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Abstract: The accumulation of organic material on top of the mineral soil over time (a process called
paludification) is common in Northern Boreal coniferous forests. This natural process leads to a
marked decrease in forest productivity overtime. Topography both at the surface of the forest floor (i.e.,
above ground) and the subsurface (i.e., top of mineral soil which is underground) is known to play a
critical role in the paludification process. Until recently, the availability of more accurate topographic
information regarding the surface and subsurface was a limiting factor for land management and
modeling of spatial organic layer thickness (OLT) variability, a proxy for paludification. However so
far, no research has assessed which of these two topographic variables has the greatest influence
on paludification. This study aims to assess which topographic variable (surface or subsurface)
better explains paludification, using high-resolution remote sensing technology (i.e., Light Detection
and Ranging: LiDAR and Ground Penetrating Radar: GPR). To this end, field soil measurements
were made in over 1614 sites distributed throughout the reference Valrennes Experimental site
in Canadian northern coniferous forests. Then, a machine learning model (i.e., Random Forest,
RF) was implemented to rank a set of selected predictor topographic variables (i.e., slope, aspect,
mean curvature, plan curvature, profile curvature, and topographic wetness index) using the Mean
Decrease Gini (MDG) index as an indicator of importance. Results showed that overall 83% of the
overall variance was explained by the RF selected model, while the derived subsurface topography
predictors had the lowest MDGs for predicting paludification. On the other hand, the surface
slope predictor had the highest MDGs and better explained paludification. This finding would be
particularly useful for implanting sustainable management strategies based on the surface variables
of paludified northern boreal forests. This study has also highlighted the potential of LiDAR
data to provide surface topographic spatial detail information for planning and optimizing forest
management activities in paludified boreal forests. This is even of great importance when we know
that LiDAR variables are easier to obtain compared to GPR derived variables (subsurface topographic
variables).
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1. Introduction

Canada’s boreal forest covers 27% (equivalent of 270 106 ha) of the country’s terrestrial area
and has considerable economic and ecological importance. In addition to acting as a reservoir for
maintaining biological and genetic diversity and providing a habitat for diverse wildlife, storing carbon,
purifying air and water, and regulating regional and global climates, boreal forests constitute a source
of numerous resources for industry in Canada. Black spruce forests (Picea mariana (Mill.) BSP.) are the
dominant forest type occupying a large extent of these forests and provide a source of raw material
for the wood and paper products industry [1]. However, some of the areas of these northern boreal
forests are prone to paludification, which can be defined as a natural process where a thick organic
material accumulates on the forest floor surface over time, resulting in higher soil moisture and higher
water tables levels [2,3]. From the perspective of sustainable forest management, these conditions
can favor the invasion of Sphagnum moss species on the forest floor [4–6] and the conversion of
potentially forested areas to large bog landscapes, largely resistant to forest establishment and growth [2].
Consequently, this leads to a marked decrease in forest productivity [7,8]. Factors such as time since
the last fire and topography play important roles in the occurrence of paludification in these Northern
boreal forests. Some parts of the world where paludification can be observed include the interior of
Alaska, Labrador, and the Canadian Hudson Bay-James Bay lowlands.

The Clay Belt a vast region (i.e., 125,000 km2) of boreal eastern Canada and the Hudson Bay-James
Bay Lowlands, is mainly disposed to paludification where thick organic layers usually observed
on the forest floor of mature boreal black spruce forests. Simard et al. [8] have defined this type of
paludification as a dynamic process driven by forest succession between fire events that leads to
a thick organic soil layer, and the formation of waterlogged conditions on a formerly dry mineral
soil [8]. Relatively long-time intervals since the last fire (i.e., 400 years), a flat topography, cold climate,
and surficial deposits resistant to water penetration (i.e., compacted clay) have made the Clay Belt
especially favorable to paludification [9]. In addition to successional paludification, there is another
type of paludification, called permanent paludification, which dominates in natural depressions,
which have wetter soil conditions favoring organic layer (OL) build-up. This study focuses only on
topographic factors as there is an increasing practical demand for knowledge concerning the influence
of topography (i.e., Surface and subsurface) on the variation in organic layer thickness (OLT) from
these Northern boreal-forested areas. Surface and subsurface topographies refer to above-ground (i.e.,
top of forest floor) and underground (i.e., beneath the OL; 5–150 cm depth) topographies, respectively.
The effect of allogenic factors (fire and climate) on paludification are not discussed in this study.

