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Abstract: The importance of sustainable development has risen in recent years due to the significant
number of people affected by lack of access to essential resources as well as the need to prepare for
and adapt to intensifying climate change and rapid urbanization. Modeling frameworks capable
of effectively assessing and tracking sustainability lie at the heart of creating effective policies to
address these issues. Conventional frameworks, such as the Environmental Performance Index
(EPI), that support such policies often involve ranking countries based on a weighted sum of
a number of relevant environmental metrics. However, the selection and weighing processes
are often biased. Moreover, the ranking process fails to provide policymakers with possible
avenues to improve their country’s environmental sustainability. This study aimed to address
these gaps by proposing a novel data-driven framework to assess the environmental sustainability
of countries objectively by leveraging unsupervised learning theory. Specifically, this framework
harnesses a clustering technique known as Self-Organized Maps to group countries based on their
characteristic environmental performance metrics and track progression in terms of shifts within
clusters over time. The results support the hypothesis that the inconsistencies in the EPI calculation
can lead to misrepresentations of the relative sustainability of countries over time. The proposed
framework, which does not rely on ranking or data transformations, enables countries to make
more informed decisions by identifying effective and specific pathways towards improving their
environmental sustainability.

Keywords: environmental sustainability; unsupervised learning; self-organized maps; global analysis;
environmental performance index; clustering framework

1. Introduction

Sustainable development requires an in-depth understanding of the mounting environmental
challenges faced by every nation. As the global population continues to grow and critical resources
become more scarce, enacting sustainable environmental policies will become increasingly important.
Currently, 844 million people lack access to safe drinking water, 2.3 billion people lack access to
good sanitation facilities [1], and 9 out of 10 people worldwide breathe polluted air [2]—enhancing
environmental performance is thus a path towards improving the basic quality of life for billions of
people. Measurements of environmental performance provide benchmarks for understanding the
efficacy of sustainability related policies and action plans enacted worldwide [3]. These measurements,
or metrics, of environmental performance vary widely—from ecosystem-based measures, such as
biodiversity or forest cover, to health-based measures, such as water or air quality. Given the variety of
metrics that contribute to the overall sustainability of a country, synthesizing the relative environmental
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performance of different sectors into a holistic measurement is vital for evaluating the progress of
nations in the course of building sustainable futures. Environmental sustainability indices are often
the mode of this synthesis, allowing for the measurement of successful policies and interventions
designed to reduce environmental impact.

One of the most widely accepted tools for the measurement of environmental impact is the
Environmental Performance Index (EPI), a composite index developed in line with the United
Nations Millennium Development Goals (MDG) to rank the sustainability of each country based
on a variety of metrics [4]. The EPI is calculated on a scale from 0 to 100 as a weighted combination
of 10 different aspects of environmental sustainability: air quality, water quality, prevalence of heavy
metal exposure, preservation of biodiversity and natural habitats, deforestation rate, exploitation of
fisheries, greenhouse gas (GHG) emissions, air pollution, water treatment, and agricultural nitrogen use
efficiency [4]. The total EPI score of every country in 2018 is shown in Figure 1, while the distribution
within the categories for the same year can be found in Figure 2. The EPI is frequently criticized
because of the inherent bias in selecting the variables to be included in the measure as well as the
inconsistent weighting processes and the yearly changes in the calculation procedures [5,6]. Despite
the increasing amount of credible criticism of the EPI, it continues to be used to monitor and rank
environmental sustainability around the world.

Figure 1. Environmental Performance Metric (EPI) score variation around the world in 2018.

In light of these deficiencies, there is significant ongoing work aimed at developing improved
modes of assessing environmental sustainability, including the development of new indices. One such
index was developed by leveraging structural equation modeling [7] to rank countries based on
relative environmental impact [8]. Bradshaw et al. found that their ranks differed from widely used
composite indices, such as the EPI, possibly due to the exclusion of human health-related indicators [8].
An additional index was developed by Kuosmanen and Kortelainen based on eco-efficiency scores [9].
The eco-efficiency index provides an alternative to the EPI, but still relies on the selection of indicators
and a weighting process that could be different from year to year. Finally, a model referred to as
the Sustainability Assessment by Fuzzy Evaluation (SAFE) was developed to create an index to rank
the sustainability of countries, which is advantageous in environmental sustainability analyses [10].
Despite these efforts to create better environmental performance indices, there remains a reliance on
weighting and aggregation.

The weighting and aggregation process in the EPI, as well as other composite indices, is often
criticized for being biased and potentially under-weighting important variables due to lack of data [5].
As such, there is significant work being done to improve the weighting process. For example,
many authors have leveraged data envelopment analysis (DEA), which selects weights based on
an optimization scheme [11]. In one study, for example, DEA was used to develop a composite index
based on the EPI indicators [12]. This resulted in slightly different rankings than the EPI, as well as
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being more interpretable from a decision-making standpoint. In another study, Bi et al. leveraged DEA
to analyze the environmental performance of the Chinese industrial sector at the national scale [13].
Nonetheless, these weighting and aggregation methods still depend on the analyzer’s choice of method,
potentially introducing bias. To reduce this bias, Gan et al. developed a cyclical process for selecting
the optimal weighting and aggregation procedure with limited user intervention [14]. Although these
advancements in selecting weighting and aggregation procedures have greatly reduced the inherent
biases in composite indices used for evaluating environmental performance, the indicators considered
within the index play an important role in the final results, making sustainability indicators another
crucial area for research.

