
sustainability

Article

Dynamic Gaming Case of the R-Interdiction Median
Problem with Fortification and an MILP-Based
Solution Approach

Yiyong Xiao , Pei Yang, Siyue Zhang , Shenghan Zhou * , Wenbing Chang and Yue Zhang

School of Reliability and System Engineering, Beihang University, Beijing 100191, China;
xiaoyiyong@buaa.edu.cn (Y.X.); yangpei@buaa.edu.cn (P.Y.); zhang_sy@buaa.edu.cn (S.Z.);
changwenbing@buaa.edu.cn (W.C.); Zhangyue1127@buaa.edu.cn (Y.Z.)
* Correspondence: zhoush@buaa.edu.cn; Tel.: +86-010-82316003

Received: 26 November 2019; Accepted: 7 January 2020; Published: 13 January 2020
����������
�������

Abstract: This paper studies the cyclic dynamic gaming case of the r-interdiction median problem
with fortification (CDGC-RIMF), which is important for strengthening a facility’s reliability and
invulnerability under various possible attacks. We formulated the CDGC-RIMF as a bi-objective
mixed-integer linear programming (MILP) model with two opposing goals to minimize/maximize the
loss from both the designer (leader) and attacker (follower) sides. The first goal was to identify the
most cost-effective plan to build and fortify the facility considering minimum loss, whereas the attacker
followed the designer to seek the most destructive way of attacking to cause maximum loss. We found
that the two sides could not reach a static equilibrium with a single pair of confrontational plans in
an ordinary case, but were able to reach a dynamically cyclic equilibrium when the plan involved
multiple pairs. The proposed bi-objective model aimed to discover the optimal cyclic plans for both
sides to reach a dynamic equilibrium. To solve this problem, we first started from the designer’s side
with a design and fortification plan, and then the attacker was able to generate their worst attack plan
based on that design. After that, the designer changed their plan again based on the attacker’s plan in
order to minimize loss, and the attacker correspondingly modified their plan to achieve maximum loss.
This game looped until, finally, a cyclic equilibrium was reached. This equilibrium was deemed to be
optimal for both sides because there was always more loss for either side if they left the equilibrium
first. This game falls into the subgame of a perfect Nash equilibrium—a kind of complete game.
The proposed bi-objective model was directly solved by the CPLEX solver to achieve optimal solutions
for small-sized problems and near-optimal feasible solutions for larger-sized problems. Furthermore,
for large-scale problems, we developed a heuristic algorithm that implemented dynamic iterative
partial optimization alongside MILP (DIPO-MILP), which showed better performance compared
with the CPLEX solver when solving large-scale problems.

Keywords: facility location; r-interdiction median problem with fortification (RIMF); cyclic dynamic
equilibrium game; mixed-integer linear programming (MILP)

1. Introduction

The reliability and security of critical infrastructures is vital to the stability of a country’s social
system. The growing threat of international terrorism may imperil facilities and cause massive loss to
people’s lives and properties. Such man-made disasters often seriously damage facilities, resulting in
general or partial impacts on the normal order of society, leading to large-scale supply shortages of
products or service interruptions. Some attacks will affect the sustainability of key facilities, making
it difficult to ensure the normal supply, so it is necessary to consider the location of facilities under

Sustainability 2020, 12, 581; doi:10.3390/su12020581 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-5879-8906
https://orcid.org/0000-0002-3033-8892
https://orcid.org/0000-0001-7979-4912
http://www.mdpi.com/2071-1050/12/2/581?type=check_update&version=1
http://dx.doi.org/10.3390/su12020581
http://www.mdpi.com/journal/sustainability

Sustainability 2020, 12, 581 2 of 17

attack. In practice, there may be multiple rounds of confrontation between the attackers and defenders,
so dynamic attack defense issues need to be considered to ensure the long-term sustainability of
the facilities.

Terrorists always seek out the most critical facilities to conduct attacks and maximize the loss
of the social system. To strengthen the security and reliability of critical facilities, facility locations
should be well planned and fortified, and coping measures, such as backup systems and service
reassignments, should be prepared for in advance of an attack. Our problems fall into the class
of an incapacitated facility location, which is a variant of the p-median problem first proposed by
German scholar Alfred Weber [1]. In the paper of Huizhen [2], they further study the mathematical
nature of the semiLagrangian relaxation (SLR) applied to solve the un-capacitated facility location
(UFL). On this basis, SLR for UFL is improved in theory, and the way to improve its computing
capability is discussed. Monabbati [3] use their proposed sub-additive dual ascent procedure to find
an optimal sub-additive dual function based on Klabjan’s generator sub-additive function to solve the
so called uncapacitated facility location problem (UFLP). Glover [4] proposes a simple multi-wave
algorithm for solving the uncapacitated facility location problem (UFLP) to minimize the combined
costs of selecting facilities to be opened and assigning each customer to an opened facility in order
to meet the customers’ demands. On the basis of an incapacitated facility location problem with
interdiction and fortification, the r-interdiction median problem with fortification (RIMF) occurs. In
the existing literature, node interdictions have been divided into two groups, i.e., r-interdiction median
models (RIM) and r-interdiction covering models (RIC). The RIM model was originally formulated
by Church and Scaparra [5], where interdiction strategies seek p facilities that have already been
located. The model determines a subset of r facilities, and if these facilities are lost, the impact on the
average service distance or the total weighted distance from the customer is at its greatest. In the RIC
model, the objective is to specify r facilities of p existing facilities, which, when removed, results in
a maximum drop in coverage. Church and Scaparra [6] then put forward the interdiction median
problem with fortification (IMF) model, which involves finding a subset of q facilities in p different
locations of the supply or service facility; when these q facilities harden, they provide the best protection
from a subsequent optimal r-interdiction strike. Church and Scaparra [7] propose the r-interdiction
median problem with fortification (RIMF) model, where the leader and follower respectively conduct
interdiction and fortification, assuming that one side has complete information about the other side.
Figure 1 below shows the study process from the p-median problem to the RIMF problem.

Sustainability 2020, 12, x FOR PEER REVIEW 2 of 17

making it difficult to ensure the normal supply, so it is necessary to consider the location of facilities
under attack. In practice, there may be multiple rounds of confrontation between the attackers and
defenders, so dynamic attack defense issues need to be considered to ensure the long-term
sustainability of the facilities.

Terrorists always seek out the most critical facilities to conduct attacks and maximize the loss of
the social system. To strengthen the security and reliability of critical facilities, facility locations
should be well planned and fortified, and coping measures, such as backup systems and service
reassignments, should be prepared for in advance of an attack. Our problems fall into the class of an
incapacitated facility location, which is a variant of the p-median problem first proposed by German
scholar Alfred Weber [1]. In the paper of Huizhen [2], they further study the mathematical nature of
the semiLagrangian relaxation (SLR) applied to solve the un-capacitated facility location (UFL). On
this basis, SLR for UFL is improved in theory, and the way to improve its computing capability is
discussed. Monabbati [3] use their proposed sub-additive dual ascent procedure to find an optimal
sub-additive dual function based on Klabjan’s generator sub-additive function to solve the so called
uncapacitated facility location problem (UFLP). Glover [4] proposes a simple multi-wave algorithm
for solving the uncapacitated facility location problem (UFLP) to minimize the combined costs of
selecting facilities to be opened and assigning each customer to an opened facility in order to meet
the customers’ demands. On the basis of an incapacitated facility location problem with interdiction
and fortification, the r-interdiction median problem with fortification (RIMF) occurs. In the existing
literature, node interdictions have been divided into two groups, i.e., r-interdiction median models
(RIM) and r-interdiction covering models (RIC). The RIM model was originally formulated by
Church and Scaparra [5], where interdiction strategies seek p facilities that have already been located.
The model determines a subset of r facilities, and if these facilities are lost, the impact on the average
service distance or the total weighted distance from the customer is at its greatest. In the RIC model,
the objective is to specify r facilities of p existing facilities, which, when removed, results in a
maximum drop in coverage. Church and Scaparra [6] then put forward the interdiction median
problem with fortification (IMF) model, which involves finding a subset of q facilities in p different
locations of the supply or service facility; when these q facilities harden, they provide the best
protection from a subsequent optimal r-interdiction strike. Church and Scaparra [7] propose the r-
interdiction median problem with fortification (RIMF) model, where the leader and follower
respectively conduct interdiction and fortification, assuming that one side has complete information
about the other side. Figure 1 below shows the study process from the p-median problem to the RIMF
problem.

