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Abstract: Machining allowance distribution and related parameter optimization of machining
processes have been well-discussed. However, for energy saving purposes, the optimization priorities
of different machining phases should be different. There are often significant incoherencies between
the existing research and real applications. This paper presents an improved method to optimize
machining allowance distribution and parameters comprehensively, considering energy-saving
strategy and other multi-objectives of different phases. The empirical parametric models of different
machining phases were established, with the allowance distribution problem properly addressed.
Based on previous analysis work of algorithm performance, non-dominated sorting genetic algorithm
II and multi-objective evolutionary algorithm based on decomposition were chosen to obtain Pareto
solutions. Algorithm performances were compared based on the efficiency of finding the Pareto fronts.
Two case studies of a cylindrical turning and a face milling were carried out. Results demonstrate that
the proposed method is effective in trading-off and finding precise application scopes of machining
allowances and parameters used in real production. Cutting tool life and surface roughness can be
greatly improved for turning. Energy consumption of rough milling can be greatly reduced to around
20% of traditional methods. The optimum algorithm of each case is also recognized. The proposed
method can be easily extended to other machining scenarios and can be used as guidance of process
planning for meeting various engineering demands.

Keywords: Pareto front; machining allowance distribution; cutting parameters optimization; energy
conservation; economic objectives

1. Introduction

Despite the increasing use of low carbon energy sources, fossil fuels remain as the dominant
energy sources worldwide [1,2], with their share accounting for 81% in 2008 to 74% in 2035 [3,4]. The
rising demand for fossil fuels led to CO2 emissions rising from 29.3 gigatons (Gt) in 2008 to 35.4 Gt in
2035 [5,6]. Researchers suggested that the widely-used machining processes are responsible for about
84 percent of energy-related CO2 emissions and 90 percent of the energy consumption in the industrial
sector [7–9]. Therefore, reasonable planning of the machining process can be effective in improving the
energy consumption and carbon emission situation [10]. Energy savings up to 6%–40% can be obtained
based on the optimum choice of cutting parameters and machining allowance distribution [11].

While in real production, the optimization focus varies with different phases of the process.
During rough machining, the equilibrium between production rate and energy consumption will be
the main consideration. However, the quality of the products is the priority during finish machining.
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In this research, for the comprehensive optimization of production quality, efficiency and
energy-saving, a method to optimize the machining planning strategy of the whole process is presented.
Modeling of optimization objectives on each phase was carried out, including steps of theoretical
analysis, experiment, and statistical regression. The optimum machining allowance and parameters
of different phases were obtained, which is based on the principle of finding Pareto fronts for
multi-objective optimization.

Outer cylinder turning and face milling were carried out as case studies. It is revealed that
the proposed method is effective in finding the equilibrium between low-carbon manufacturing and
production demand fulfillment. The overall flow of this research is shown in Figure 1.
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The remainder of this paper is organized as follows. The literature review is presented in the
next section. Detailed discussions of the modeling method for machining allowance distribution
and multi-objective optimizations are given in section “Modeling of machining process considering
machining allowance distribution”, followed by case studies to verify the proposed method in section
“Case studies”. Finally, the conclusion and future research directions are summarized in section
“Conclusion and future work”.

2. Literature Review

Reasonable planning of the machining process, which includes optimization of machining
parameters and machining allowance distribution, etc., can be effective in improving the energy
consumption and carbon emission situation.

Therefore, many researchers have highlighted the optimization of machining parameters. For
example, Lv et al. [12] carried out an investigation into methods for predicting material removal energy
consumption in turning. Jia et al. [13] established prediction models for feeding power and material
drilling power to support sustainable machining. Franco et al. [14] analyzed a parametric model
of energy consumption in micro-drilling processes. Sealy [15] proposed a new parametric energy
consumption model with high accuracy in precision hard milling for sustainability.

While research of merely modeling or single-objective optimizations has limits in trading-off.,
machining parameters implicated by sustainability requirements should not give way to deteriorations
affecting quality and productivity [16,17].

Therefore, many of the existing works are multi-objective optimization problems (MOP),
considering the equilibrium between energy saving and economic objectives. For example, Li et al. [18]
carried out selection of optimum parameters in multi-pass face milling for maximum energy efficiency
and minimum production cost. Albertelli et al. [19] presented an energy-oriented multi cutting
parameter optimization in face milling. Wang et al. [20] carried out multi-objective optimization
considering energy consumption, cost, and surface roughness for a turning process. Yan and Li [21]
proposed a multi-objective optimization method called RSM in the milling process, which is to evaluate
trade-offs between sustainability, production rate, and cutting quality.
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However, these studies ignored the fact that, in real production, optimization focus varies in
accordance with different phases of processes. The machining allowance distribution of each phase
should also be taken into consideration.

Machining allowance is the workpiece provided beyond the finished contours on a prepared
component, which is subsequently removed in machining. There are two machining allowances for
each of the process phases, which typically include the rough machining and the finish machining.
The machining allowance distribution of each phase can be crucial in meeting the demands in real
production, and related machining parameter optimization of each phase should also be taken into
consideration comprehensively.

However, during the rough machining phase, the machining process mainly focuses on process
efficiency in real production. For example, Camposeco-Negrete [22] presented an experimental study
to optimize machining time under roughing conditions. On the other hand, however, the finish
machining phase mainly focuses on quality demands. For example, Wei et al. [23] carried out a
prediction of cutting force of ball-end milling for high efficiency, precision, and equipment utilization.
Hanafi et al. [24] determined the optimal setting of machining parameters in terms of minimum surface
roughness and cutting power.

These studies barely consider the comprehensive distribution of machining allowance to find the
equilibrium of different phases, and the energy consumption issues were ignored or incompletely
involved in reducing carbon emission.

For the machining allowance analysis, Zhang et al. [25] proposed a force-measuring-based
approach for feed rate optimization considering the machining allowance. Jiang et al. [26] proposed a
non-uniform allowance allocation method for NC programming of structural parts.

However, these studies either barely focus on energy consumption, or dwell on the system-level,
which implies that the optimization results will have little value in improving the process in detail.
Actually, according to our investigation, the existing studies about machining allowance distribution
rarely concern process improvement for energy saving so far.

In summary, machining allowance distribution and parameter optimization for energy-saving
strategies deserve further study.

3. Modeling of Machining Process Considering Machining Allowance Distribution

In this research, the most commonly used machining processes of cylindrical turning and step
milling are used as case studies for deliberating the problem. The analysis of the two kinds can be
used as guidance for future applications in other complex scenarios.

3.1. Optimization Focuses During Different Machining Phases

When the total volume to be tooled is fixed, the allowance distribution of different machining
phases can be crucial to meet the production demands. Figure 2 shows the machining allowance
distribution of a typical cylindrical turning process with rough turning and finish turning. lt is the total
axial length of the workpiece to be tooled. d1 and d2 are the radial distance of the workpiece for rough
turning and finish turning, and they are taken as the machining allowances of the two turning phases.

Therefore, the total material volume to be tooled in a turning process Vt can be expressed as
Equation (1). R is the radius of the original cylindrical workpiece.

Vt = lt·π·
[
R2
− (R− d1 − d2)

2
]

(1)

During different phases of the turning process, machining parameter groups can be different.
During rough turning, the cutting parameters include cutting speed vrt[m/min], spindle rotation speed
nrt [rpm], feed rate frt[mm/rec], feed speed fvrt[mm/min], cutting depth aprt[mm], and during finish
turning, those include cutting speed vft[m/min], spindle rotation speed nft[rpm], feed rate fft[mm/r],
feed speed fvft[mm/min], cutting depth apft[mm], respectively.
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The optimization focus of these parameters depends on different optimization objectives of each
phase. During rough turning, the optimization objectives include reducing energy consumption Ert[J]
for low-carbon emission, minimizing feeding time tfrt[min] for production efficiency. Besides, because
of the relatively big cutting parameters causing damage to cutting tools, the cutting tool life TLrt[min]
should also be taken into consideration. On the other hand, the optimization objectives of finish turning
phase include reducing energy consumption Eft[J], minimizing feeding time tfft[min] for production
efficiency, minimizing surface roughness Rat[µm] for quality assurance, and because of the frequently
used high-speed cutting during finish turning, the cutting tool life during finish turning TLft[min]
should also be considered.

Similarly, Figure 3 shows the machining allowance distribution of a typical step milling process.
lm[mm] is the length of the workpiece to be tooled, w[mm] is the width, h1[mm] and h2[mm] are
heights of the workpiece for rough milling and finish milling. Therefore, the total workpiece volume
to be tooled in a milling process Vm can be expressed as Equation (2):

Vm = lm·w·(h1 + h2) (2)

During rough milling, machining parameters include cutting speed vrm[m/min], spindle rotation
speed nrm[rpm], feed rate frm[mm/rec], feed speed fvrm[mm/min], cutting depth aprm[mm], cutting
width aerm[mm], and for finish milling, those include cutting speed vfm[m/min], spindle rotation speed
nrm[rpm], feed rate ffm[mm/rec], feed speed fvrm[mm/min], cutting depth apfm[mm], and cutting
width aefm[mm].