Within the Clay Belt paludified forests, there have been few studies that compare topographic
factors (from surface and subsurface) that influence the spatial distribution and accumulation of OL at
plots and landscape scales [7–11]. Until lately, the availability of accurate topographic data beneath the
ground surface (i.e., at top of mineral layer or subsurface topography) was a restrictive factor for both
land management and modeling of topsoil spatial variability. Recent studies by Laamrani et al. [12,13]
have benefited from advances in remote sensing technologies (i.e., Light Detection and Ranging:
LiDAR and Ground Penetrating Radar: GPR) which permitted the generation of high-resolution
topographic data (i.e., slope, aspect, elevation, curvature or topographic indices) at the surface or
subsurface and related these variables to OLT. Even though LiDAR sensors cannot deliver direct
OLT measurements, they can provide accurate mapping topographical features and digital elevation
maps (DEM) [12]. Such datasets can be used as supporting information in mapping OL in boreal
forests [13]. When combined, LiDAR and GPR are considered to be some of the most effective and
reliable high-resolution remote sensing techniques for evaluating topography at both the plot and
landscape scales in boreal forested environments [11,14–18]. Even though these studies proved the
importance of topography on the occurrence of paludification, thus far, no study has assessed which set
of topographic variables (surface, subsurface, or a combination of both) have a greater influence on this
natural process. It is expected that the different topographic variables (predictors) are likely to affect
the OLT distribution; and consequently to affect paludification. For instance, Topographic Wetness
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Index (TWI) was found to play a role on the paludification distribution and therefore should be taken
into consideration.

The aim of this study was to assess and compare the relative ability of surface and subsurface
topographic variables in predicting OLT in Canadian northern boreal forests with different degrees of
paludification using LiDAR and GPR derivatives variables coupled with a machine learning modeling
approach. More specifically, the objectives of this study were to quantify the relative importance of
topographic parameters at both surfaces and subsurface and to determine how these factors influence
spatial paludification process within the Clay Belt region. Given the relatively flat topography of
paludified areas (i.e., the Clay Belt region), we hypothesize that subsurface topography more accurately
influence paludification occurrence than does the surface topography. To our knowledge, this is the
first study to determine the relative importance of topographies at both the surface of organic layer and
at the subsurface beneath OLT. This would allow ordering topographic predictor variables according
to their predictive performance for paludification in boreal-forested environments.

2. Materials and Methods

2.1. Study Area

The study area is located in the James Bay Lowlands physiographic region of Quebec, Canada,
more specifically within the Clay Belt region (Figure 1A). The study was conducted on an established
pilot site centered at 49◦27′30” N, 78◦31′5” W (Figure 1B) and named the “Valrennes Site”. This site
covers approximately 720 ha of boreal forest and has been used in various forestry-remote sensing
studies [10,11,15,19,20]. The studied area contains natural and managed forests (mainly experimental
clear cutting followed by mechanical site preparation and planting conducted in 2011). Since 2009,
the Valrennes site has been a subset of a larger group of long-term forest growth and yield study
plots used in various scientific research studies to monitor the effects of forest management practices
through time on forest productivity. The reference data in this study were measured in 2009 and 2010
prior to the 2011 harvesting activities.