Figure 1. The study process from the p-median problem to the r-interdiction median problem with
fortification (RIMF) problem.

A number of studies on the r-interdiction problem in the literature have strived to develop more
reliable and invulnerable systems. Snyder [8] presents a stochastic location model with risk pooling
(LMRP) to optimize location, inventory, and allocation decisions under random parameters
described by discrete scenes. Scaparra et al. [9] present an optimization modeling approach to allocate
protection resources among a system of facilities so that the disruptive effects of possible intentional
attacks to the system are minimized. In the work of Aksen et al. [10], the authors elaborate on a
budget-constrained extension of the RIMF model, where the objective function is to find the optimal
allocation of protection resources to a given service system consisting of p facilities such that the
disruptive effects of r possible attacks are minimized. Liberatore et al. [11] present the stochastic r-

Figure 1. The study process from the p-median problem to the r-interdiction median problem with
fortification (RIMF) problem.

A number of studies on the r-interdiction problem in the literature have strived to develop more
reliable and invulnerable systems. Snyder [8] presents a stochastic location model with risk pooling
(LMRP) to optimize location, inventory, and allocation decisions under random parameters described
by discrete scenes. Scaparra et al. [9] present an optimization modeling approach to allocate protection
resources among a system of facilities so that the disruptive effects of possible intentional attacks to the
system are minimized. In the work of Aksen et al. [10], the authors elaborate on a budget-constrained
extension of the RIMF model, where the objective function is to find the optimal allocation of protection
resources to a given service system consisting of p facilities such that the disruptive effects of r
possible attacks are minimized. Liberatore et al. [11] present the stochastic r-interdiction median
problem with fortification (S-RIMF), where the model takes into consideration a random number of

Sustainability 2020, 12, 581 3 of 17

possible losses. Zhu et al. [12] studies the r-interdiction median problem with probabilistic protection,
assuming that defensive resources are allocated based on the degree of importance of the service
facility. Medal et al. [13] integrate the facility location and the facility reinforcement decisions into the
formulation and assume that the decision-maker is risk averse and thus interested in mitigating against
the facility disruption scenario with the greatest consequences. Mahmoodjanloo [14] puts forward a
tri-level model under the defender–attacker–defender framework based on leader–follower games
for facility protection against disturbance in an r-interdiction median problem. Mahmoodjanloo [14]
focuses on reducing the effect of intentional attacks, in which facilities are located and strengthened
within a limited budget. Sadeghi [15] presents a new formulation and solution method for the partial
fortification and interdiction of a tri-level shortest path problem which extends the existing network
interdiction models to a more practical environment. Zheng et al. [16] present an exact approach to
solve the r-interdiction median problem with fortification. Their methods include a greedy heuristic
and an iterative algorithm, solving a set cover problem iteratively to ensure the best solution upon
termination. Khanduzi [17] implements two novel approaches to solve the multi-period interdiction
problem with fortification. Roboredo [18] proposes a branch-and-cut algorithm for the RIMF problem,
which is the best exact algorithm found. Furthermore, Roboredo [19] also put forward a branch-and-cut
algorithm for the r-interdiction covering problem with fortification (RICF) problem, which is faster in
solving large instances compared with the exact method found in the literature. Biswas and Pal [20]
propose an interesting hybrid goal programing model and genetic algorithm in a fuzzy environment.
Barma et al. [21] present a novel linear programming(LP) model with antlion optimization algorithm
for multi-depot vehicle routing problem(VRP). In conclusion, in the previous literatures, there is almost
no multi-round attack defense confrontation. Most papers generally consider a bi-objective function
for at most a three level RIMF problem. In this paper we present, for the first time, a cyclic equilibrium
gaming case of the r-interdiction median problem with fortification based on the study of Dong [22].
We consider it a dynamic Stackelberg game [23], involving two non-cooperative, fully rational players
to protect (or attack) the facility as much as possible. Each side makes the most optimal decision
based on the other’s decision. We present a bi-objective mixed integer linear programming model
to formulate the cyclic dynamic gaming case of the r-interdiction median problem with fortification
(CDGC-RIMF). Using the cyclic algorithm, the computer generate two decision packages for both the
attacker and defender until the equilibrium was cyclically reached. For the large-sized problem, we
developed a heuristic algorithm based on the partial optimization strategy [24,25] to efficiently solve
the problem with near-optimal solutions. Contributions of the paper are outlined as follows.

• This article first brings up the CDGC-RIMF problem, which considers cyclic decision periods/phases
in large-scale scenes with two opposite objectives.

• This article constructs the mixed-integer linear programming (MILP) model so as to solve it by an
efficient and easy way through the CPLEX solver.

• For the large-size scenes, we developed a heuristic algorithm that implemented dynamic iterative
partial optimization alongside MILP (DIPO-MILP).

• Our model put the wise decision of the attacker into consideration. The objective of attacker was
to consider the optimized rearrangement of the defender faced with the destruction to achieve the
worst loss possible.

• Our algorithm generated two decision packages for both the attacker and defender, thereby
reaching an optimal cyclic equilibrium.

• In the cyclic confrontation process, each side made the most optimal confrontation plan until
the balance of the cyclic confrontation was reached. Through this model, the decision package
of the two sides could be produced. For the protector, it could predict the other side’s decision
in advance (the protector knew that the attacker would make the most optimal confrontation
plan) and then make the decision for the next step. It could help the facility manager make wise

Sustainability 2020, 12, 581 4 of 17

decisions for site selection and defense in advance, so as to ensure the long-term sustainability of
the facility.

The remaining paper is organized as follows. In Section 2, we formally describe the CDGC-RIMF
model. In Section 3, we present the notation, the property of the cyclic bi-objective MILP model, and a
partial optimization algorithm for large-scale problems. In Section 4, we present some computational
experiments, including the small- and large-scale problems, and analyze the protection effect to make
up a fortified facility. Finally, in Section 5, we summarize our work and present suggestions for
future works.

2. Problem Description and Formulation

The problem involved a general service supply system composed of several facilities and a
number of demand nodes that received goods or services from their nearest service sites. A number
p of facilities were built out of a set of potential locations sites, denoted as F (j ∈ F). Notation N,
indexed by i, represents the set of demand nodes. Each demand node i, i ∈ N was associated with
a demand ai. The distances between the facilities and the demand nodes were known parameters,
denoted as dij, where i ∈ N and j ∈ F. The service cost was expressed as the sum of total demands
weighted by the distances to their closest facilities. Each candidate site was characterized with a
fixed cost f j to build a facility and a fixed fortification cost g j to protect the built facility. The attacker
(follower) intended to carry out the most devastating attack possible and was assumed to have the
ability to destroy the maximum r number of facilities after considering all possible design plans from
the designer. The designer, who was able to protect g facilities from being attacked, tried to minimize
the establishment and protective cost as well as system loss with consideration of all possible attacks
by the attacker.

We formulated the cyclic dynamic gaming case of the r-interdiction median problem as a
bi-objective MILP model, as shown below. The sets, parameters, and decision variables used in the
mathematical formulation were introduced in advance, as follows.