Similarly, the optimization objectives of rough milling include reducing energy consumption Erm[J]
for low-carbon emission, minimizing cutting time tfrm[min] for production efficiency, and extending
cutting tool life TLrm[min], and for finish turning, those include reducing energy consumption Efm[J],
minimizing cutting time tffm[min], minimizing surface roughness Ram[µm] for quality assurance, and
extending cutting tool life during finish turning TLfm[min].

The information about cutting parameters, optimization objectives and machining allowance
distribution for both turning and milling processes are listed in Table 1 as follows.
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Table 1. Cutting parameters, optimization objectives and machining allowances.

Machining Type Turning Process Milling Process

Machining phases Rough turning Finish turning Rough milling Finish milling

Machining
parameters

Cutting speed vrt
Spindle speed nrt

Feed speed fvrt
Feed rate frt

Cutting depth aprt

Cutting speed vft
Spindle speed nft

Feed speed fvft
Feed rate fft

Cutting depth apft

Cutting speed vrm
Spindle speed nrt
Feed speed fvrm

Feed rate frm
Cutting depth aprm
Cutting width aerm

Cutting speed vfm
Spindle speed nft
Feed speed fvfm

Feed rate ffm
Cutting depth apfm
Cutting width aefm

Optimization
objectives

Energy
consumption Ert
Cutting time trt
Cutting tool life

TLrt

Energy
consumption Eft
Cutting time tft

Surface roughness
RatCutting tool life

TLft

Energy
consumption Erm
Cutting time trm
Cutting tool life

TLrm

Energy Efm
Cutting time tfm

Surface roughness
RamCutting tool life

TLfm

Machining
allowance

Radial distance for
rough turning d1

Radial distance for
finish turning d2

Height of the
workpiece for

rough milling h1

Height of the
workpiece for

finish milling h2

3.2. Modeling of Relation between Cutting Parameters and Optimization Objectives

3.2.1. Modeling of Energy Consumption During Machining Process

According to our previous work [27,28], the energy consumption objective Eo during a machining
process with a fixed group of machining parameters can be approximately expressed as Equation (3).
t f is the lasting time of feed movement, tc is the lasting time of cutting materials. Figure 4 shows the
power profile of a typical milling process:

Eo =
(
Pb + Ps + Pr + P f

)
t f + Pctc. (3)

By carrying out experiments, the values of basic machine motion power Pb and fluid spraying
power Ps can be directly measured [27]. The selection of parameters, set-up, data acquisition, and
analysis methods of the experiments can be found in our previous work [29,30], and Figure 5 shows
the diagram of the experimental set-up.
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There is a piecewise relation between the spindle rotation power Pr and spindle speed n [r/min].
This can be expressed as a piecewise function as Equation (4), where CrA1, CrA2, CrB1, CrB2, CrC1, CrC2

are the coefficients of the three linear functions. nBA
M and nl

M are the turning points of this function,
which has three sections according to [31]. The values of these coefficients can be obtained by power
measurement and linear regression of the obtained data.

Pr =


CrA1n + CrA2 (n < nBA

M )

CrB1n + CrB2 ( nBA
M < n < nl

M)

CrC1n + CrC2 (n > nBA
M )

(4)
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The feed power Pf can be expressed as Equation (5) [29], where feed speed fvt is with the unit
of [mm/min]. The values of the two constants can be obtained by experimental power measurements
and quadratic regression like our previous work [27].

P f = C f 1 × fv + C f 2 × f 2
v . (5)

Material removal power Pc for a turning process Pct can be expressed as a function of cutting
speed vt, feed rate ft and cutting depth apt as Equation (6) shows. Cct, Cvct, C f ct, Capct represent the
coefficients of the function.

Pct = Cct·v
Cvct
t · ftC f ct ·apt

Capct (6)

Similarly, material removal power for a milling process Pcm can be expressed as a function of
rotation speed nm or cutting speed vm, feed speed fvm, cutting depth apm and cutting width aem, which
is shown as Equation (7). Ccm, Cncm, C f cm, Capcm, Caecm represent the coefficients, respectively.

Pcm = Ccm·nCncm
m · fvm

C f cm ·apm
Capcm ·aem

Caecm (7)

To get all these constants in the two equations, the Taguchi experimental design method was
introduced to obtain the values of Pc like [30].

3.2.2. Modeling of Machining Time

The feed time t f is often used as the machining efficiency objective to [27].
For a turning process with a fixed group of the three machining parameters, feed time t f t[min]

can be expressed as Equation (8). fvti is feed speed of the ith cutting [mm/min], Lst is the length of feed
path for one single cutting [mm], Nt is the feed times needed to cut the whole volume to be tooled.

t f t =

Nt∑
i=1

Lst

fvti
(8)

Feed speed of the ith cutting fvti can be calculated by using Equation (9), where ni is the spindle
rotation speed of the ith cutting [r/min].

fvti = ft·ni =
1000vt· ft·[r]

π
[
2R− apt(i− 1)

] (9)

The feed times needed to cut the whole volume to be tooled Nt can be obtained by using
Equation (10), where d is the total radial distance of the workpiece to be tooled in [mm].

Nt =
d

apt
(10)

By introducing Equations (9) and (10) into Equation (8), feed time t f t [min] for a turning process
with a fixed group of the three machining parameters can be expressed as Equation (11).

t f t =
πLst

[
4Rd− d2 + apt·d

]
2000vt· ft·apt·[r]

(11)



Sustainability 2020, 12, 638 8 of 32

For the milling process, feed time t f m [min] can be expressed as Equation (12), where Lsm is the
length of a single cutting path [mm], DT is the diameter of the cutting tool [mm], h is the total height
of the workpiece to be tooled [27].

t f m =
π·Lsm·DT·lm·h

1000vm· fm·apm·aem[r]
(12)

The material cutting time tc[min] is determined by the cutting volume V
[
mm3

]
and material

removal rate MRR
[
mm3/min

]
, which is expressed as Equation (13):

tc =
V

MRR
(13)

The value of MRR depends on the machining type and for the turning process, MRRt can be
expressed as Equation (14) [33].

MRRt = 1000vt· ft·apt·[r] (14)

By introducing Equation (14) into Equation (13), the material cutting time of a turning process
tct [min] can be expressed as Equation (15).

tct =
Vt

1000vt· ft·apt·[r]
(15)

For the milling process, MRRm can be expressed as Equation (16) [33].

MRRm =
1000vm· fm·apm·aem·[r]

π·DT
(16)

From Equations (15) and (16), the material cutting time of a milling process tcm [min] can be
expressed as Equation (18):

tcm =
π·DT·Vm

1000vm· fm·apm·aem·[r]
(17)

3.2.3. Modeling of Surface Roughness from Machining Process

According to Manupati [34] and Grote and Antonsson [35], with fixed machine and cutting tool,
the surface roughness of workpieces after the turning process can be estimated, and the corner radius
of the cutting tool must be considered.

If the corner radius rε is very small, surface roughness Rat [µm] can be calculated by using
Equation (18), where κr is main cutting edge angle, κ′r is a secondary cutting edge angle.

Rat =
ft

cotκr + cotκ′r
(18)

If the corner radius rε is relatively large and feed rate is relatively small, Rat can be calculated by
using Equation (19):

Rat =
f 2
t

8rε
(0 < ft ≤ 1.25 mm/r) (19)

If the corner radius is small and the feed rate is relatively large, Rat is calculated by Equation (20):

Rat =
ft − rε

(
tanκr

2 + tanκ
′
r

2

)
cotκr + cotκ′r

( ft > 1.25 mm/r) (20)
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For the milling process respectively, with fixed machine, cutting tool and workpiece, it is assumed
that surface roughness of workpieces after the milling process Ram [µm] can be estimated by using
Equation (21), where CRam, CRavm, CRa f m, CRaapm, CRaaem are the coefficients of the equation. The
values of them can be obtained by orthogonal experiments and statistical regression according to
Sun et al. [36].

Ram = CRam·v
CRavm
m · f

CRa f m
m ·a

CRaapm
pm ·aCRaaem

em (21)

3.2.4. Modeling of Cutting Tool Life

For the turning process, the cutting tool life can be expressed as Equation (22), with the form
of Taylor’s equations according to Armarego and Brown [37], where CTLt, CTLtv, CTLt f , CTLtap are
the coefficients of these equations. Those values can be obtained based on the type of cutting tool
and material.

TLt =
CTLt

vCTLtv
t f

CTLt f
t a

CTLtap
pt

(22)

Similarly, for the milling process, the tool life during rough milling and finish milling can be
expressed as Equation (23) according to Armarego and Brown [37] or Wu and Zhou [38].