A large part of the study area was covered by black spruce (Picea mariana (Mill.) BSP.) and jack pine
(Pinus banksiana Lamb.). The forest floor was composed of Sphagnum spp., feather mosses (principally
Pleurozium schreberi (Brid.) Mitten), and shrubs, (mainly dwarf ericaceous species), with variable
coverage across the landscape [19]. The Valrennes site has low topographic relief, as the Canadian
Shield was overlaid by an extensive clay deposits laid down by pro-glacial Lakes Barlow–Ojibway [21].
In the study area, surface slope ranged from 0.3% to 15.7%; A large part of the study area (about 60%)
has a slope superior to 2%, and the elevation levels average 303 m above sea level. Local complex
topographical patterns are shaped within the landscape as results of stream channels. Mineral soil (MS)
nomenclature used in this study referred to surficial deposit materials (i.e., clay, till) underlying the OL.
The depth of the mineral layer across the landscape, varied from 100 cm [12] to 60 m [22]). Detailed
information of mineral layer composition present in the study area are described in Veillette et al.,
2005 [22]. In the study area landscape, a complex mixture of Precambrian granitic rock types outcrops
(i.e., bedrock) appears occasionally at the surface and forms scattered gentle hills. The mean annual
temperature is 0 ◦C and total annual precipitation is 909 mm (Joutel weather station, about 15 km east
of the study area [23]).

2.2. Sampling Design and Field Datasets Collection

Thirteen transects, totaling 15 km in length, were established in the investigated site following the
methods described in Laamrani et al., [11]. Transects were designed to cover a maximum variation of
tree species compositions, slopes, and OL thicknesses of the study site as well as for their proximity
to main road to facilitate access, sampling, and monitoring. These 13 transects enclosed a range of
sites that have varied OLT, paludification levels, drainage networks, vegetation cover, and ground
surface moisture conditions. Such transect configuration allowed us to produce a spatially continuous
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cross-sectional profiles of the subsurface topography (Figure 2A). A 20 m minimum distance was
well-maintained between transects in order to optimize spatially-lateral interpolation between transects.
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Figure 1. (A): View of the study area location on the Clay Belt spanning the Ontario-Quebec border
and the location of the study area, red star. (B): LiDAR derived digital terrain model image showing
the location of the sampled sites along 13 transects (i.e., numbered from 1 to 13) Source: Modified by
author et al., [11]).

Permanent OLT measurement locations (n = 1614) were established in the studied area along the
thirteen transects. Systematic OLT measurements were collected at 10 m intervals along each transect
through probing with a manual auger (Figure 2B). At each sampling point. The auger bored through
the organic layer until the MS was encountered and OLT was accurately measured (Figure 2B). The OLT
was taken as the orthogonal distance between the OL surface and the MS interface (Figure 2). In nearly
all cases, the transition between the humic horizon (OL) and mineral soil was visibly noticeable by an
obvious change in soil characteristics (i.e., color, compaction, and texture (Figure 2A,B).

2.3. Mineral Layer Identification and Digital Mineral Soil Elevation Model Generation

Ground Penetrating Radar (GPR) survey was conducted along each of the 13 transects of the
study area to measure the depth to MS using Pulse EKKO Pro (Sensors & Software Inc. Mississauga,
ON, Canada) in the winter of 2010. The survey was conducted in the winter because (i) the presence of
snow cover on the forest floor facilitates data acquisition (i.e., surveys have proven to be difficult to
perform on snow-free forest floor) and (ii) previous studies have demonstrated that the frozen soil
can facilitate the spatially continuous mapping of the interface between the OL and the MS (i.e., [14]).
During the survey, GPR sent short pulses of high frequency (i.e., 200 MHz) electromagnetic (EM)
energy into the ground from an antenna. When the emitted EM wave reached the interface between
the OL and MS (i.e., materials with contrasting dielectric properties), part of the EM energy was
reflected back to a surface receiving antenna and was registered as a single radar trace. The low
electrical conductivity of the organic layer in these paludified forests allows large penetration depths,
and the moisture content changes that occur at various interfaces caused multiple GPR reflections [14].
Juxtaposition of the recorded traces (or reflections) was used to exhibit a 2-D scan of the surveyed
subsurface. By knowing the propagation velocity of the pulse through the substrate and the time
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required for a pulse to travel from the transmitter to the reflector and return back to the receiver,
it was possible to determine the location, depth, presence, and spatial continuity of underground MS.
Thus, we determined that the GPR survey generated spatially continuous profiles of the MS contour
over the study area (i.e., elevation of the MS layer) and could represent an independent measure of
OLT). All the collected GPR profiles were post-processed following the methodology described in
Laamrani et al. [14] (Figure 3). Depth to mineral layer data were then determined at all of the 1614
sampling field locations. The new generated subsurface elevations dataset was then used to create
a digital representation of the three-dimensional subsurface using the TIN procedure (Triangulated
Irregular Networks; [24]). Afterwards, a 3D model of subsurface (i.e., at the top of the MS) was created
by transforming the TIN to a new subsurface raster. The later has an optimal resolution of 10 m,
represents the subsurface topography and is referred to hereafter as the SUB-DEM.Sustainability 2019, 11, x; doi: FOR PEER REVIEW 5 of 14 
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Figure 2. (A): Example of organic and mineral soil layers over a paludified site. The organic layer is
formed by fibric (Of), mesic (Om), and humic (Oh) horizons. The black dashed line corresponds to the
OL-MS interface. The Left black arrows illustrate where both surface and subsurface topographical
variables were measured. (B): Steps for measuring OL thicknesses. At each sampling location, the OL
depth until the MS was encountered (upper left and right); visibly recognized (lower left) and respective
OLT was measured (lower right).