Sets:
N: Set of demands;
F: Set of candidate sites.
Parameters:
i: Index of demand that i ∈ N;
j: Index representing candidate site that j ∈ F;
ai: Demand of node i;
m: Number of potential sites;
p: Number of built (located) facilities;
r: Number of interdicted facilities;
q: Number of defense facilities, q < p, r < p–q;
g j: Setup cost at site j;
h j: Fortification cost at site j;
di j: Distance from demand i to site j;
M: A large number.
Variables:

x j:
{

1, if site j is selected to operate a facility
0, otherwise

;

yi j:
{

1, if customer i is served by the facility at site j
0, otherwise

;

s j:
{

1, if the facility at site i is interdicted
0, otherwise

;

z j:
{

1, if the facility at site j is fortified
0, otherwise

;

Sustainability 2020, 12, 581 5 of 17

b j:
{

1, if sit j has a valid facility
0,otherwise

;

X: Set for facility location, X =
{
x j

}
;

Y: Set for service assignment, Y =
{
yi j

}
;

S: Set for interdicted facility, S =
{
s j
}
;

Z: Set for defense facility, Z =
{
z j
}
.

The main goal of the designer was to design a service network with the objective of minimizing
the sum of fixed and variable costs of a system facing disturbance. The goal of the attacker was to
maximize the objective of the designer.

Objective 1 (from the designer):

Minimize : min f (X, Z) =
∑

i∈N, j∈F

aidi jyi j +
∑
j∈F

(
g jx j + h jz j

)
. (1)

Objective 1 (from the attacker):

Maximize : max f (S) =
∑

i∈N, j∈F

aidi jyi j. (2)

Subject to:

(1)
∑
j∈F

x j ≤ p ∀ j ∈ F,

(2)
∑
j∈F

s j ≤ r ∀ j ∈ F,

(3)
∑
j∈F

z j ≤ q ∀ j ∈ F,

(4)
∑
j∈F

yi j = 1 ∀i ∈ N,

(5)
{

yi j ≤ x j
yi j ≤ 1− s j + z j

∀i ∈ N, j ∈ F,

(6) z j ≤ x j ∀ j ∈ F,

(7)

b j ≤ x j
b j ≤ 1− s j + z j
b j ≥ x j − s j
b j ≥ x j + z j − 1

∀ j ∈ F,

(8) yi j · di j ≤ di j′ + M ·
(
1− b j′

)
∀i ∈ N; j, j′ ∈ F,

(9) x j ∈ {0, 1} , yi j ∈ {0, 1}, z j ∈ {0, 1}, sJ ∈ {0, 1}, b j ∈ {0, 1} ∀i ∈ N, j ∈ F.

In the above model, Constraint (1) indicates that the designer built p facilities out of the set of
candidate facilities. Constraint (2) ensures that, at most, r facilities were to be interdicted. Constraint
(3) stipulates that the designer could maximally protect q facilities. Constraint (4) makes sure that
each demand was serviced by one facility. Constraint (5) states that only the facilities that were set up
and not attacked at the same time (or were attacked but protected at the same time) could serve the
demands. Constraint (6) indicates that only the built facilities were allowed to be protected. Constraint
(7) determines whether a site had a valid facility, i.e., bj = 1 if site j had a valid facility or bj = 0 if
otherwise. Constraint (8) is a new constraint for the closest assignment, a different version from the
related constraints devised by Church [6] and Liberatore et al. [11]. This constraint normally used the
set of existing valid facilities (not including j) that was further than j from demand i. However, these
sets had to be recalculated when the fortification or interdiction changed; a phenomenon associated
with considerable computational complexity. Constraint (9) states that all of the decision variables
were binary.

Sustainability 2020, 12, 581 6 of 17

3. Solution Approaches for Cyclic Dynamic Equilibrium

3.1. Solution Definitions and Analysis

Below are the notations used for the definitions and analysis.

U: Set of all possible design plans;
V: Set of all possible attack plans;
D: A design plan and D ∈ U;
A: An attack plan and A ∈ V;
A|D: The optimal attack plan for the given design plan;
D|A: The optimal design plan for the given attack plan;
OD/A: The optimal minimum objective cost of the design plan for the given attack plan;
OA/D: The optimal maximum objective cost of the attack plan for the given design plan.

Definition 1. General optimal design (GOD) plan: The general optimal design plan was a plan by the designer
that was optimized for a given attack plan.

(1) ATTACKER: A= {Ai/ Ai ∈ V};
(2) DESIGNER: D = {Di/Di satisfies OD/A, Ai ∈ V, Di ∈ U}.

When solving the objective of the designer, we fixed the variable s j in S with given values, then searched for
the minimum cost of all of the designer’s plans to thwart the opponent, as Figure 2 shows.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 17

the set of existing valid facilities (not including j) that was further than j from demand i. However,
these sets had to be recalculated when the fortification or interdiction changed; a phenomenon
associated with considerable computational complexity. Constraint (9) states that all of the decision
variables were binary.

3. Solution Approaches for Cyclic Dynamic Equilibrium

3.1. Solution Definitions and Analysis

Below are the notations used for the definitions and analysis.

U: Set of all possible design plans;
V: Set of all possible attack plans;
D: A design plan and D U∈ ;
A: An attack plan and A V∈ ;
A∣D: The optimal attack plan for the given design plan;

D∣A: The optimal design plan for the given attack plan;

/D AO : The optimal minimum objective cost of the design plan for the given attack plan;

A/DO : The optimal maximum objective cost of the attack plan for the given design plan.

Definition 1. General optimal design (GOD) plan: The general optimal design plan was a plan by the designer
that was optimized for a given attack plan.

(1) ATTACKER: A= {Ai/ iA V∈ };
(2) DESIGNER: D = {Di/Di satisfies /D AO , iA V∈ , iD U∈ }.

When solving the objective of the designer, we fixed the variable js in S with given values, then searched
for the minimum cost of all of the designer’s plans to thwart the opponent, as Figure 2 shows.

Figure 2. The optimal attack strategy.

Definition 2. General optimal attack (GOA) plan: The general optimal attack was the plan by the designer
that was optimized for a given design plan.

(1) DESIGNER: D = {Di/ iD U∈ };

(2) ATTACKER: A = {Ai/Ai satisfies A/ DO , iA V∈ , iD U∈ }.

When solving the objective of the attacker, we fixed the variable ,j jx z in S with given values, then
searched for the maximum cost of all of the attacker’s plans to thwart the opponent, as Figure 3 shows.

Figure 2. The optimal attack strategy.

Definition 2. General optimal attack (GOA) plan: The general optimal attack was the plan by the designer that
was optimized for a given design plan.

(1) DESIGNER: D = {Di/ Di ∈ U};
(2) ATTACKER: A = {Ai/Ai satisfies OA/D, Ai ∈ V, Di ∈ U}.

When solving the objective of the attacker, we fixed the variable x j, z j in S with given values, then searched
for the maximum cost of all of the attacker’s plans to thwart the opponent, as Figure 3 shows.

Sustainability 2020, 12, 581 7 of 17

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 17

Figure 3. The optimal design strategy.

Definition 3. The ideal design plan (IDP): The ideal design plan had the lowest objective cost of all of the
design plans, occurring when there was no interdiction. The ideal design plan was a special case of GOD.

(1) ATTACKER: A= {θ };
(2) DESIGNER: D = {Di/Di satisfies /D AO , iA V∈ , iD U∈ }.

In this situation of the fortification set Z= {θ }, it was obvious that the designer did not need to set up the
fortification facility because there was no interdiction from the attacker. The ideal design plan was a special case
of GOD.

Definition 4. The ideal attack plan (IAP): The ideal attack plan had the highest objective cost of all of the attack
plans, occurring when there was no fortification. The ideal attack plan was a special case of GOA.

(1) DESIGNER: D = {Di/ iD U∈ };

(2) ATTACERK: A = {Ai/Ai satisfies A/ DO , iA V∈ , iD U∈ }.

This situation, where Z = {θ }, was very useful for the attacker. Attacking the facility unprotected would
lead to huge damage.