TLm =
CTLm

vCTLmv
m f

CTLm f
m a

CTLmap
pm aCTLmae

em

(23)

4. Machining Parameter Optimization and Machining Allowance Distribution Based on
Modeling Results and PARETO Fronts Method

The machining allowance distribution heavily depends on cutting parameter optimization of
different machining phases. Therefore, the above modeling results can be used to find the optimum
machining allowance distribution and machining parameters.

According to our previous work [27], finding the Pareto fronts, namely none-determined solution
sets of MOPs, is an effective approach to describe the characteristics of the multi-objective solution space.
By carrying out the solving process, either the none-determined solutions prior to one single objective
or those prior to the overall trade-off can be effectively found simultaneously. And the performance of
a certain intelligent algorithm is mainly determined by its efficiency to find the Pareto fronts.

Based on the conclusions of related research [20,39] and our work [27], non-dominated sorting
genetic algorithm II (NSGA-II) and multi-objective evolutionary algorithm based on decomposition
(MOEA/D) are widely used intelligent algorithms based on GA. The two algorithms have shown great
abilities in solving similar engineering problems. Therefore, the optimization algorithm applied in this
study is NSGA-II and MOEA/D. To determine the most optimum algorithm for each specific scenario,
the average solving time, and the number of effectively found Pareto solutions of the two are compared.

4.1. Determining Rules and Parameters of Basic Genetic Algorithm, NSGA-II and MOEA/D

The coding and decoding rules of chromosome are used for preparation. The basic genetic
algorithm parameters include initial population M, gap between two generations G, crossover rate Rc,
mutation rate Rm and maximum evolution generations N. For more details about the parameters of
the basic genetic algorithm, please check our previous work [27]. The preset values of the operating
parameters of GA are listed in Table 2.

The basic principles of NSGA-II and MOEA/D are applied accordingly [40,41]. Specifically, for
NSGA-II, tournament selection is chosen as the selection policy, and the tournament size Stour is set as 5.
For MOEA/D, the neighbor size Snei is set as 30. The decomposition method is the Tchebycheff approach.
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Table 2. Operating parameters of GA.

Operating Parameters Remarks Values

M Size of the initial population 500
G Gap between parents and children 0.9
Rc Crossover rate 0.7
Rm Mutation rate 0.7/Lind
N The maximum evolution generations 300

4.2. Normalized Expression of Multi-Objective Problems Using Modeling Results

The normalization is realized using Equation (24), where fi(X) represents one of the sub-objective
functions, f ′i (X) is the one after normalization, X represents the variables, D is the value range of X.
The maximum and minimum values of fi(X) can be acquired by using the basic GA process.

f ′i (X) =
fi(X) −max( fi(X))

max( fi(X)) −min( fi(X))
X ∈ D (24)

Therefore, by introducing the modeling results above, namely Equation (3), Equation (11),
Equations (19)–(22), into Equation (24), the machining allowance distribution with MOP of the
machining parameters for a cylindrical turning process are expressed from Equation (25) to Equation (30),
where E′rt, t′t, TL′rt, E′f t, R′at, TL′f t are the normalized objective values to be optimized during the rough
turning or the finishing turning phases.

For rough turning phase:

OBJ1 = Min
[
E′rt

(
vrt, frt, aprt, d1

)]
(25)

OBJ2 = Min

 1

TL′rt

(
vrt, frt, aprt, d1

)  (26)

For finish turning phase:

OBJ3 = Min
[
E′f t

(
v f t, f f t, ap f t, d2

)]
(27)

OBJ4 = Min
[
R′at

(
f f t

)]
(28)

OBJ5 = Min

 1

TL′f t

(
v f t, f f t, ap f t, d2

)
 (29)

For the overall efficiency: OBJ6 = Min
(
t′t
)

t′t =
[
t f rt

(
vrt, frt, aprt, d1

)
+ t f f t

(
v f t, f f t, ap f t, d2

)]′ (30)

Equations (25)–(30) are all subject to constrains expressed by Equation (31), where ntMax, vtMax,
ftMax and aptMax are the maximum values of the parameters the turning machine can bear. d is the total
distance machining allowance of the part to be tooled, and it is determined by the design scheme.

st : constrains =



nrt, n f t ∈ [0, ntMax]

vrt, v f t ∈ [0, vtMax]

frt, f f t ∈ [0, ftMax]

aprt, ap f t ∈
[
0, aptMax

]
d1 + d2 = d

(31)
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Similarly, the MOP of a face milling process are expressed from Equation (32) to Equation (37).
For rough milling phase:

OBJ1 = Min
[
E′rm

(
vrm, frm, aprm, aerm, h1

)]
(32)

OBJ2 = Min

 1

TL′rm

(
vrm, frm, aprm, aerm, h1

)  (33)

For finish milling phase:

OBJ3 = Min
[
E′f m

(
v f m, f f m, ap f m, ae f m, h2

)]
(34)

OBJ4 = Min
[
R′am

(
v f m, f f m, ap f m, ae f m, h2

)]
(35)

OBJ5 = Min

 1

TL′f m

(
v f m, f f m, ap f m, ae f m, h2

)
 (36)

For the overall efficiency: OBJ6 = Min(t′rm)

t′rm =
[
t f rm

(
vrm, frm, aprm, aerm, h1

)
+ t f f m

(
v f m, f f m, ap f m, ae f m, h2

)]′ (37)

The constrains are expressed by Equation (38), where vmMax, fmMax, apmMax and aemMax are the
maximum values of the parameters, h is the total distance machining allowance.

st : constrains =



vrm, v f m ∈ [0, vmMax]

frm, f f m ∈ [0, fmMax]

aprm, ap f m ∈
[
0, apmMax

]
aerm, ae f m ∈ [0, aemMax]

h1 + h2 = h

(38)

4.3. Performance Evaluation Indicators of Intelligent Algorithms

The algorithms to be compared and selected are NSGA-II and MOEA/D, and the main consideration
is the solving efficiency, which is determined by two aspects. One is the average operating time for a
certain number of repeats of solving. This indicator is calculated by using Equation (39), where It in [s]
is the average operation time, nI is the number of repeats, and ti in [s] is the lasting time of a single
operation. Therefore, It can be regarded as an indicator to evaluate the solving speed.

It =

∑nI
i=1 ti

nI
(39)

Another key aspect is the number of effective Pareto solutions found eventually. That is represented
by the symbol of In. By carrying out the nI repeats, all of the Pareto solutions are gathered, and those
suitable for application are picked out to get the final value of In. In can be regarded as the indicator to
evaluate the efficiency of finding Pareto solutions.

In addition, the value of nI can be set depending on circumstances, and all of the solving
experiments are carried out by using MATLAB.



Sustainability 2020, 12, 638 12 of 32

5. Case Studies

5.1. Case 1: A Cylindrical Turning Process

The first case is a cylindrical turning process carried out on a CK6153i lathe cutting C45E4 carbon
steel, using VNMG160408-YBC351. Figure 6 shows the real scene of the cylindrical turning process.
Table 3 shows the geometrical parameters of the cutting tool.

Sustainability 2020, 12, 638 12 of 33 

Another key aspect is the number of effective Pareto solutions found eventually. That is 
represented by the symbol of 𝐼 . By carrying out the 𝑛  repeats, all of the Pareto solutions are 
gathered, and those suitable for application are picked out to get the final value of 𝐼 . 𝐼  can be 
regarded as the indicator to evaluate the efficiency of finding Pareto solutions. 

In addition, the value of 𝑛  can be set depending on circumstances, and all of the solving 
experiments are carried out by using MATLAB. 

5. Case Studies 

5.1. Case 1: A Cylindrical Turning Process 

The first case is a cylindrical turning process carried out on a CK6153i lathe cutting C45E4 carbon 
steel, using VNMG160408-YBC351. Figure 6 shows the real scene of the cylindrical turning process. 
Table 3 shows the geometrical parameters of the cutting tool. 

 

Figure 6. A case of cylindrical turning process. 

Table 3. Geometrical parameters of VNMG160408-YBC351 cutting tool. 

Clearance angle 𝛼  7°  
Main cutting edge angle 𝜅  93°  

Secondary cutting edge angle 𝜅  52°  
Corner radius 𝑟  0.8 mm 

5.1.1. Modeling Results of Energy Consumption of the Cylindrical Turning 

The power modeling results of basic machine movement 𝑃  and spraying cooling fluid 𝑃  can 
be obtained by direct experiment measurement. The results are 𝑃 = 3320 𝑊 and 𝑃 = 3740 𝑊 
according to the experiment data. 

The spindle rotation power 𝑃 [W] has a piecewise function with the spindle rotation speed 𝑛 [r/min] , a machining parameter. This can be expressed as a piecewise function according to 
Equation (4). To obtain the coefficients in the piecewise function, 𝑃  was measured when 𝑛  ranges 
from 0 to 1500 rpm with the increment of 100 rpm, and all these coefficients could be obtained by 
statistical regression. The results are shown as Equation (40). 

Figure 6. A case of cylindrical turning process.