2.4. Surface Digital Elevation Model Generation

In May 2010, LiDAR data were collected over an area that covers approximately 10,000 ha
(100 km2) centered on the sampling area. LiDAR data acquisition was conducted using a Multipulse
Leica ALS50 phase II airborne laser scanner with an average sampling of 2.8 points/m2, an absolute
vertical accuracy of RMSE = 0.065 m. The collected LiDAR data (LAS files) were preprocessed by
separating canopy pulse returns from ground pulse returns; and predicted z values were obtained
within the study area using Inverse distance weighting as the grid interpolating model. The resulting
model was used to produce a 0.5 m cell resolution (cell size) digital terrain model (DTM), which was
rescaled-up to produce 10 m resolution DTM using ArcGIS 10.2 [25]. The 10 m resolution (cell size)
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was chosen to match the same scale as the mineral layer and field measurements datasets. Accuracy
measures (i.e., R2 and RMSE) between the 50-cm basic and the 10-m upscaled LiDAR products and
showed negligible positioning georeferencing difference (RMSE) less than 10 cm (results not shown
here). The LiDAR-derived 10 m resolution DTM was used to represent the surface topography and is
referred to hereafter as the LiDAR-DTM.
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Figure 3. Example of a processed Ground Penetrating Radar (GPR) profile obtained along a portion of
one of the surveyed transects. X-axis represents distance along the transect, while Y-axis represents the
depth of MS that was obtained by converting the time it takes for the wave to travel to the reflector (i.e.,
the OL and MS interface (OL-MS), represented in the profile by a yellow dotted line).

2.5. Datasets Georeferencing Accuracy

To obtain highest possible positioning accuracy of all the available datasets (i.e., OLT field
measurement locations and corresponding LiDAR-DTM, SUB-DEM and GPR data) georeferencing
procedure were achieved to allow reliable comparison among these datasets. To this end, (i) the
airborne ALS50 LiDAR sensor produced point clouds using an onboard Global Navigation Satellite
system (GNSS) and an Inertial Systems. For the purpose of calibrating and validating the accuracy of
the collected the LiDAR-derived point clouds, GNSS-georeferenced ground control points dataset was
also acquired. A RMSE computing between the two datasets has resulted in LiDAR data that has a
horizontal accuracy in the order of RMSE = 0.26 cm. (ii) Positions of all OLT field measurements (n =

1614) were directly georeferenced using a Trimble GeoXT handheld GPS which provided 50 cm-level
positioning accuracy. (ii) For matching validation purposes, the 1614 field sampling OLT measurement
were superimposed upon the LiDAR-DEM raster, then a visual paired representation of georeferenced
data was conducted to address any data unreliability or misplacement. (iii) The position of all the
collected GPR profiles were geo-referenced using a Trimble R8-GNSS. To do so, the GPR system,
used in this study, was coupled to a Trimble R8-GNSS and allowed to determine the x, y, z position
of all the OLT sampling field locations with a horizontal accuracy of less than 0.03 m. The collected
georeferenced (i.e., x, y, z) position was further used to replace all profile in their georeferenced location
and to enable visualization of profile topography. In this study, the three datasets (i.e., LiDAR, GPR,
and field) have achieved high positioning performance in terms of achievable accuracy (within a 50 cm);
and therefore, this has allowed reliable, and consequentially valid comparison among these datasets.