Definition 5. The cycled confrontation strategy (CCS): The cycled confrontation strategy was expressed as
{A1/D1, D1/A2, A2/D3, D3/A4, A4/D1}. There were two sets of plans from two sides, where each plan of one
set was the optimal plan when responding to the opposite plan from the other side. The cycle stopped when the
end plan was the same as the existing plan, as shown in Figure 4.

Definition 6. The round of confrontation (RC): Every time one side carried out a strategy, the other side found
a strategy to use to fight back. This was one round of confrontation. In the example shown in Figure 4, we
demonstrate that there were nine rounds from the beginning to the end of the opposite strategies.

Definition 7. The round of cycled confrontation (RCC): In the example shown in Figure 4, we demonstrate
that there were six rounds from the beginning of the cycle (D2) to the end of the cycle when D2 existed again.

Definition 8. The evaluation indicators for two kinds of solution methods, as shown in Table 1.

Table 1. The evaluation indicators.

 Index Name
1 AC Average attack cost
2 DC Average design cost
3 AC – DC The optimality of solutions

Figure 3. The optimal design strategy.

Definition 3. The ideal design plan (IDP): The ideal design plan had the lowest objective cost of all of the design
plans, occurring when there was no interdiction. The ideal design plan was a special case of GOD.

(1) ATTACKER: A= { θ};
(2) DESIGNER: D = {Di/Di satisfies OD/A, Ai ∈ V, Di ∈ U}.

In this situation of the fortification set Z= {θ}, it was obvious that the designer did not need to set up the
fortification facility because there was no interdiction from the attacker. The ideal design plan was a special case
of GOD.

Definition 4. The ideal attack plan (IAP): The ideal attack plan had the highest objective cost of all of the attack
plans, occurring when there was no fortification. The ideal attack plan was a special case of GOA.

(1) DESIGNER: D = {Di/ Di ∈ U};
(2) ATTACERK: A = {Ai/Ai satisfies OA/D, Ai ∈ V, Di ∈ U}.

This situation, where Z = {θ}, was very useful for the attacker. Attacking the facility unprotected would
lead to huge damage.

Definition 5. The cycled confrontation strategy (CCS): The cycled confrontation strategy was expressed as
{A1/D1, D1/A2, A2/D3, D3/A4, A4/D1}. There were two sets of plans from two sides, where each plan of one set
was the optimal plan when responding to the opposite plan from the other side. The cycle stopped when the end
plan was the same as the existing plan, as shown in Figure 4.

Definition 6. The round of confrontation (RC): Every time one side carried out a strategy, the other side found
a strategy to use to fight back. This was one round of confrontation. In the example shown in Figure 4, we
demonstrate that there were nine rounds from the beginning to the end of the opposite strategies.

Definition 7. The round of cycled confrontation (RCC): In the example shown in Figure 4, we demonstrate that
there were six rounds from the beginning of the cycle (D2) to the end of the cycle when D2 existed again.

Definition 8. The evaluation indicators for two kinds of solution methods, as shown in Table 1.

Table 1. The evaluation indicators.

Index Name

1 CA Average attack cost
2 CD Average design cost
3 CA–CD The optimality of solutions

Sustainability 2020, 12, 581 8 of 17

Property 1. The cycled confrontation strategy began with the IDP and IAP.

Property 2. The cycled confrontation strategy existed because the plans from both sides were finite.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 17

Property 1. The cycled confrontation strategy began with the IDP and IAP.

Property 2. The cycled confrontation strategy existed because the plans from both sides were finite.

Figure 4. The optimal attack strategy.

3.2. A Bi-Objective Solution Framework

We solved CDGC-RIMF with a MILP-based solution approach. Our approach started by creating
an initial design plan D, then fixed Di (fix xi, zi) to achieve the attack plan Ai (fix si) using the MIP
solver CPLEX. After the attack plan, we fixed the attack plan Ai (fix si) to get the next design plan.
The solution process continued until the repeated attack plan existed, as shown in Figure 5.

Figure 5. The bi-objective solution approach.

3.3. A Heuristic Partial Optimization Algorithm

The large-sized complex problem with many possible decision variables could not be optimized
completely within an acceptable Central Processing Unit (CPU) time. Therefore, some heuristic
algorithms were put forward to reduce the solution space so as to save time and improve the
calculation efficiency, in particular, the heuristic concentration algorithm. As Rosing and Hodgson
[26] illustrated in their paper, the heuristic concentration procedure mainly consists of two stages.
Firstly, it was necessary to find a concentration set according to some rules, and secondly, the optimal
solution in the concentration set could be solved every time by generating a concentration set. Based
on Rosing and Hodgson’s heuristic concentration procedure, the MILP-based neighborhood

1) Let i = 1.
2) Find an initial design plan D , and let iD ←D
3) Repeat

4) Fix iD as a given design plan and use the MIP solver to find am

attack plan, noted as iA , forming iA // iD
Partial Optimization Loop

5) Fix iA as a given attack plan and use the MIP solver to find a

design plan, noted as +1iD , forming +1iD // iA
Partial Optimization Loop

6) Let i = i + 1
7) Until =i iiD D exists where ≤ ≤ −1 1iiD i
8) Output the equilibrium method

Figure 4. The optimal attack strategy.

3.2. A Bi-Objective Solution Framework

We solved CDGC-RIMF with a MILP-based solution approach. Our approach started by creating
an initial design plan D, then fixed Di (fix xi, zi) to achieve the attack plan Ai (fix si) using the MIP
solver CPLEX. After the attack plan, we fixed the attack plan Ai (fix si) to get the next design plan.
The solution process continued until the repeated attack plan existed, as shown in Figure 5.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 17

Property 1. The cycled confrontation strategy began with the IDP and IAP.

Property 2. The cycled confrontation strategy existed because the plans from both sides were finite.

Figure 4. The optimal attack strategy.

3.2. A Bi-Objective Solution Framework

We solved CDGC-RIMF with a MILP-based solution approach. Our approach started by creating
an initial design plan D, then fixed Di (fix xi, zi) to achieve the attack plan Ai (fix si) using the MIP
solver CPLEX. After the attack plan, we fixed the attack plan Ai (fix si) to get the next design plan.
The solution process continued until the repeated attack plan existed, as shown in Figure 5.

Figure 5. The bi-objective solution approach.

3.3. A Heuristic Partial Optimization Algorithm

The large-sized complex problem with many possible decision variables could not be optimized
completely within an acceptable Central Processing Unit (CPU) time. Therefore, some heuristic
algorithms were put forward to reduce the solution space so as to save time and improve the
calculation efficiency, in particular, the heuristic concentration algorithm. As Rosing and Hodgson
[26] illustrated in their paper, the heuristic concentration procedure mainly consists of two stages.
Firstly, it was necessary to find a concentration set according to some rules, and secondly, the optimal
solution in the concentration set could be solved every time by generating a concentration set. Based
on Rosing and Hodgson’s heuristic concentration procedure, the MILP-based neighborhood

1) Let i = 1.
2) Find an initial design plan D , and let iD ←D
3) Repeat

4) Fix iD as a given design plan and use the MIP solver to find am

attack plan, noted as iA , forming iA // iD
Partial Optimization Loop

5) Fix iA as a given attack plan and use the MIP solver to find a

design plan, noted as +1iD , forming +1iD // iA
Partial Optimization Loop

6) Let i = i + 1
7) Until =i iiD D exists where ≤ ≤ −1 1iiD i
8) Output the equilibrium method

Figure 5. The bi-objective solution approach.