Table 3. Geometrical parameters of VNMG160408-YBC351 cutting tool.

Clearance angle αo 7
◦

Main cutting edge angle κr 93
◦

Secondary cutting edge angle κ′r 52
◦

Corner radius rε 0.8 mm

5.1.1. Modeling Results of Energy Consumption of the Cylindrical Turning

The power modeling results of basic machine movement Pbt and spraying cooling fluid Pst can be
obtained by direct experiment measurement. The results are Pbt = 3320 W and Pst = 3740 W according
to the experiment data.

The spindle rotation power Prt[W] has a piecewise function with the spindle rotation speed
nt[r/min], a machining parameter. This can be expressed as a piecewise function according to Equation
(4). To obtain the coefficients in the piecewise function, Prt was measured when nt ranges from 0 to
1500 rpm with the increment of 100 rpm, and all these coefficients could be obtained by statistical
regression. The results are shown as Equation (40).

Prt =


1.120 nt + 44.320 (0 rpm < nt ≤ 1000 rpm)

0.560 nt + 608.500 (1000 rpm < nt ≤ 1300 rpm)

1.289 nt − 360.540 (1300 rpm < nt ≤ 1500 rpm)

(40)

The feed power P f t[W] can be expressed as a quadratic function of feed speed fvt according to
Equation (5). The values of the two constants can be obtained by experimental power measurements
and quadratic regression. Therefore, P f t was measured when fvt ranges from 0 to 2000 mm/min with
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an increment of 200 rpm, and the two constants in Equation (5) can be obtained by quadratic regression.
The result is shown as Equation (41).

P f t = 0.0135 fvt + 5× 10−6 f 2
vt. (41)

The material cutting power Pct[W] can be expressed as an index function according to Equation (6),
and all these coefficients can be obtained using Taguchi experiments and statistical regression like our
previous work by Lv et al. [29].

As presented in Table 4, four levels of cutting speed vt, feed rate ft and cutting depth apt were
selected from the tool manufacturers’ recommendation. The design matrix for turning experiments is
shown in Table 5. The regression result is expressed as Equation (42).

Pct = 44.60v0.910
t f 0.658

t a0.918
pt (42)

Table 4. Taguchi experiment levels of turning parameters.

Turning Parameters Level 1 Level 2 Level 3 Level 4

Cutting speed vt [m/min] 50 100 150 200
Feed rate ft [mm/r] 0.05 0.1 0.15 0.2

Cutting depth apt [mm] 0.5 1 1.5 2

Table 5. Parameter design matrix of turning experiments.

Experiment Order
Turning Parameters

Cutting Speed
vt [m/min]

Feed Rate
ft [mm/r]

Cutting Depth
apt [mm]

1 50 0.05 0.5
2 50 0.1 1
3 50 0.15 1.5
4 50 0.2 2
5 100 0.05 1
6 100 0.1 0.5
7 100 0.15 2
8 100 0.2 1.5
9 150 0.05 1.5
10 150 0.1 2
11 150 0.15 0.5
12 150 0.2 1
13 200 0.05 2
14 200 0.1 1.5
15 200 0.15 1
16 200 0.2 0.5

For this specific cylindrical turning process, we selected a cylindrical workpiece with the radius
R = 50 mm, the axial length of the workpiece to be tooled lt was 100 mm, the radial distance to be
tooled d = 25 mm and the length of a single feed path Lst was set to be 110 mm to avoid collisions.
Therefore, by introducing all this size information into Equation (11), the feed time of rough turning
t f rt[min] and finish turning t f f t [min] can be expressed as Equations (43) and (44).

t f rt =
11π

[
200d1 − d2

1 + aprt·d1
]

200vrt· frt·aprt
(43)
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t f f t =
11π

[
4× (50− d1)d2 − d2

2 + ap f t·d2
]

200v f t· f f t·ap f t
(44)

By introducing these size information into Equation (15), the cutting time of rough turning tcrt[min]
and finish turning tc f t[min] can be expressed as Equations (45) and (46).

tcrt =
π
(
100d1 − d2

1

)
10vrt· frt·aprt

(45)

tc f t =
π(100− 2d1 − d2)d2

10v f t· f f t·ap f t
(46)

where machining allowance of the two phases should confine to Equation (47):

d1 + d2 = d = 25 mm (47)

Table 2 shows the geometrical parameters of the cutting tool. Therefore, by introducing all these
parameters into Equations (19) and (20), the surface roughness after this turning process Rat[µm] can
be expressed as Equation (48) or Equation (49):

Rat =
f 2
t

6.400
(0 < ft ≤ 1.250 mm/r) (48)

Rat =
ft − 1.233

0.746
( ft > 1.250 mm/r) (49)

According to Equation (23), the cutting tool life during rough turning TLrt[min] and finish turning
TL f t[min] can be approximately estimated using Equation (50) by looking through Armarego and
Brown [37] based on the information about the cutting tool and the material.

TLt ≈
6.10011

v5
t f 1.750

t a0.750
pt

(50)

Therefore, for rough turning process, the energy objective Ert[J] can be expressed as Equation (51)
according to Equation (3):

Ert =
(
Pbt + Pst + P f t + Prt

)
t f rt + Pct·tcrt (51)

Furthermore, by introducing all these modeling results and case information into Equation (51),
Ert can be expressed as Equation (52):

Ert =
[
7060 + 0.0135 fvrt + 5× 10−6 f 2

vrt + Prt(nrt)
]
×

11π[200d1−d2
1+aprt·d1]

200vrt· frt·aprt

+44.60v0.910
rt f 0.658

rt a0.918
prt ·

π(100d1−d2
1)

10vrt· frt·aprt

(52)

Because of the near-to-linear relation as Equation (9) shows, the feed speed of the rough turning
process fvrt and spindle rotation speed nrt in Equation (52) were assumed to be their average, and they
can be calculated by using Equations (53) and (54).

fvrt =
1000 frtvrt

π(2R− d1)
=

1000 frtvrt

π(100− d1)
(53)

nrt =
1000vrt

π(2R− d1)
=

1000vrt

π(100− d1)
(54)



Sustainability 2020, 12, 638 15 of 32

The tool life during rough turning TLrt can be expressed as Equation (55):

TLrt ≈
6.10011

v5
rt f 1.750

rt a0.750
prt

(55)

Similarly, for finish turning process, by introducing all these modeling results and case information
into Equation (3), the energy objective E f t[J] can be expressed as Equation (56):

E f t =
[
7060 + 0.0135 fv f t + 5× 10−6 f 2

v f t + Prt
(
n f t

)]
×

11π[4×(50−d1)d2−d2
2+ap f t·d2]

200v f t· f f t·ap f t
+ 44.600v0.910

f t f 0.658
f t a0.918

p f t

·
π(100−2d1−d2)d2

10v f t· f f t·ap f t

(56)

In Equation (56), the feed speed of finish turning process fv f t and spindle rotation speed n f t were
assumed to be their average, and they can be calculated by using Equations (57) and (58).

fv f t =
1000 f f tv f t

π(100− 2d1 − d2)
=

1000 f f tv f t

π(50 + d2)
(57)

n f t =
1000v f t

π(100− 2d1 − d2)
=

1000v f t

π(50 + d2)
(58)

According to Equation (48) or Equation (49), the surface roughness objective for this turning
process Raot can be expressed as Equation (59) or Equation (60):

Rat =
f 2

f t

6.400
(0 < f f t ≤ 1.250 mm/r) (59)

Rat =
f f t − 1.233

0.746
( f f t > 1.250 mm/r) (60)

The tool life during finish turning TL f t[min] can be expressed as Equation (61):

TL f t ≈
6.10011

v5
f t f 1.750

f t a0.750
p f t

(61)

The cutting time objective tot[min] can be expressed as Equation (62):

tt =
11π

[
200d1 − d2

1 + aprt·d1
]

200vrt· frt·aprt
+

11π
[
4× (50− d1)d2 − d2

2 + ap f t·d2
]

200v f t· f f t·ap f t
(62)

Based on machine conditions and engineering experiences, all of the above machining parameters
were subject to constrain, as Table 6 shows. The accuracy of the machining parameters and allowance
to meet the demands were listed as follows: 10 rpm for nt, 0.1 mm/r for ft, 0.1 mm for apt, 0.1 mm for
d1 and d2.

Table 6. Constrains of machining parameters for this turning process.

