutation entropy (IWPE), which can
comprehensively measure the complexity of IMF components, has a better processing effect than
the PE method. Comparing Model 8 (CEEMDAN-IWPE-LSSVM) to the proposed model, the MAE
and RMSE of the latter are improved by 75.39% and 75.40%, respectively, more than two times as
much as the former compared to the CEEMDAN-IWPE-GWO-LSSVM model, which indicates that the
GWO-optimized LSSVM model can greatly increase prediction precision. Since the training process of
the LSSVM involves the adjustment of many parameters by the GWO method, the forecasting accuracy
of this model is further improved after systematic parameter optimization.

(2). In Figure 14b, we compare Model 10 (CEEMDAN-IWPE-BP), Model 11 (CEEMDAN-IWPE-SVM),
and Model 12 (CEEMDAN-IWPE-ARIMA) to the proposed model, respectively: the prediction effect of
the proposed model is significantly better than Model 10, Model 11, and Model 12. The evaluation
indexes of the proposed model are the best, and its forecasting accuracy is the highest. This suggests
that the LSSVM has higher accuracy than the BP, SVM, and ARIMA models and has broad application
prospects in highway traffic flow prediction.

(3). InFigure14c,wecompareModel6(EMD-IWPE-LSSVM-GWO)andModel7(EEMD-IWPE-LSSVM-GWO)
with the proposed model, respectively: the value of MAE reduced from 19.8924 and 21.0938 to 1.9167,
and the value of RMSE reduced from 24.5237 and 25.4538 to 2.2623. The forecasting effect of the
proposed model is greatly improved, and the forecasting error is reduced. The apparent improvement
indicates that the fluctuation of traffic flow forecasting results obtained by the CEEMDAN method is
smoother, and it can reduce the nonlinearity and forecasting errors of the raw dataset.

(4). In Figure 14d, we compare Model 1 (LSSVM), Model 2 (BP), Model 3 (SVM), Model 4 (ARIMA),
and Model 5 (LSSVM-GWO) with the proposed model, respectively: the prediction effect of the
proposed model is greatly improved, and the forecasting error is reduced. The results suggest that the
original traffic flow data through decomposition and prediction is significantly better than the direct
prediction without data decomposition.

In Table 3, we rank the prediction effects of the proposed model and comparison model from
highest to lowest as follows: the proposed model, Model 9, Model 8, Model 10, Model 11, Model 12,
Model 6, Model 7, Model 5, Model 1, Model 3, Model 2, and Model 4. This illustrates that, if the
original traffic flow data were processed to a certain extent, no matter what decomposition method is
used, the performance would be better than that of direct prediction without decomposition. The EC
value of the proposed model is the highest, up to 0.992, indicating that the proposed prediction model
can highly fit and predict the trend of future traffic flow.

5. Conclusions

In this paper, we proposed an improved hybrid model of CEEMDAN with IWPE for raw traffic
data decomposition and GWO-optimized LSSVM for short-term highway traffic flow prediction.
The proposed method first uses the CEEMDAN method to decompose the original traffic flow
time-series data into a certain number of IMF components. Since training and building a prediction
model for each IMF component in the prediction stage will increase the computational cost and
amount of calculation, a method for reconstructing IMF components was proposed. The IWPE of
each IMF time-series component instead of permutation entropy was calculated after phase space
reconstruction, and then IMF components with similar entropy values were combined to obtain
recombined components. Next, the prediction model was established. The LSSVM prediction model
was adopted for prediction. We introduced the GWO optimization algorithm to optimize the important
parameters of the LSSVM model, which avoided the artificial selection of parameters and improved
prediction accuracy. The proposed method was tested on the collected data through California’s
Freeway Performance Measurement System and compared with several other models. By analyzing
the prediction results of different comparison models, we showed that the model proposed in this
paper is superior to other prediction models in three aspects: 1. The CEEMDAN model was used to
process and predict the original data, which reduced the prediction error; 2. The proposed IWPE can
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make up for PE defects while considering the numerical value and the permutation position of time
series; and 3. The GWO method was used to optimize LSSVM parameters and can improve prediction
accuracy. In future studies, we plan to study a highway traffic flow prediction method that takes space,
weather, accidents, and other factors into consideration.
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