3.3. A Heuristic Partial Optimization Algorithm

The large-sized complex problem with many possible decision variables could not be optimized
completely within an acceptable Central Processing Unit (CPU) time. Therefore, some heuristic
algorithms were put forward to reduce the solution space so as to save time and improve the calculation
efficiency, in particular, the heuristic concentration algorithm. As Rosing and Hodgson [26] illustrated
in their paper, the heuristic concentration procedure mainly consists of two stages. Firstly, it was
necessary to find a concentration set according to some rules, and secondly, the optimal solution in the
concentration set could be solved every time by generating a concentration set. Based on Rosing and
Hodgson’s heuristic concentration procedure, the MILP-based neighborhood searching algorithms
by Xiao et al. [24,25] and You et al. [27,28] were introduced, and the concept of the partial set was
also presented. For this paper, we developed a heuristic algorithm for large-sized problems following

Sustainability 2020, 12, 581 9 of 17

the steps showed above. First, we fixed all of the nodes, then generated iteratively different partial
sets that were subsequently used to unfix the nodes in the partial set, and then optimized the unfixed
nodes. A rule used to generate the partial set was that nodes selected to be in the partial set more
times should have a lower possibility of being selected in the next round. The main framework of the
proposed heuristic algorithm is outlined in Figure 6. The partial optimization forced the optimization
to stay within only a small range of the variables so it could be achieved in a short computational time.
An iterative implement of partial optimization on different selected ranges continuously improved the
solution until it was good enough or until the time limit was reached.

As shown in Figure 6, the partial optimization algorithm (POA) procedure started with an initial
random attacker plan (x0, z0) and a designer plan (s0), obtained by randomly generating the number
of q interdictions and p facilities. Then (in Step 1,2), the confrontation cyclic started with the initial
attacker and the designer plan. The first confrontation plan was from the defender. The index P
suggested an improvement for every round of partial optimization. The parameter W indicated the
number of to-be-selected nodes for partial optimization and was assigned an initial value in Step 3.
Our experiments showed that parameter W was sensitive and considerably influenced the algorithm
efficiency. The appropriate value interval for W was between 35 and 45, according to our experimental
comparisons. After that, the partial optimization loop started at Step 4, containing Steps 4.1–4.11.
In Step 4.2–4.5, all variable instances of xj were first fixed, and then a number W of instances were
selected to be unfixed. Each time, we selected a number W of xj following the selection rule, that
nodes chosen more often had a lower possibility of being chosen. After that, the CPLEX solver was
applied to optimize the selected nodes (in Step 4.6). In Steps 4.7 and 4.8, the new solution was judged
regarding whether it improved upon the incumbent solution. If yes, then it was accepted as the new
incumbent solution and the non-improvement index P was reset to 0; otherwise, the P was increased
by one. The loop stopped if there was no further improvement even after Pmax continuous attempts, or
if the total CPU time was longer than the set limited time Tmax, or if all of the nodes were optimized
at the same time (in Step 4.6). In steps 4.10–4.12, the number W was adjusted dynamically to ensure
that the solution time solved through CPLEX was between tmin and tmax. The number W increased
by 5 if the last CPU time was less than tmin or reduced by 5 (∆ = 5) if the last CPU time was more
than tmax. Finally, the obtained C was the best solution found and became the output of the algorithm.
The attacker adopted similar partial optimization as the partial optimization in the defender’s plan to
develop its coping plan.

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 17

searching algorithms by Xiao et al. [24,25] and You et al. [27,28] were introduced, and the concept of
the partial set was also presented. For this paper, we developed a heuristic algorithm for large-sized
problems following the steps showed above. First, we fixed all of the nodes, then generated iteratively
different partial sets that were subsequently used to unfix the nodes in the partial set, and then
optimized the unfixed nodes. A rule used to generate the partial set was that nodes selected to be in
the partial set more times should have a lower possibility of being selected in the next round. The
main framework of the proposed heuristic algorithm is outlined in Figure 6. The partial optimization
forced the optimization to stay within only a small range of the variables so it could be achieved in a
short computational time. An iterative implement of partial optimization on different selected ranges
continuously improved the solution until it was good enough or until the time limit was reached.

As shown in Figure 6, the partial optimization algorithm (POA) procedure started with an initial
random attacker plan (x0, z0) and a designer plan (s0), obtained by randomly generating the number
of q interdictions and p facilities. Then (in Step 1,2), the confrontation cyclic started with the initial
attacker and the designer plan. The first confrontation plan was from the defender. The index P
suggested an improvement for every round of partial optimization. The parameter W indicated the
number of to-be-selected nodes for partial optimization and was assigned an initial value in Step 3.
Our experiments showed that parameter W was sensitive and considerably influenced the algorithm
efficiency. The appropriate value interval for W was between 35 and 45, according to our
experimental comparisons. After that, the partial optimization loop started at Step 4, containing Steps
4.1–4.11. In Step 4.2–4.5, all variable instances of xj were first fixed, and then a number W of instances
were selected to be unfixed. Each time, we selected a number W of xj following the selection rule, that
nodes chosen more often had a lower possibility of being chosen. After that, the CPLEX solver was
applied to optimize the selected nodes (in Step 4.6). In Steps 4.7 and 4.8, the new solution was judged
regarding whether it improved upon the incumbent solution. If yes, then it was accepted as the new
incumbent solution and the non-improvement index P was reset to 0; otherwise, the P was increased
by one. The loop stopped if there was no further improvement even after Pmax continuous attempts,
or if the total CPU time was longer than the set limited time Tmax, or if all of the nodes were optimized
at the same time (in Step 4.6). In steps 4.10–4.12, the number W was adjusted dynamically to ensure
that the solution time solved through CPLEX was between tmin and tmax. The number W increased by
5 if the last CPU time was less than tmin or reduced by 5 (∆ = 5) if the last CPU time was more than tmax.
Finally, the obtained C was the best solution found and became the output of the algorithm. The
attacker adopted similar partial optimization as the partial optimization in the defender’s plan to
develop its coping plan.

Procedure: The partial optimization algorithm (POA)

Input parameters: Tmax, Pmax, tmin, tmax,Wmin, ∆, W0; output result: xj, zj, sj, a.obj, d.obj

1) For the designer: Let xj, zj← Initialization: Random generation of a designer

strategy

2) For the attacker: Let sj ← Initialization: Random generation of an attacker

strategy

3) Let xj, zj, sj ←x0, z0, s0, P ← 0, and W ← W0

4) Iterative Neighborhood Search (INS) Loop Begins

4.1) For the designer:

4.2) Let f← null

4.3) Apply a rule to select a number W of nodes from F into f

4.4) For j in F, fix all xj decision variables

Figure 6. Cont.

Sustainability 2020, 12, 581 10 of 17

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 17

4.5) For j in f, unfix xj decision variables

4.6) Call the CPLEX solver to get a new solution X’,Z’, d.obj’ and record the used

CPU time t

4.7) If d.obj’ improved upon d.obj, then let d.obj ←d.obj’ and P ← 0

4.8) Otherwise, let P ← P + 1

4.9) If P ≥ Pmax or total CPU time ≥ Tmax or W ≥ number of CFs then break the loop

and stop

4.10) If t ≤ tmin, then let W ← W + ∆

4.11) if t ≥ tmax, then let W←W - ∆

4.12) if W < Wmin, then let W ← Wmin

4.13) For the attacker: The process was similar to 4.2 – 4.12:

Just substitute xj with sj and substitute d.obj with a.obj

4) Loop End

Figure 6. The framework of the POA algorithm.

4. Computational Tests

The goal of the computational experiments was to validate the model. The codes by AMPL were
run on a Linux PC server with two 2.30 GHz Intel Xeon (R) CPUs and 128 GB RAM. We used the MIP
solver AMPL/CPLEX (version 12.6.0.1) to solve the tested instances.

4.1. The Generation of the Tested Instances

The data sets and the parameter settings used in the experiments were generated randomly, as
shown in Table 2. In this paper, we used small-, medium-, and large-scale problems to validate our
model.

Table 2. The parameters for different scale problems.