Machining Parameters Constrains

Cutting speed vt 0 m/min ≤ vt ≤ 200 m/min
Rotation speed nt 100 r/min ≤ nt ≤ 1500 r/min

Feed rate ft 0.1 mm/r ≤ ft ≤ 2 mm/r
Cutting depth apt 0.1 mm ≤ apt ≤ 5 mm
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5.1.2. Normalized MOP Expression of the Objective Cylindrical Turning

By introducing all the modeling results and constrains into equations from Equation (25) to
Equation (30), the machining allowance distribution with MOP of the machining parameters for this
cylindrical turning process are expressed as equations from Equation (63) to Equation (68):

For rough turning phase:
OBJ1 = Min

(
E′rt

)
(63)

OBJ2 = Min
(

1
TL′rt

)
(64)

For finish turning phase:

OBJ3 = Min
(
E′f t

)
(65)

OBJ4 = Min
(
R′at

)
(66)

OBJ5 = Min

 1
TL′f t

 (67)

For the processing efficiency:
OBJ6 = Min

(
t′t
)

(68)

Following Equation (31), the constraints of this case scenario are ntMax = 800 r/min, vtMax =

200 m/min, ftMax = 2 mm/r, aptMax = 5 mm, so the objective functions from Equation (63) to Equation
(68) are subject to the constrain as Equation (69) shows:

st : constrains =



nrt, n f t ∈ [100, 1500]
vrt, v f t ∈ [0, 200]
frt, f f t ∈ [0.1, 2]

aprt, ap f t ∈ [0.1, 5]
d1 + d2 = 25

(69)

The basic GA algorithm was used to get the value ranges of each sub-objective function subject
to all the constraints, and the results are listed in Table 7. The minimum and the maximum values
can be used to calculate the normalized values of individuals, as Equation (24) shows, and backwards
as equal.

Table 7. Calculation results of value ranges of sub-object functions.

Objectives
(st: Constrains) Ert 1/TLrt Eft Rat 1/TLft tt

Minimum values 0 3.765× 10−8 0 1.563× 10−3 3.765× 10−8 0.205
Maximum values 2.322× 107 428.456 2.322× 107 1.028 101.675 3210.167

5.1.3. MOP Solving Using NSGA-II and MOEA/D, Optimization Results, and Validations

Following the algorithm evaluation method proposed in 4.3 and Equation (39), the number of the
operation repeating time was set to be 100, namely nI = 100. After the repeating, the lasting time of
each operation ti and all the Pareto solutions were gathered, then Equation (39) was used to calculate
the evaluation indexes. The results are listed in Table 8:
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Table 8. Performance evaluation indexes for the objective turning process.

Performance Evaluation Indexes It[s] In

NSGA-II 34.5 306

MOEA/D 17.5 355

To analyze the performance of the Pareto solutions gathered by the process, we compared
machining parameter groups acquired from handbook [34,35,42] and 10 solutions obtained from Pareto
fronts (each five from each algorithm). The values of each sub-objective were all calculated five times
to get the average. The data of the calculations are listed in Table 9. The relevant decoded parameters
are listed in Table 10.

Table 9. Simulation experiment data of objective turning process.

Solution Type:
Data of Validation Experiments (Average of Five Repeats):

Ert [J] TLrt [min] Eft [J] Rat [µm] TLft [min] tt [min]

Solutions from
handbooks

No. 1 3.653× 104 15.324 2.243× 104 2.954× 10−2 20.235 6.864

No. 2 4.456× 104 63.678 2.223× 104 2.926× 10−2 21.234 4.987

No. 3 3.764× 104 45.865 1.445× 104 2.558× 10−1 21.238 4.765

Pareto solutions
from NSGA-II

No. 1 3.431× 105 3.456× 103 1.746× 104 4.827× 10−2 7.856× 103 44.908

No. 2 5.623× 105 215.353 1.669× 105 5.927× 10−2 1.368× 104 25.098

No. 3 2.612× 105 2.345× 103 9.325× 103 9.398× 10−2 2.454× 103 29.564

No. 4 3.432× 105 3.569× 103 2.076× 104 6.725× 10−2 6.621× 103 38.908

No. 5 2.532× 105 2.324× 103 2.278× 104 5.098× 10−2 1.382× 104 30.235

Pareto solutions
from MOEA/D

No. 1 7.876× 104 164.098 4.259× 104 5.987× 10−2 2.766× 104 10.874

No. 2 5.432× 104 179.098 1.587× 105 4.092× 10−2 1.047× 104 20.375

No. 3 4.234× 104 109.543 1.434× 105 4.987× 10−2 9.647× 103 18.098

No. 4 7.875× 104 147.987 4.778× 104 4.876× 10−2 2.663× 104 10.75

No. 5 3.543× 105 3.523× 103 2.648× 104 4.098× 10−2 1.787× 104 36.985

Table 10. Decoded solutions of objective turning process.

Solution Type
Relevant Decoded Parameters

nrt
[rpm]

frt
[mm/r]

aprt
[mm]

d1
[mm]

nft
[rpm]

fft
[mm/r]

apft
[mm]

d2
[mm]

Solutions from
handbooks

No. 1 500 1.0 1.5 20.0 1000 0.5 0.5 5.0

No. 2 350 1.0 2.0 20.0 1000 0.5 0.5 5.0

No. 3 350 1.5 1.5 20.0 800 1.0 0.5 5.0

Pareto
solutions from

NSGA-II

No. 1 260 0.5 0.5 21.5 250 0.7 1.1 3.5

No. 2 250 1.9 0.5 14.0 250 0.5 0.5 11.0

No. 3 270 0.5 0.6 22.0 300 0.8 1.5 3.0

No. 4 250 0.5 0.5 21.6 280 0.6 1.0 3.4

No. 5 270 0.5 0.6 22.0 250 0.6 0.8 3.0

Pareto
solutions from

MOEA/D

No. 1 290 1.7 0.6 22.0 250 0.5 0.5 3.0

No. 2 260 2.0 0.6 14.0 260 0.5 0.5 11.0

No. 3 280 1.9 0.6 14.0 260 0.5 0.5 11.0

No. 4 300 1.7 0.6 21.6 250 0.5 0.5 3.4

No. 5 250 0.5 0.5 21.9 250 0.5 0.8 3.1
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For validations of the objective models above, validation experiments were carried out accordingly.
The deviation percentages between the average calculations and the real experiment measurements
were also calculated. The deviations of the models are listed in Table 11. It can be seen in Table 11
that all of the models have a deviation of less than 6%, so the accuracies of the objective models
are validated.

Table 11. Deviations of the objective turning models.

Solution Type Deviation Percentages of the Models:

Ert Eft Rat tt

Solutions from
handbooks

No. 1 3.533% 5.421% 2.544% 5.422%

No. 2 4.652% 5.644% 1.235% 5.642%

No. 3 2.451% 4.324% 2.654% 4.765%

Pareto
solutions from

NSGA-II

No. 1 4.311% 4.655% 2.654% 5.235%

No. 2 1.235% 5.654% 1.654% 5.423%

No. 3 4.321% 3.434% 3.543% 3.644%

No. 4 3.543% 5.655% 2.533% 4.643%

No. 5 3.342% 3.654% 1.644% 4.542%

Pareto
solutions from

MOEA/D

No. 1 4.325% 5.422% 1.952% 5.321%

No. 2 1.652% 4.345% 1.744% 5.322%

No. 3 4.311% 3.654% 2.652% 4.564%

No. 4 5.323% 5.312% 2.654% 4.653%

No. 5 4.345% 2.534% 3.443% 3.564%

5.2. Case 2: A Step Milling Process

A case of step milling conducted on an XHK-714F CNC machine center. The material used was
C45E4 carbon steels, and the cutting tool was YongTuo HSEM-4EML1435100. Figure 7 shows the real
scene of the step milling.
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5.2.1. Modeling Results of Energy Consumption of the Step Milling

Like the cylindrical turning, the power modeling results of basic machine movement and spraying
cooling fluid are Pbm = 3640 W and Psm = 2510 W, which were obtained by experiment measurements.

According to Equation (4), the coefficients in the piecewise function of spindle rotation power
Prm [W] were obtained by piecewise linear regressions, and the rotation speed nm ranges from 0 to
6000 rpm with the increment of 100 rpm. The results are shown as Equation (70):

Prm =


8.580× 10−2nm + 14.812 (0rpm < nm ≤ 2200 rpm)

2.453× 10−2nm + 157.432 (2200rpm < nm ≤ 3300 rpm)

6.028× 10−2nm + 31.543 (3300rpm < nm ≤ 6000 rpm)

(70)

According to Equation (5), the coefficients in the quadratic function of feed power P f m[W] were
obtained by quadratic regression when feed speed fvm ranges from 0 to 8000 mm/min with the
increment of 100 mm/min. The result is shown as Equation (71):

P f m = 4.683× 10−2 fvm + 8.421× 10−7 f 2
vm. (71)

According to Equation (7), all these coefficients of the function for material cutting power
Pcm[W] can be obtained by using Taguchi experiments and statistical regression like Lv et al. [29] and
Jia et al. [33].

As presented in Table 12, four levels of rotation speed nm, feed speed fvm, cutting depth apm and
cutting width aem were selected from the tool manufacturers’ recommendation. The design matrix
for milling experiments is shown in Table 13. The length of the cut for each test was 30 mm in
axial direction.

Table 12. Taguchi experiment levels of milling parameters.