2.6. Explanayory Topographic Variabled

LiDAR-DTM and SUB-DEM were used to generate six topographic rasters each (i.e., slope, aspect,
mean curvature, plan curvature, profile curvature, and the topographic wetness index (TWI) for a
total of 12 raster variables (i.e., six surface and six subsurface). Surface and subsurface topographic
variables (predictor variables) derived from the generated raster (i.e., LiDAR-DTM and SUB-DEM)
were linked to field-measured OLT (response variable). In this study, the selected topographic variables
were chosen because of their link to paludified areas. Indeed, the topography was presumed to have
influence on OL accumulation because depressions are believed to be associated with an accumulation
of organic matter and a concomitant rise in the water table. The TWI, for instance, has been found
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to play a significant role in estimating different soil features that are related to paludified areas such
as local soil moisture [26,27] and the spatial distribution of groundwater flow along forest–peatland
complexes within the boreal forest [28]. It is important to mention that other parameters such as soil
type and texture could affect the water level of groundwater, but they are not dealt with in this study.

In this study, the 12 rasters corresponding to each topographic variable were computed using
Spatial Analyst tools (ArcGIS 10.2; ESRI, 2011). Conceptually, the topographic variable tool fits a plane
to the z-values of a 3 × 3 cell neighborhood around the central cell of a specific raster (i.e., slope).
When a cell location within this nine-cell neighborhood has a “NoData” z-value, the z value of the
central cell was assigned to the location, after which the topographic variable was then computed.
A detailed description of each of the selected topographic variables (i.e., slope, aspect, mean curvature,
plan curvature, profile curvature, and TWI) is provided in Table 1.

Table 1. The different topographic variables (predictors) likely to impact OLT distribution. They were
measured at the surface and subsurface to characterize respective topographies (modified after Laamrani
et al., [15]).

Topographic Variables Description

Slope
Calculated for each grid cell as the maximum rate of change in z-value
from that cell to its neighbors. Slope affects the overall rate of
movement downslope.

Aspect
Direction of the maximum rate of change in the z-value from each cell to
its neighbors. Aspect defines the direction of flow and was classified
into eight major classes (i.e., N, NE, E, SE, S, SW, W, NW).

Mean curvature

A general measure of the convexity of the landscape, where negative
values represent sinks and valleys are considered to be concave,
and positive values are associated with peaks and highs are considered
to be convex.

Plan curvature

Curvature of the surface perpendicular to the slope direction.
Positive values indicate that water flow would diverge (convex surface),
whereas negative values indicate that water flow would converge
(concave surface).

Profile curvature

Curvature of the surface in the direction of a slope. Positive values
indicate that water flow would decelerate (concave surface), whereas a
negative value will indicate that water flow would accelerate
(convex surface).

Topographic wetness index (TWI)

TWI = ln (As/tan β) (Eq. in [28]) where As is the local upslope
contributing area and β is the local slope [29–31]. The higher the value
of the TWI in a cell, the higher the soil moisture and water accumulation
that can be found on it.