Nodes of
Demands

CU

Candidate
Facilities

CF

Facilities to
be Built F(p)

Number of
Attacks (r)

Number of
Fortification

z(q)

Small-
Scale

1 25 10 5 3 1
2 50 20 10 5 3
3 75 30 15 8 4
4 100 40 20 10 5

Medium-
Scale

5 250 50 25 13 6
6 300 60 30 15 8
7 350 70 35 18 9
8 400 80 40 20 10

Large-Scale

9 900 90 45 23 11
10 1000 100 50 25 13
11 1100 110 55 28 14
12 1200 120 60 30 15

Note: candidate facility (CF); client (CU)

For the small-scale problem, we set a number of 10, 20, 30, or 40 candidate facilities (CFs),
respectively, within a square region of 100 × 100 distance units. The actual limited number of facilities

Figure 6. The framework of the POA algorithm.

4. Computational Tests

The goal of the computational experiments was to validate the model. The codes by AMPL were
run on a Linux PC server with two 2.30 GHz Intel Xeon (R) CPUs and 128 GB RAM. We used the MIP
solver AMPL/CPLEX (version 12.6.0.1) to solve the tested instances.

4.1. The Generation of the Tested Instances

The data sets and the parameter settings used in the experiments were generated randomly,
as shown in Table 2. In this paper, we used small-, medium-, and large-scale problems to validate
our model.

Table 2. The parameters for different scale problems.

Nodes of
Demands CU

Candidate
Facilities CF

Facilities to
be Built F(p)

Number of
Attacks (r)

Number of
Fortification z(q)

Small-Scale

1 25 10 5 3 1
2 50 20 10 5 3
3 75 30 15 8 4
4 100 40 20 10 5

Medium-Scale

5 250 50 25 13 6
6 300 60 30 15 8
7 350 70 35 18 9
8 400 80 40 20 10

Large-Scale

9 900 90 45 23 11
10 1000 100 50 25 13
11 1100 110 55 28 14
12 1200 120 60 30 15

Note: candidate facility (CF); client (CU).

For the small-scale problem, we set a number of 10, 20, 30, or 40 candidate facilities (CFs),
respectively, within a square region of 100 × 100 distance units. The actual limited number of facilities
(P) was set by CF/2. Every selected facility served five clients, so the clients (CU) assigned to each
facility were about 25, 50, 75, or 100. The number of fortified facilities and interdiction facilities were as

Sustainability 2020, 12, 581 11 of 17

shown in column 6–7. The number of fortified facilities (r) was calculated by p/2, while the number
of interdiction facilities was calculated by r/2. The coordinates of the facilities and the clients in the
small-scale problem were generated between 0 and 100. For the medium problem, the coordinates of
the facilities and clients were in the square region of 200 × 200 distance units, with the CFs listed as
50, 60, 70, or 80. The number of CUs, rs, and qs were calculated in a similar way, as in the small-scale
problem. In the large-scale problem, these values were in the square region of 400 × 400 distance units.
The numbers relating to CF, p, CU, r, and q are shown in columns 3–7.

4.2. Analysis of the Tested Results

Tables 3 and 4 display the computation time, RC, and RCC. The first six columns show the
parameters CF, F, CU, r, and q. The seventh and eighth columns, respectively, contain cumulative
computing times and independent run times. The last two rows display the round of confrontation and
the round of cycled confrontation. As shown in Table 3, (r > q), RCC 4 remained unchanged as the CF
increased, while Table 3 (r < q) shows that there was a different RCC 6 for the 50 CFs. The solution time
increased as the parameters of CF, F, CU, r, and q increased. For the small- and medium-scale problems,
calculations were finished in 500 s. However, it took a long time to solve the large-scale problem;
therefore, it is necessary to solve the large-scale problem using another, more efficient, approach.

Table 3. The results for small- and medium-scale problems using CPLEX (r > q). Round of confrontation
(RC); round of cycled confrontation (RCC); candidate facility (CF); client (CU).

CF F(p) CU s(r) z(q) time(s) RC RCC

1 10 5 25 3 1 0 5 4
2 20 10 50 5 3 1 9 4
3 30 15 75 8 4 3 9 4
4 40 20 100 10 5 5 5 4
5 50 25 250 13 6 62 7 4
6 60 30 300 15 8 170 9 4
7 70 35 350 18 9 267 7 4
8 80 40 400 20 10 527 7 4
9 90 45 900 23 11 5019 11 4
10 100 50 1000 25 13 6297 9 4
11 110 55 1100 28 14 12,030 11 4
12 120 60 1200 30 15 14,687 9 4

Table 4. The results for the small- and medium-scale problems (q > r).

CF F(p) CU s(r) z(q) time(s) RC RCC

1 10 5 25 1 3 0 5 4
2 20 10 50 3 5 1 7 4
3 30 15 75 4 8 2 7 4
4 40 20 100 5 10 8 7 4
5 50 25 250 6 13 84 9 6
6 60 30 300 8 15 145 7 4
7 70 35 350 9 18 289 7 4
8 80 40 400 10 20 530 7 4
9 90 45 900 11 23 3379 7 4
10 100 50 1000 13 25 6219 9 4
11 110 55 1100 14 28 7219 7 4
12 120 60 1200 15 30 141,119 11 4

We chose one example to illustrate the concrete game process between the two sides. We took
the 10 × 25 problem as an example to demonstrate the confrontation process. As shown in Table 5,
the design plans, attack plans, and the cost were listed until the same attack plan existed. Figure 7a–f
gives the model solution of Table 5 in graphical form.

Sustainability 2020, 12, 581 12 of 17

Table 5. The strategy of both sides (for data: 10 × 25, p = 6, r = 3, q = 2).

Decision Maker
Designer

Attacker Cost
Location Fortification

1 design 1,5,8,10 47,251
1 attack 1,5,8,10 1,5,10 89,291
2 design 3,4,5 5 1,5,10 50,119
2 attack 3,4,5 5 3,4 76,437
3 design 1,5,8,10 3,4 47,251
3 attack 1,5,8,10 1,5,10 89,291

As shown in Figure 7a–f, points selected to be used for facilities were colored green and the outline
of the fortified facilities was black. The lines in each figure described assignments of demand to selected
facilities. The attack points were displayed as red triangles. In the first stage, when i = 1, the designer
selected P (P = 5) facilities from potential locations considering the minimum weighted distance.
Faced with the designer’s strategy, the attacker adopted an optimal method to ensure maximum
destruction. In the second stage, when i = 2, the designer decided how to protect and establish the
most reliable facilities to reduce loss. Every time when the attackers carried out the attack strategy, this
model provided the protector with a most effective way to maintain the supply as much as possible.
Wise decisions helped the facility designer to keep the facilities sustainable and reliable against the
multi-confrontation between two sides. The confrontation process continued until the same attack
plan existed., and then the final equilibrium was reached.

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 17

We chose one example to illustrate the concrete game process between the two sides. We took
the 10 × 25 problem as an example to demonstrate the confrontation process. As shown in Table 5,
the design plans, attack plans, and the cost were listed until the same attack plan existed. Figure 7a–f
gives the model solution of Table 5 in graphical form.

Table 5. The strategy of both sides (for data: 10 × 25, p = 6, r = 3, q = 2).

 Decision Maker
Designer

Attacker Cost
Location Fortification

1 design 1,5,8,10 47,251
1 attack 1,5,8,10 1,5,10 89,291
2 design 3,4,5 5 1,5,10 50,119
2 attack 3,4,5 5 3,4 76,437
3 design 1,5,8,10 3,4 47,251
3 attack 1,5,8,10 1,5,10 89,291

As shown in Figure 7a–f, points selected to be used for facilities were colored green and the
outline of the fortified facilities was black. The lines in each figure described assignments of demand
to selected facilities. The attack points were displayed as red triangles. In the first stage, when i = 1,
the designer selected P (P = 5) facilities from potential locations considering the minimum weighted
distance. Faced with the designer’s strategy, the attacker adopted an optimal method to ensure
maximum destruction. In the second stage, when i = 2, the designer decided how to protect and
establish the most reliable facilities to reduce loss. Every time when the attackers carried out the
attack strategy, this model provided the protector with a most effective way to maintain the supply
as much as possible. Wise decisions helped the facility designer to keep the facilities sustainable and
reliable against the multi-confrontation between two sides. The confrontation process continued until
the same attack plan existed., and then the final equilibrium was reached.