Milling Parameters Level 1 Level 2 Level 3 Level 4

Rotation speed nm [rpm] 100 500 1500 3000
Feed speed fvm [mm/r] 100 500 1500 3000
Cutting depth apm [mm] 0.1 1 3 5
Cutting width aem [mm] 0.1 1 3 5

Table 13. Parameter design matrix of milling experiments.

Experiment
Order

Milling Parameters

Rotation Speed nm [rpm] Feed Speed fvm [mm/r] Cutting Depth apm [mm] Cutting Width aem [mm]

1 100 100 0.1 0.1
2 100 500 1 1
3 100 1500 3 3
4 100 3000 5 5
5 500 100 3 5
6 500 500 5 3
7 500 1500 0.1 1
8 500 3000 1 0.1
9 1500 100 5 1

10 1500 500 3 0.1
11 1500 1500 1 5
12 1500 3000 0.1 3
13 3000 100 1 3
14 3000 500 0.1 5
15 3000 1500 5 0.1
16 3000 3000 3 1

The regression result is expressed as Equation (72):

Pcm = 6.709× 10−2n0.163
m f 0.803

vm a0.938
pm a1.115

em (72)
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For this specific step milling process, we selected a square workpiece with the cutting length
lm = 50 mm, the width w = 50 mm, the total height to be tooled h = 25 mm, the diameter of the
cutting tool DT = 14 mm, and the length of a single feed path Lsm was set to be 65 mm to avoid
collisions (Lsm > lm + 0.5DT). Therefore, by introducing all these size information into Equation (12),
the feed time of rough milling t f rm[min] and finish milling t f f m[min] can be expressed as Equations
(73) and (74):

t f rm =
45.500π× h1

vrm· frm·aprm·aerm[r]
(73)

t f f m =
45.500π× h2

v f m· f f m·ap f m·ae f m[r]
(74)

By introducing these size information into Equation (17), the cutting time of rough milling
tcrm[min] and finish milling tc f m[min] can be expressed as Equations (75) and (76):

tcrm =
35π× h1

vrm· frm·aprm·aerm[r]
(75)

tc f m =
35π× h2

v f m· f f m·ap f m·ae f m[r]
(76)

Where machining allowance of the two phases should confine to Equation (77):

h1 + h2 = h = 25mm (77)

By referring to related machining handbooks according to the scenario information, and then
introducing all these parameters into Equation (21), the surface roughness after this milling process
Ram[µm] can be expressed as Equation (78):

Ram = 37.05· f 0.471
vm ·n−0.918

·a0.512
pm ·a0.771

em (78)

According to Equation (23), based on the information about the cutting tool and the material,
the cutting tool life during the milling process TLm[min] can be approximately estimated using
Equation (79) by looking through Armarego and Brown [37].

TLm ≈
39611829.711

v2.263
m f 0.121

m a0.557
pm a0.340

em
(79)

Therefore, for rough turning process, the energy objective Eorm can be expressed as Equation (80)
from Equation (3):

Erm =
(
Pbm + Psm + P f m + Prm

)
t f rm + Pcm·tcrm (80)

Furthermore, by introducing all these modeling results and case information into Equation (82),
Eorm[J] can be expressed as Equation (81):

Erm =
[
6150 + 4.683× 10−2 fvrm + 8.421× 10−7 f 2

vrm + Prm(nrm)
]

×
45.500π×h1

vrm· frm·aprm·aerm
+ 6.709× 10−2n0.163

rm f 0.803
vrm a0.938

prm a1.115
erm

×
35π×h1

vrm· frm·aprm·aerm

(81)

In addition, the relation between nm, vm and tool diameter DT can be calculated by using
Equation (82), and that between feed rate fm and feed speed fvm by Equation (83):

vm = πDTnm/1000 (82)
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fm = fvm/nrm (83)

The objective of tool life during rough milling TLorm[min] can be expressed as Equation (84):

TLrm ≈
39611829.711

v2.263
rm f 0.121

rm a0.557
prm a0.340

erm
(84)

Similarly, for finish milling process, the energy objective E f m[J] can be expressed by introducing
all these modeling results and case information into Equation (3) as Equation (85):

E f m =
[
6150 + 4.683× 10−2 f f m + 8.421× 10−7 f 2

f m + P f m
(
n f m

)]
×

45.500π×h2
v f m· f f m·ap f m·ae f m

+6.709× 10−2n0.163
f m f 0.803

f m a0.938
p f m a1.115

e f m ×
35π×h2

v f m· f f m·ap f m·ae f m

(85)

The surface roughness objective for this milling process Raom can be expressed as Equation (86)
according to Equation (78):

Ram = 37.05· f 0.471
v f m ·n f m

−0.918
·a0.512

p f m ·a
0.771
e f m (86)

The tool life during finish milling TL f t can be expressed as Equation (87):

TL f m ≈
39611829.711

v2.263
f m f 0.121

f m a0.557
p f m a0.340

e f m

(87)

The cutting time objective tm[min] can be expressed as Equation (88):

tm =
45.500π× h1

vrm· frm·aprm·aerm
+

45.500π× h2

v f m· f f m·ap f m·ae f m
(88)

The objective of tool life during finish milling TLo f t[min] can be expressed as Equation (89):

TL f m ≈
39611829.711

v2.263
f m f 0.121

f m a0.557
p f m a0.340

e f m

(89)

The cutting time objective tm[min] can be expressed as Equation (90):

tm =
45.500π× h1

vrm· frm·aprm·aerm
+

45.500π× h2

v f m· f f m·ap f m·ae f m
(90)

Based on machine conditions and engineering experiences, all of the above machining parameters
were subject to constrain, as Table 14 shows. The accuracy of the machining parameters and allowance
to meet the demands are listed as follows: 0.01 m/min for vm, 10 r/min for nm, 0.01 mm/min for fm,
0.1 mm for apm, aem, h1 and h2.

Table 14. Constrains of machining parameters for this milling process.

Machining Parameters Constrains

Rotation speed nm 100 r/min ≤ nm ≤ 6000 rpm
Cutting speed vm 0 m/min ≤ vm ≤ 200 m/min

Feed speed fm 100 mm/r ≤ fm ≤ 8000 mm/min
Cutting depth apm 0.1 mm ≤ apm ≤ 5 mm
Cutting width aem 0.1 mm ≤ aem ≤ 5 mm
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5.2.2. Normalized MOP Expression of the Objective Step Milling

By introducing all the modeling results and constrains into equations from Equation (32) to
Equation (37), the machining allowance distribution with MOP of the machining parameters for this
step milling process can be expressed as equations from Equation (91) to Equation (95).

For rough milling phase:
OBJ1 = Min(E′rm) (91)

OBJ2 = Min
(

1
TL′rm

)
(92)

For finish milling phase:

OBJ3 = Min
(
E′f m

)
(93)

OBJ4 = Min(R′am) (94)

OBJ5 = Min

 1
TL′f m

 (95)

Figure 6 following Equation (38), the constraints of this case scenario are nmMax = 6000 rpm,
vmMax = 200 m/min, fmMax = 8000 mm/min, apmMax = 5 mm, aemMax = 5 mm, so the objective
functions from Equation (91) to Equation (95) are subject to the constrain of Equation (96):

st : constrains =



nrm, n f m ∈ [100, 6000]
vrm, v f m ∈ [0, 200]

fvrm, fv f m ∈ [100, 8000]
aprm, ap f m ∈ [0.1, 5]
aerm, ae f m ∈ [0.1, 5]

h1 + h2 = 25

(96)

The value ranges of each sub-objective functions are listed in Table 15, and those can be used to
calculate the normalized values by using Equation (26), and backwards as equal.

Table 15. Calculation results of value ranges of sub-object functions.

Objectives
(St: Constrains) Erm 1/TLrm Efm Ram 1/TLfm tm

Minimum values 0 6.466× 10−15 0 5.750× 10−3 6.466× 10−15 0.406
Maximum values 5.306× 108 6.360× 10−9 5.306× 108 293.712 6.360× 10−9 8.125× 104

5.2.3. MOP Solving Using NSGA-II and MOEA/D, Optimization Results, and Validation

Like the cylindrical turning, the number of the operation repeating time was set to be 100, namely
nI = 100. Equation (41) was used to calculate the evaluation indexes, as Table 16 shows. The data of
experiments are listed in Table 17. The decoded solutions are listed in Table 18.

Table 16. Performance evaluation indexes for the objective step milling process.

Performance Evaluation Indexes It In

NSGA-II 46.43 354
MOEA/D 23.54 287
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Table 17. Validation experiment data of objective step milling process.