2.7. Machine Learning Classification and Accuracy Assesment

We used the Random Forest (RF) classification method [32] to assess the importance of the
predictor topographic variables on the variability of OLT as an indicator of paludification. RF is a
machine-learning method [32] that builds a multitude of decision trees by randomly dividing the
dataset into a training set (2/3 of the entire dataset) and an out-of-bag dataset (or validation data set = 1/3
of the dataset). This has the advantage of enabling model validation without a secondary independent
dataset [33]. Each node was split with a subset of predictors randomly chosen and the final prediction
is made using all of the decision trees. The RF out-of-bag (OOB) error, representing the model error
across all runs, was used to describe the RF model fit in terms of R2. The RF approach provides several
advantages. First, its capability to determine the relative importance of predictor variables in the
resulting model, which allows ordering of variables according to their predictive performance. In this
study, variable importance was computed for each topographic variable (i.e., surface and subsurface
topographical variables) used in the model. Second, it is a simple and user-friendly approach that
requires fewer decisions on the model parameterization than other methods. Third, it can deal with
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non-linearity and allows both continuous and categorical explanatory variables to be included in
the model. Third, we could obtain the RF by calculating the mean decrease (also known as mean
square error of a variable) in random permutation accuracy with each variable considered in turn.
The greater the decrease in average accuracy following variable removal, the more important the
variable [34]. In this study, RF was implemented using the randomForest package and optimized with
three parameters: mtry = 3 and ntree = 500. mtry represented the number of predictor variables randomly
tested at each node and ntree represented the number of trees grown from a bootstrapped sample.

3. Results

3.1. Results of OLT Class Distribution

The 1614 selected OLT samples used in this current study were divided into classes: paludified
(OLT > 25 cm) or not paludified (OLT ≤ 25 cm). Table 2 and Figure 4 provide the summary of the
occurrence of these two classes over the study area. OLT values ranged from 5 to 150 cm. The majority
of the samples (72%) had an OLT between 26 and 150 cm (paludified class) with an average of 58 ±
0.7 cm (mean ± SE), whereas the non-paludified class represented 28% of the samples and their OLT
ranged from 5 to 25 cm with an average of 19 ± 0.2 cm.

Table 2. Summary of measured OLT within the study area.

Class n OLT (cm)

Min Max Mean ± SE

non-paludified 456 5 25 19 ± 0.2
paludified 1158 26 150 58 ± 0.7

All data 1614 5 150 47 ± 0.7

SE refers to Standard error of the mean.

3.2. Results of Random Forest Modeling and Variable Importance

Figure 5 shows an overview of the 12 topographic variables selected to build the RF model.
These variables were ordered according to their ability to predict OLT. Overall the RF model based on
the 12 selected variables explained 83% of the variance with a 17% OOB estimated error rate. Based on
the Mean Decrease Gini (MDG) values, the surface slope had the best predictive performance for
OLT, followed by subsurface slope; suggesting that both factors are conditioning the presence of
paludification. Aspect and TWI (for both surface and subsurface) also had an effect on OLT, but to
a lesser extents. Based on the relative importance of predictor variables in the RF model (Figure 5),
the three surface topographic variables (i.e., slope, aspect, and TWI) were found to have higher
predictive power on OLT as compared to the three subsurface variables (i.e., slope, aspect, and TWI).
Previous research on paludification showed a good relationship between these three variables and
OLT [11,14,15] which is consistent with this finding.

To further investigate the superiority of surface variables compared to subsurface variables, we ran
separate models with only the top six variables shown in Figure 5. As results, the amount of variation
explained by the surface topography model was only 6% greater than the variation explained by the
subsurface topography (83% vs. 77%, respectively). A multi-collinearity test [34] was used to examine
if this small but significant difference between the performances of the two models (i.e., 6%) could be
interpreted as an effect of collinearity between surface and subsurface variables. Consequently, the two
slopes variables (i.e., surface and subsurface) were found to have Pearson correlation coefficients of
0.81 (R2 = 0.64; Figure 6). It is important to mention that aspects obtained at the surface and subsurface
were not tested for multi-collinearity because aspect values are circularly disturbed (meaning they are
not measured using a linear scale).
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(NP = Non-paludified and P = Paludified) over the study area. The lower and upper edges of the box
represent the 25th and 75th percentiles. The median and mean are represented by the band and x in the
middle of the box, respectively. Whiskers represent the lower and upper extremes (lowest and highest
values, respectively). Values beyond the whiskers are outliers. Green and brown couleurs refer to
surface and subsurface datasets, respectively.
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Figure 5 also shows that profile, plan, and curvature variables derived from both surface and
subsurface had low MDGs (i.e., 11 to 13, closer to zero), and consequently these variables had very low
predictive power for OLT. This is in agreement with our previous studies [11,14,15]. When profile,
plan, and curvature were excluded from the model, 84% of the variance was explained by slope,
aspect, and TWI and their respective MDG values for predicting paludification were higher (Figure 7)
compared to the model that had analyzed the 12 variables together.
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4. Discussion