(a) (b)

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

Figure 7. Cont.

Sustainability 2020, 12, 581 13 of 17

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100
Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i = 3,

the optimal designer plan.

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

—the potential locations of facilities;

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

—interdiction on the facilities;

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

—facilities in use;

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

—fortified facilities in use,

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17

(c) (d)

(e) (f)

Figure 7. (a) i = 1, the optimal designer plan; (b) i = 1, the optimal attacker plan; (c) i = 2, the optimal
designer plan; (d) i = 2, the optimal attacker plan; (e) i = 3, the optimal designer plan; and (f) i =
3, the optimal designer plan. —the potential locations of facilities; —interdiction on
the facilities; —facilities in use; —fortified facilities in use, —demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

AC – DC Time(s) AC – DC Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

0 20 40 60 80 100
X

0

10

20

30

40

50

60

70

80

90

100

Y

—demands.

For the large-scale problem, we implemented the POA and CPLEX to solve the model at sizes of
90 × 900, 100 × 1000 and 110 × 1100. This experiment showed that the POA had good performance
when solving large-scale instances. As shown in Table 6, the POA was much better than CPLEX in
terms of CPU time, and the average CPU time of the POA was about 85.1% shorter than that of CPLEX
for size 90 × 900, 95.9% for size 100 × 1000 and 96.2% for size 110 × 1100. These results were obtained
as averages of the CPU time from algorithms in 10 replications.

Table 6. The comparison of POA and CPLEX for large-scale problems.)

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

CA –CD Time(s) CA –CD Time(s) CPt- POt/CPt

90 45 900 23 11 2,360,771 3890 2,368,109 578 85.1%
100 50 1000 25 13 2,471,750 8615 2,484,027 350 95.9%
110 55 1100 28 14 2,883,380 15,374 2,908,162 581 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

Sustainability 2020, 12, 581 14 of 17

In our model, we considered the cycle of the confrontation strategy, so RC and RCC were not
stable when we used the partial optimal algorithm to solve this problem. The RC and RCC numbers
influenced the results and CPU times. Even in this situation, we found better optimal results through
adjusting the parameter of the partial optimal algorithm and repeated the experiments many times. As
Table 6 shows, the POA achieved better results in a shorter CPU time when CF = 90, 100, or 110.

When CF = 120, as the iteration increased, RC and RCC became even more unstable; therefore,
finding better average results was more difficult. Therefore, we deleted the cycle to test the single
confrontation (RC = 1); in this situation, we found that POA operated better without being influenced
by the cycle confrontation. Furthermore, we performed similar experiments when CF = 90, 100, 110,
and 120. The results proved that the POA performed even better in the single confrontation. When
two approaches produced the same optimal results (the optimal decisions), the time taken by the POA
was less than that taken by CPLEX. Among all the large-sized instances, the average CPU time of the
POA was 90.3% at most and 79.7% at least, which was shorter than that of CPLEX, as shown in Table 7.

Table 7. The comparison of POA and CPLEX in a single confrontation (ATTACK ONCE).

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

CA Time(s) CA Time(s) CPt- POt/CPt

90 45 900 23 11 4,972,729 370 4,972,729 75 79.7%
100 50 1000 25 13 5,832,329 638 5,832,329 91 85.7%
110 55 1100 28 14 6,437,748 2061 6,437,748 215 89.6%
120 60 1200 30 15 6,402,308 1742 6,402,308 169 90.3%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

We fixed the casual attack strategy, then used CPLEX and the POA to achieve the design plan
faced with the same attack strategy. The POA achieved the same optimal result in less time, as Table 8
shows. The average reduced CPU time of the POA compared with CPLEX varied between 89.6% for
the smallest instance (CF = 90) and 96.2% for the biggest instance (CF = 120). It was obvious that the
efficiency had been improved greatly.

Table 8. The comparison of the POA and CPLEX in a single confrontation (DEFENCE ONCE).

CF f(p) cu s(r) z(q)
CPLEX POA Time Comparison

CD Time(s) CPt- POt/ CPt Time(s) CPt- POt/CPt

90 45 900 23 11 1,308,912 1025 1,308,912 107 89.6%
100 50 1000 25 13 1,480,763 1757 1,480,763 137 92.2%
110 55 1100 28 14 1,466,200 2156 1,566,200 169 92.2%
120 60 1200 30 15 1,586,774 2881 1,586,774 109 96.2%

Note: CPU time of CPLEX (CPt); CPU time of POA (POt)

We also discussed the effect of protective resources (q) on the designer’s efficiency. Table 9
shows that the number of fortified facilities increased with the cost of changing designer. Columns
1–5 illustrate the parameters of candidate facilities, limited facilities, serving demands, number of
interdiction facilities, and number of fortification facilities. For the instances CF = 10, 20, 30, and 40
listed here, the number of fortification facilities (q) varied between 1 and 10, which was no more than
the number of interdiction facilities. Columns 6–7 show the RC and RCC, which almost remained the
same as q increased.

Sustainability 2020, 12, 581 15 of 17

Table 9. The sensitivity of parameter q (for the small-scale problem).

CF f(p) cu s(r) z(q) RC RCC CA

10 5 25 3 1 6 4 48,207.00
2 . . . 10 6 4 . . .

20 5 25 3 1 10 4 63,059.00
2 10 4 52,318.50

3 . . . 10
30 15 75 8 1 8 4 85,995.00

2 8 4 85,189.20
3 . . . 10

40 20 100 10 1 6 4 101,512.33
2 6 4 101,354.67
3 6 4 101,301.67

4 . . . 10

Note: “ . . . ” represents that the cost remained the same as the last iteration.

Often, most protection benefits were achieved through the first two or three fortifications, and
subsequent security investments gradually reduced in efficiency. Overall, the fortification of the second
facility still played an important role regarding improvement of the results. For instance, in problems
where CF = 20 operating facilities, when the number of q exceeds 2, there was no improvement
regarding the cost of the design.

5. Conclusions

In this paper, a bi-objective cyclic dynamic equilibrium gaming model of the r-interdiction median
problem with fortification was presented. In this model, the two sides were wise to make a decision
according to the operational experience. The system designer (defender) could decide regarding the
interdiction. The attacker could decide to destroy essential facilities after considering the possible
reassignment of the designer faced with one interdiction, which was the worst-case loss. The model
could give two operational strategy packages when the two sides achieved equilibrium. To solve
the large-scale problem, the partial optimization algorithm was used, and we made the comparison
between the exact method using CPLEX and the partial optimization algorithm. Compared with the
previous work, the strategy packages can help the facility manager to make decisions in advance
against the attackers and better keep the facility in long-term sustainability. Additionally, we found
that the partial optimization algorithm yielded better solutions with higher search efficiency.

In our analysis, attacks on a given facility were always successful. Defenders could only perform
passive defenses and defenders could not interrupt or even destroy attackers. New models should
be developed to include the defender’s positive defense and the success rate of interdiction. Our
model was defined on a network of nodes and arcs where each node was assumed to represent
a local area of demand, as well as represent a potential position for a facility. In future work, we
could choose the optimal position in a continuous network with no potential facilities. Regarding
the partial optimization parameter, we could find a way to achieve self-adjustment rather than by
manual adjustment.

Author Contributions: This manuscript was written by P.Y. under the supervision of Y.X. and Y.Z. The modeling,
data analysis, and algorithm process were executed by S.Z. (Siyue Zhang) and P.Y.; S.Z. (Shenghan Zhou) and W.C.
were responsible for the data acquisition and model design. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant Nos. 71871003,
71971013 and 71971009).

Acknowledgments: Thanks for the support of my friend: Meng You.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2020, 12, 581 16 of 17

References

1. Friedrich, C.J. Alfred Weber’s theory of the location of industries. Am. J. Sociol. 1929, 35, 853.
2. Huizhen, Z.; Xin, W.; Liang, M.A. A new semi-Lagrangian relaxation method to solve the un-capacitated

facility location problem. Oper. Res. Trans. 2015, 19, 37–47.
3. Monabbati, E.; Kakhki, H.T. On a class of subadditive duals for the uncapacitated facility location problem.