Solution Type Data of Validation Experiments (Average of Five Repeats):

Erm [J] TLrm
[min]

Efm [J] Ram [µm] TLfm
[min] tm [min]

Solutions
from

handbooks

No. 1 5.364× 104 9.783× 104 2.835× 104 4.375 5.732× 103 12.734

No. 2 4.803× 104 1.032× 105 3.016× 104 5.395 1.094× 104 10.285

No. 3 3.545× 104 1.721× 105 2.733× 104 3.294 8.041× 103 9.273

Pareto
solutions

from
NSGA-II

No. 1 4.476× 104 3.227× 105 1.756× 104 0.864 4.762× 102 25.293

No. 2 7.024× 103 5.174× 105 3.388× 104 10.284 1.437× 105 6.092

No. 3 8.167× 103 5.466× 105 3.305× 104 11.245 6.928× 104 6.235

No. 4 7.554× 103 5.223× 105 6.593× 104 9.457 1.915× 104 10.283

No. 5 8.125× 103 6.327× 105 9.318× 104 1.092 7.585× 102 12.083

Pareto
solutions

from
MOEA/D

No. 1 8.676× 103 4.826× 105 1.148× 105 1.863 5.083× 102 18.092

No. 2 7.625× 104 2.138× 105 2.713× 104 6.098 1.082× 105 15.098

No. 3 6.956× 103 5.913× 105 7.033× 104 5.987 1.867× 105 10.875

No. 4 9.825× 103 3.772× 105 2.494× 105 0.345 1.612× 103 32.098

No. 5 1.056× 104 3.543× 105 1.259× 105 1.972 2.072× 103 19.092

Table 18. Decoded solutions of objective step milling process.

Solution Type Relevant Decoded Parameters

nrm
[rpm]

fvrm
[mm/min]

aprm
[mm]

aerm
[mm]

h1
[mm]

nfm
[rpm]

fvfm
[mm/min]

apfm
[mm]

aefm
[mm]

h2
[mm]

Solutions
from

handbooks

No. 1 500 800 2.0 5.0 20.0 1500 500 1.5 5.0 5.0

No. 2 500 750 2.0 6.0 20.0 1200 350 2 5.0 5.0

No. 3 450 700 4.5 3.5 18.0 1500 450 3.5 3.5 7.0

Pareto
solutions

from
NSGA-II

No. 1 1920 2430 1.7 3.2 22.3 3000 300 1.0 1.0 2.7

No. 2 320 2450 4.8 4.7 15.0 450 560 4.0 2.7 10.0

No. 3 300 2030 4.3 4.4 13.0 620 680 3.9 3.0 12.0

No. 4 320 2470 4.7 4.8 16.0 370 380 3.5 2.1 9.0

No. 5 300 2500 5.0 5.0 19.1 2910 510 1.0 2.6 5.9

Pareto
solutions

from
MOEA/D

No. 1 330 2450 4.8 4.6 17.9 1470 300 2.1 2.0 7.1

No. 2 340 910 2.0 3.4 22.0 400 620 1.6 2.2 3.0

No. 3 310 2380 5.0 5.0 15.6 370 360 3.6 2.1 9.4

No. 4 350 2420 4.7 3.7 17.0 2140 310 2.0 1.1 8.0

No. 5 360 2390 4.5 3.8 17.4 2070 410 2.1 1.5 7.6

Like the turning case, for validations of the objective models above, validation experiments were
carried out accordingly. The deviations of the models are listed in Table 19. It can be seen in Table 19
that all of the models have a deviation of less than 5%, so the accuracies of the objective models
are validated.
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Table 19. Deviations of the objective milling models.

Solution Type Deviation Percentages of the Models:

Erm Efm Ram tm

Solutions from
handbooks

No. 1 2.633% 4.765% 1.353% 4.986%

No. 2 3.563% 4.654% 1.653% 4.844%

No. 3 4.321% 4.654% 1.653% 4.876%

Pareto
solutions from

NSGA-II

No. 1 3.533% 4.953% 3.234% 4.876%

No. 2 2.542% 4.568% 2.422% 4.327%

No. 3 3.653% 4.567% 3.675% 3.874%

No. 4 4.312% 4.965% 1.563% 3.876%

No. 5 2.564% 4.345% 1.784% 4.875%

Pareto
solutions from

MOEA/D

No. 1 4.642% 4.653% 1.895% 4.873%

No. 2 4.565% 4.865% 1.752% 3.543%

No. 3 4.654% 4.953% 2.236% 3.765%

No. 4 4.654% 4.843% 2.963% 4.886%

No. 5 4.964% 4.754% 3.326% 3.986%

5.3. Analysis and Discussions

The analysis part generally includes experiment reviews and results analysis for both of the two
cases separately. The performance evaluations of algorithms are also carried out. The comparison
discussions with previous researches are presented in the end.

The preparations for this section are carried out as follow:
Based on contents listed in Tables 9 and 10, the optimization results of the turning are presented

in a scatter plot in Figure 8 (the lower the spot, the better for each objective), and the relative decoded
solutions are presented in Figure 9.
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of the solution. For instance, H1 stands for the No. 1 solution obtained from the handbooks, and
likewise afterwards.

5.3.1. Analysis of the Turning Case

For the case of turning specifically, based on Figures 8 and 9, the analysis results can be summarized
in the following aspects:

First, the solutions of M1, M3, and M4 apparently outperformed other solutions in each aspect
of optimization objective. They are the most recommended solutions used in future real production
scenarios. By using this kind of solutions, with a little sacrifice of energy costs and efficiency, the other
objectives can all be greatly improved compared to traditional methods from handbooks, especially for
cutting tool life and surface roughness.

Second, based on the first analysis result and Figure 9, the decoded parameters and allowances of
the most recommended solutions can be used as guidance for future process planning. Generally, the
allowance of rough turning phase should be set around 21 to 22 mm, and the machining parameters
should be set with a combination of low spindle rotation speed around 280 to 300 rpm, high feed rate
around 1.7 to 1.9 mm/r and large cutting depth around 0.5 to 0.6 mm for rough turning. For finishing
turning, it should be with allowance around 3 to 4 mm, spindle rotation speed around 250 to 260 rpm,
low feed rate around 0.5 mm/r, and small cutting depth around 0.5 mm. The recommended ranges of
machining allowances and related parameters of the turning case are listed in Table 20.

Table 20. Recommended scope of machining parameters for case No. 1 and No. 2.

Case Information
Cylindrical

Turning
(Case No. 1)

Face Milling
(Case No. 2)

Mechanical scenario

Machine CK6153i-AH XHK-714F

Cutter VNMG160408-YBC351 W400-FS

Blank workpiece CACE45 CACE45

Cutting type Wet cutting Wet cutting

Total allowance d = 25 H = 25

Machining
allowances and

parameters

Rough machining
phase

Spindle speed [rpm] 280 < nrt < 300 300 < nrm < 320

Feed speed [mm/min] or
feed rate [mm/r] 1.7 < frt < 1.9 2000 < fvrm < 2500

Cutting depth [mm] 0.5 < aprt < 0.6 4.3 < aprm < 4.8

Cutting width [mm] / 4.4 < aerm < 4.7

Allowance [mm] 21.0 < d1 < 22.0 16.0 < h1 < 22.0

Finishing
machining phase

Spindle speed [rpm] 250 < nft < 260 450 < nfm < 620

Feed speed [mm/min] or
feed rate [mm/r]

fft ≈ 0.5 560 < fvfm < 680

Cutting depth [mm] apft ≈ 0.5 apfm ≈ 4.0

Cutting width [mm] / 2.7 < aefm < 3.0

Allowance [mm] 3.0 < d2 < 4.0 10.0 < h2 < 12.0

Third, there are not many improvements in the energy states when comparing the Pareto solutions
with those obtained from handbooks. However, it is also obvious that they can significantly prolong
the cutting tool life 200% to 500% longer estimably, and that is applicable both for the rough and
finishing turning. This improvement will result in cutting down of resource use and production costs
without harming the energy costs too much.
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5.3.2. Analysis of the Milling Case

For the case of milling specifically, based on Figures 10 and 11, the analysis results can be
summarized in the following aspects:

First, the solutions of N2 and N3 apparently outperformed other solutions in each aspect, and
they are the most recommended solutions. Specifically, the energy consumption of rough milling can
be greatly reduced to around 20% of traditional methods from handbooks.

Second, based on Figure 11, the decoded parameters and allowances of N1 and N2 can be used as
guidance for future process planning. Generally, the allowance of rough milling phase should be set
around 13 to 15 mm, and the machining parameters should be set with a combination of low spindle
rotation speed around 300 to 320 rpm, high feed speed around 2000 to 2500 mm/min, large cutting
depth around 4.3 to 4.8 mm and small cutting width around 4.4 to 4.7 mm for rough milling. For
finishing milling, it should be with allowance around 10 to 12 mm, spindle rotation speed around 450
to 620 rpm, feed speed around 560 to 680 mm/min, cutting depth around 4 mm and cutting width
around 2.7 to 3 mm.

The recommended ranges of machining allowances and related parameters for the two cases are
both listed in Table 20. From Table 20, workers can choose among those to meet various kinds of
engineering demands accordingly.

5.3.3. Performance Evaluations of Algorithms and Related Discussion

The performance evaluation indicators It and In can be used to compare the intelligent algorithms.
They can offer a reference for future algorithm determining strategies.