This study has found that among all the twelve topographic variables that were studied, slope had
the highest effect on OLT. This finding is consistent with earlier studies within the Clay Belt, which found
that paludification is affected by the surface slope [7,9,11] and subsurface slope [15]. However,
unlike this study, Simard et al. and Lavoie et al. [7,9] found that only surface slope had an effect
on paludification. This could be explained by the fact that these two studies did not have access to
high resolution remote sensing technology (i.e., LIDAR; GPR) derived-data to generate appropriate
topographic variables (i.e., elevation, slope, aspect, and TWI) at both the surface and the subsurface.

This study has provided a new insight that surface topography matters more to paludification
than subsurface topography. This finding would be particularly useful for implanting sustainable
management strategies in paludified northern boreal forests that take into account the importance
of surface topographic variables. For instance, forest managers can make decisions based on surface
topographical variables to (i) adopt the appropriate forest management practices (i.e., field preparation
treatments and replanting), and (ii) adopt the none-use of any mechanical site preparation in highly
paludified areas (i.e., OLT ≥ 60 cm). Such forest management of the highly paludified areas would not
require any practices that lead to soil disturbing (i.e., field preparation), and therefore could enhance
soil organic carbon storage. Indeed, from a climate change perspective, one of the advantages of the
use of management solutions with no or little soil disturbance (i.e., partial and selection cuts) is that
they would have a positive effect on the amount of carbon stored in the soil OL (i.e., soil carbon stocks)
in paludified forest soil [35]. From management implications perspective, the results of this study are
important for landscape management for several reasons: (i) we have demonstrated the potential of
LiDAR data to provide spatially detailed topographic information that can be used as sources of data
in managing, planning and optimization of forest management activities in paludified boreal forests;
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(ii) we have increased understanding that both surface and subsurface topographies are related to
OL accumulation, which is an important step towards predicting and mapping productivity across
paludified landscapes; (iii) we have determined that maintain or improve forest productivity in the
low/medium paludified boreal forests (40-60 cm), management strategies (i.e., partial and selection
cuts) should focus more on the surface of the forest floor than on the subsurface (i.e., [36]).

Finally, it is worth mentioning that (i) even though the study site “Valrennes Site” has low
topography, it still has an unusual enhanced relief compared to most conventional paludified landscapes
(i.e., almost flat) and might be not very representative of the classical paludified landscapes. We believe
that the application of the methodology used in this study on a very large classical paludified landscapes
in future work will prove invaluable for testing the validation of our results, and (ii) the RF model used
in this study has provided only a current snapshot of the paludified landscape, since paludification is
a dynamic process that changes with time [20].

5. Conclusions

To our knowledge, this study was the first to use very high resolution remotely sensed data to
determine which of the surface or subsurface topographies matters to paludification. This study has
shown that surface topographies need to be taken into consideration first when managing paludification.
This study also provided a new insight that the surface slope has a greater effect on paludification than
the subsurface slope variable. Knowing that surface topography matter more to the natural process
of paludification, we believe that this information is of great importance to forest managers as it can
help them to adopt appropriate sustainable forest management practices (i.e., selecting harvest stands,
mechanical site preparation and proper tree planting techniques). This study also has highlighted the
potential of LiDAR data to provide topographic spatial detail information for planning and optimizing
forest management activities in paludified boreal forests. Finally, future work conducted on larger
paludified area is suggested for validating the importance of surface and subsurface topographies on
paludified black spruce forests of the Clay Belt.
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