Appl. Math. Comput. 2015, 251, 118–131. [CrossRef]
4. Glover, F.; Hanafi, S.; Guemri, O. A simple multi-wave algorithm for the uncapacitated facility location

problem. Front. Eng. Manag. 2018, 5, 41–55. [CrossRef]
5. Church, R.L.; Scaparra, P.M.; Middleton, R. Identifying Critical Infrastructure: The Median and Covering

Facility Interdiction Problems. Ann. Assoc. Am. Geogr. 2004, 94, 491–502. [CrossRef]
6. Church, R.L.; Scaparra, P.M. Protecting critical assets: The r-interdiction median problem with fortification.

Geogr. Anal. 2007, 39, 129–146. [CrossRef]
7. Scaparra, P.M.; Church, R.L. A bilevel mixed-integer program for critical infrastructure protection planning.

Comput. Oper. Res. 2008, 35, 1905–1923. [CrossRef]
8. Snyder, L.V.; Scaparra, M.P.; Daskin, M.S.; Church, R.L. Planning for Disruption in Supply Chain Networks.

In Models, Methods, and Applications for Innovative Decision Making; Informs: Catonsville, MD, USA, 2016.
[CrossRef]

9. Scaparra, P.M.; Church, R.L. An exact solution approach for the interdiction median problem with fortification.
Eur. J. Oper. Res. 2008, 189, 76–92. [CrossRef]

10. Aksen, D.; Piyade, N.; Aras, N. The budget constrained r-interdiction median problem with capacity
expansion. Cent. Eur. J. Oper. Res. 2010, 18, 269–291. [CrossRef]

11. Liberatore, F.; Scaparra, P.M.; Daskin, S.M. Analysis of facility protection strategies against an uncertain
number of attacks: The stochastic R-interdiction median problem with fortification. Comput. Oper. Res. 2011,
38, 357–366. [CrossRef]

12. Zhu, Y.; Zheng, Z.; Zhang, X.; Cai, K. The r-interdiction median problem with probabilistic protection and its
solution algorithm. Comput. Oper. Res. 2013, 40, 451–462. [CrossRef]

13. Medal, R.H.; Pohl, A.E.; Rossetti, D.M. A multi-objective integrated facility location-hardening model:
Analyzing the pre- and post-disruption trade off. Eur. J. Oper. Res. 2014, 237, 257–270. [CrossRef]

14. Mahmoodjanloo, M.; Parvasi, P.S.; Ramezanian, R. A tri-level covering fortification model for facility
protection against disturbance in r-interdiction median problem. Comput. Ind. Eng. 2016, 102, 219–232.
[CrossRef]

15. Sadeghi, S.; Seifi, A.; Azizi, Z. Tri-level shortest path network interdiction with partial fortification. Comput.
Ind. Eng. 2017, 106, 400–411. [CrossRef]

16. Zheng, K.; Albert, A.L. An exact algorithm for solving the bi-level facility interdiction and fortification
problem. Oper. Res. Lett. 2018, 46, 573–578. [CrossRef]

17. Khanduzi, R.; Maleki, R.H.; Akbari, R. Two novel combined approaches based on TLBO and PSO for a partial
interdiction/fortification problem using capacitated facilities and budget constraint. Soft Comput. 2018, 22,
5901–5919. [CrossRef]

18. Roboredo, M.C.; Pessoa, A.A.; Aizemberg, L. An exact approach for the r-interdiction median problem with
fortification. Rairo-Oper. Res. 2019, 53, 505–516. [CrossRef]

19. Roboredo, M.C.; Aizemberg, L.; Pessoa, A.A. An exact approach for the r-interdiction covering problem with
fortification. Cent. Eur. J. Oper. Res. 2019, 27, 111–131. [CrossRef]

20. Biswas, P.; Pal, B.B. A fuzzy goal programming method to solve congestion management problem using
genetic algorithm. Decis. Mak. Appl. Manag. Eng. 2019, 2, 36–53. [CrossRef]

21. Barma, P.S.; Dutta, J.; Mukherjee, A. A 2-opt guided discrete antlion optimization algorithm for multi-depot
vehicle routing problem. Decis. Mak. Appl. Manag. Eng. 2019, 2, 112–125.

22. Dong, J.R.; Huang, C.H.; Zuo, X.R.; Xiao, Y.Y. A bi-objective MIP model for the dynamic gaming case of
the Capacitated R-interdiction median problem with fortification. In Proceedings of the 4th International
Symposium on Project Management Conference, Wuhan, China, 18–19 June 2016.

23. Simaan, M.; Cruz, B.J. Additional Aspects of the Stackelberg Strategy in Nonzero-Sum Games. J. Optim.
Theoryapplications 1973, 11, 613–626. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2014.10.072
http://dx.doi.org/10.15302/J-FEM-2018038
http://dx.doi.org/10.1111/j.1467-8306.2004.00410.x
http://dx.doi.org/10.1111/j.1538-4632.2007.00698.x
http://dx.doi.org/10.1016/j.cor.2006.09.019
http://dx.doi.org/10.1287/educ.1063.0025
http://dx.doi.org/10.1016/j.ejor.2007.05.027
http://dx.doi.org/10.1007/s10100-009-0110-6
http://dx.doi.org/10.1016/j.cor.2010.06.002
http://dx.doi.org/10.1016/j.cor.2012.07.017
http://dx.doi.org/10.1016/j.ejor.2014.01.040
http://dx.doi.org/10.1016/j.cie.2016.11.004
http://dx.doi.org/10.1016/j.cie.2017.02.006
http://dx.doi.org/10.1016/j.orl.2018.10.001
http://dx.doi.org/10.1007/s00500-018-3005-4
http://dx.doi.org/10.1051/ro/2017060
http://dx.doi.org/10.1007/s10100-017-0494-7
http://dx.doi.org/10.31181/dmame1902040b
http://dx.doi.org/10.1007/BF00935561

Sustainability 2020, 12, 581 17 of 17

24. Xiao, Y.; Kaku, I.; Zhao, Q.; Zhang, R. Neighborhood search techniques for solving uncapacitated multilevel
lot-sizing problems. Comput. Oper. Res. 2012, 39, 647–658. [CrossRef]

25. Xiao, Y.; Konak, A. A genetic algorithm with exact dynamic programming for the green vehicle routing &
scheduling problem. J. Clean. Prod. 2017, 167, 1450–1463.

26. Rosing, K.E.; Hodgson, J.M. Heuristic concentration for the p-median: An example demonstrating how and
why it works. Comput. Oper. Res. 2002, 29, 1317–1330. [CrossRef]

27. You, M.; Xiao, Y.Y.; Zhang, S.Y.; Yang, P.; Zhou, S.H. Optimal mathematical programming for the warehouse
location problem with Euclidean distance linearization. Comput. Ind. Eng. 2019, 136, 70–79. [CrossRef]

28. You, M.; Xiao, Y.Y.; Zhang, S.Y.; Zhou, S.Y.; Yang, P.; Pan, X. Modeling the Capacitated Multi-Level Lot-Sizing
Problem under Time-Varying Environments and a Fix-and-Optimize Solution Approach. Entropy 2019, 21,
377. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cor.2011.06.004
http://dx.doi.org/10.1016/S0305-0548(01)00033-8
http://dx.doi.org/10.1016/j.cie.2019.07.020
http://dx.doi.org/10.3390/e21040377
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description and Formulation
	Solution Approaches for Cyclic Dynamic Equilibrium
	Solution Definitions and Analysis
	A Bi-Objective Solution Framework
	A Heuristic Partial Optimization Algorithm

	Computational Tests
	The Generation of the Tested Instances
	Analysis of the Tested Results

	Conclusions
	References