As Tables 8 and 16 show, the solving speeds of NSGA-II are faster than those of MOEA/D. However,
MOEA/D generally outperformed NSGA-II in finding effective Pareto solutions for the turning case,
because of the diversity and fast solving speed as well. Namely, MOEA/D is more effective in providing
solutions located in the area of multi-objective equilibrium for the turning case. Those solutions are
more likely to be used in real engineering scenarios. And NSGA-II is more suitable for the milling case,
respectively, for the same reasons.

5.3.4. Discussions

Compared with previous research, the analysis results revealed facts of the following aspects:

(1) Rather than parameter optimizations of a single machining phase like the works of [20,21],
comprehensive optimization considering machining allowance distributions of different
machining phases is more likely to be used in real production. The generated solutions provide
not only energy-oriented machining parameters, but also various groups of parameters and
allowances for better implementation. The priorities of each phase can all be met by doing so.

(2) This research further enhances the recommendation of relative larger setting of machining
allowance of rough machining, and small setting of finishing machining, like [4,26].

(3) It is revealed that the high-speed cutting technique recommended by many previous studies,
like [13,30], are not always suitable for application. Specifically, for multi-objective considerations
like energy costs and tool protection, relative low cutting speeds of the finishing phases are
recommended in this research.

(4) Contrary to our previous finding of [27], NSGA-II outperformed MOEA/D in the milling case once
machining allowance distribution is involved. Namely, the selection of optimization strategies
should be well-adjusted, considering the characteristics and uniqueness of the specific problem.

6. Conclusions and Future Work

The major contributions of the research are listed as follows:
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(1) Improved modeling of machining allowance distribution is proposed, integrated with parameter
optimization. Energy-saving demands of different machining phases can be comprehensively met.
With the machining allowance distribution well-addressed, the proposed method is relatively
practical compared to traditional methods, consistent with the actual situation.

(2) The most recommended optimization solutions are picked out, and they can be used in real
production directly. Workers can choose among those non-determined solutions for their
optimization priority, without harming any of the economic objectives too much. With a little
sacrifice of energy costs and efficiency, cutting tool life and surface roughness can all be greatly
improved for turning, and energy consumption of rough milling can be greatly reduced to around
20% of traditional methods.

(3) The most suitable scope of machining allowances and parameters is precisely recommended. It
can be concluded that during rough machining, the machining should be set with the combination
of large allowance, high cutting speed, high feed rate and large cutting depth. During finish
machining, it should be the combination of small allowance, low cutting speed, low feed speed,
and small cutting depth.

(4) The performance of different strategies, including and MOEA/D was studied. The selection of
algorithms can be adjusted as needed considering the performance analysis. Generally, MOEA/D
is more likely to be used for turning and NSGA-II is more likely to be used for milling for
real applications.

The limits of this research are listed as follows:

(1) So far, only cylindrical turning and step milling have been studied. Other machining scenarios
and demands, like drilling, grinding, and complex surface machining, are necessary to further
validate the proposed method should be considered.

(2) How do the limitations and constraints used affect the results has not been not discussed. Factors
like high-speed cutting technique, machine tolerance changes, cutting tool conditions, and change
of cooling paths will affect the results.

(3) The possibility of uncertainty will affect the results, like the changes of machine types, layouts,
cutting tools, materials, and optimization priorities.

As the next step, we will investigate other machining processes and situations, like drilling and
grinding. And the definition of limitations and constraints should be well-adjusted according to the
scenario. For example, the high-speed cutting technique may have a great influence on the results,
which deserve further investigation. Rather than intelligent algorithms we used, the performance of
other optimization techniques will be studied. We will study how to incorporate the proposed method
to uncertainties of changes, such as choice of machines, materials and cutting tools, etc.
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Nomenclature

aem, aerm, ae f m
aemmax

Cutting width of milling, those of rough milling and finishing milling,
and their maximum value according to the scenario [mm]

apt, aprt, ap f t
apm, aprm, ap f m

Cutting depth of turning, and those of rough turning, finishing turning,
general milling, rough milling and finishing milling [mm]

aptmax, apmmax
Maximum values of cutting depths according to the turning or milling
scenario [mm]

Cct, Cvct, C f ct, Capct

Ccm, Cncm, C f cm,
Capcm, Caecm

Coefficients of the polyphyletic function for material cutting power of
turning and those of milling

C f 1, C f 2 Coefficients of the quadratic function for feed power calculation

CRam, CRavm, CRa f mCRaapm, CRaaem
Coefficients of the function for roughness of workpieces after milling
process

CrA1, CrA2
CrB1, CrB2

CrC1, CrC2

Coefficients of the three linear functions for spindle rotation power
calculation

CTLt, CTLtv
CTLt f , CTLtap

Coefficients of the function for cutting tool life after turning

CTLm, CTLmv
CTLm f , CTLmap
CTLmae

Coefficients of the function for cutting tool life after milling

DT Diameter of the cutting tool of milling [mm]
D Value range of variables of a sub-objective function

d, d1, d2
Radial distance of the workpiece to be tooled of turning, and those for
rough tuning and finishing turning [mm]

Ert, E′rt
E f t, E′f t
Erm, E′rm
E f m, E′f m

Energy consumption of rough turning, its normalized expression, and
those for finishing turning, rough milling and finishing milling [J]

Eo Energy consumption objective during a machining process [J]
ft, frt, f f t
fm, frm, f f m

Feed rates of general turning, and those of rough turning, finishing
turning, general milling, rough milling, and finishing milling [mm/r]

ftmax, fmmax
Maximum values of feed rates according to the turning or milling
scenario [mm/r]

fvt, fvrt, fv f t
fvm, fvrm, fv f m

Feed speeds of general turning, and those of rough turning, finishing
turning, general milling, rough milling and finishing milling [mm/min]

fvtmax, fvmmax
Maximum values of feed speeds according to the turning or milling
scenario [mm/min]

fi(X), fi(X)′ One of the sub-objective functions and its normalized expression

h, h1, h2
Total height of the workpiece to be tooled of milling, and those for rough
milling and finishing milling [mm]

In Number of effective Pareto solutions an algorithm can obtain finally

It
Average operating time for a certain number of repeats of the solving
operation [s]

Lst, Lsm Length of feed path for one single cutting of turning and milling [mm]

lt, lm
Total axial lengths of the workpiece to be tooled of turning and milling
[mm]

M, G, Rc

Rm, N, m

Initial population, gap between two generations, crossover rate,
mutation rate, maximum evolution generations and length of the genes
of basic genetic algorithm

MRR, MRRt, MRRm Material removal rate, and those of turning and milling [mm3/min]
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Nt
Feed times needed to cut the whole volume to be tooled of a turning
process

n Spindle rotation speed of machining processes [rpm]
nI Number of the operation repeats to evaluate the algorithm

nt, nrt, n f t
nm, nrm, n f m

Spindle rotation speed of general turning, those of rough turning and
finishing turning, and those of general milling, rough milling and
finishing milling [rpm]

ntmax, nmmax
Maximum values of spindle rotation speeds according to the turning or
milling scenario [rpm]

nBA
M , nl

M
Turning points of the three linear functions for spindle rotation power
calculation

Pb, Ps, Pr, P f , Pc
Power of basic machine motion, spraying cooling fluid, spindle rotation,
feed movement, material cutting [W]

Pct, Pcm Material cutting power of turning and milling [W]
ph ball screw lead [mm]
R Radius of the original cylindrical material to be tooled [mm]
Rat, R′at
Ram, R′am

Surface roughness of the workpiece after turning, its normalized
expression, and those for milling [µm]

rε,κr,κ′r
Corner radius, main cutting edge angle and secondary cutting edge
angle of the cutting tool

Snei, Stour Sizes of neighbor and tournament of MOEA/D algorithm
TLO A constant for a given feed drive system
TLrt, TL′rt
TL f t, TL′f t
TLrm, TL′rm
TL f m, TL′f m

Tool life of rough turning, its normalized expression, and those for
finishing turning, rough milling and finishing milling [min]

tc, tct, tcm
Material cutting time of machining processes, and those of turning and
milling [min]

tcrt, tc f t
tcrm, tc f m

Material cutting time of rough turning and finishing turning, and those
of rough milling and finishing milling [min]

t f , t f t, t f m
Feeding time of machining processes, and those of turning and milling
[min]

t f rt, t f f t
t f rm, t f f m

Feeding time of rough turning and finishing turning, and those of rough
milling and finishing milling [min]

ti Lasting time of a single optimization operation [s]
to Time objective during a machining process [min]

V, Vt, Vm
Total workpiece volumes to be tooled, and those in a turning process
and milling process [mm3]

vt, vrt, v f t
vm, vrm, v f m

Cutting speeds of general turning, and those of rough turning, finishing
turning, rough milling and finishing milling [m/min]

vtmax, vmmax
Maximum values of cutting speeds according to the turning or milling
scenario [m/min]
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