As mentioned above, indicator selection process of the EPI and other composite indices tends
to be somewhat arbitrary, with potential for introducing bias [15]. To counteract this arbitrariness,
researchers are working to improve the selection process. For example, several authors have proposed
classifying indicators based on the Driver-Pressure-State-Impact-Response (DPSIR) [16] methodology,
which provides justification for the inclusion of various indicators [17,18]. Other work has proposed a
more computational approach based on the Entangled Economy Model [19]. By applying a version
of the Entangled Economy Model, Vasquez et al. were able to determine the optimal sustainability
indicators for a given study area without relying on expert opinions [20]. Ultimately, this model
helped reduce bias introduced via the indicator selection process; however, most models still rely on
ranking countries based on their environmental sustainability. Ranking countries creates difficulties for
policymakers, as the rankings may change from year to year with or without improvement, making it
difficult to determine potential paths forward.

Overall, the literature on global sustainability contains a number of studies outlining the problems
associated with composite indices, such as the EPI, as well solutions to those problems. However,
the solutions have often fallen short in terms of reducing the inherent biases of composite indices.
For example, many authors have pointed to the weighting process as being a source of bias in the
EPI and other composite indices. However, solutions to this weighting problem often still rely on
weighting processes, albeit ones that reduce the chance for human-introduced bias via computational
algorithms. Similarly, while the methodologies based on ranking lead to an easily grasped “big picture”
of global sustainability, they fail to provide specific areas of environmental performance in which
countries need to focus. With this in mind, this study addressed the gaps surrounding the weighting
and ranking processes. First, the proposed framework does not weight indicators based on any
preconceived notions of importance. Secondly, the framework does not rank countries in terms of
environmental sustainability, rather clusters countries based on their similarities. Finally, through the
proposed framework, the authors seek to provide specific pathways towards improving environmental
performance by showing the exact indicators in which a country is doing poorly, rather than a relative
rank that combines all indicators.

In particular, in this paper, we aim to leverage recent advancements in unsupervised learning,
namely Self-Organized Maps (SOM) [21], to create a data-driven framework for clustering and
tracking countries’ respective environmental performance based on the indicators used in the EPI
analysis. Through the use of SOM, we extract the inherent relational trends within the environmental
performance data of all countries worldwide, resulting in the determination of the relative similarity
of countries rather than an explicit ranking. In this way, we circumvent problems faced with the
arbitrary assignment of weights and ranking countries, ultimately providing a more objective tool for
policymakers who are aiming to evaluate their environmental sustainability. It is hypothesized that
any discrepancies between the EPI rankings and the results from our data-driven framework would
demonstrate that such composite indices, especially those that rely on ranking countries, may be
misleading when used for measuring countries’ environmental performance over time. This work
not only represents a novel method to evaluate environmental performance, but also presents a
generalizable framework for objectively assessing and tracking environmental performance.
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The structure of the paper is as follows. First, we discuss the data and methods, including detailing
the specific algorithm (Self-Organized Maps) and generalized modeling framework developed as part
of this study. Then, we discuss the results of applying the framework before delving into a comparison
between the EPI findings and the results of the proposed framework. Finally, we conclude the paper
and discuss policy implications.
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Figure 2. Global visualization of the distribution within the EPI categories for 2018.

2. Data and Methods

In this section, we discuss the data used in this study, including the collection and pre-processing
procedures. Then, we discuss the methodology, including the proposed generalized framework and
the specific algorithm leveraged within the framework.

2.1. Data Description

The goal of this study was to provide a framework to analyze changes in environmental
sustainability that is more practical and less biased than the EPI. To this end, we selected indicators
that are also used to determine the EPI ranking (i.e., the variables that are used to calculated the EPI
rankings were also considered in this study). However, it is important to note that the framework
is generalizable, such that the indicators can be selected to match the study purpose (e.g., a study
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interested in the status of public health does not need to include all the indicators used here in
order to make use of the framework). Initially, all indicators that fell into the ten EPI categories
(i.e., Air Quality, Water Quality, Heavy Metals, Biodiversity and Habitat, Forests, Fisheries, Climate and
Energy, Air Pollution, Water Resources, and Agriculture [4]) were considered. The global distribution of
each category in 2018 is shown in Figure 2. However, to reduce the bias within the modeling framework,
not all of the indicators within these initial categories were selected for the final model. For example,
in 44 of the 180 countries considered, there were no data for the Fisheries category. Moreover, not every
country is associated with fisheries and their related environmental sustainability issues. In this
sense, an assessment of all countries based on the Fisheries indicators would ultimately be misleading.
Similarly, the Biodiversity and Habitat category includes indicators that are weighted by biome or
species—even if the biome or species is not found in all the countries. Therefore, to reduce the bias
associated with the Biodiversity and Habitat category, the indicators were removed. One of the other
sources of bias within the original indicators is found in the Water Resources category, which details the
percentage of wastewater that is treated in a given country. This indicator, unfortunately, only focuses
on artificial wastewater treatment, meaning that countries with more natural-based treatment will not
perform well in this category. Since the framework focuses on all 180 countries, these indicators were
removed. Finally, the original EPI includes multiple transformed indicators. In an effort to maintain
the integrity of the raw data, any indicator that required transformation was not included in this study.
This allowed us to demonstrate specific pathways toward improved environmental sustainability
based on the available data. Ultimately, ten indicators were selected for the final dataset, as shown
in Table 1.

Prior to starting the analysis, the indicators listed in Table 1 were normalized and scaled. Every
indicator was normalized by population, with the exception of tree cover lost (FOR in the table),
which was normalized by area. Each indicator was then scaled, such that they fell between 0 and 1,
with lower values indicating better performance. Finally, all indicators were collected for each country
on an annual basis between 2001 and 2010.

Table 1. Description of indicators used in this study. Note that the data for all indicators was originally
collected by the Yale University Center for Environmental Law & Policy as part of the Environmental
Performance Index [4]. See https://epi.envirocenter.yale.edu for more details.

Indicator Description Source

HAD Age-Standardized Disability-Adjusted Life Years (DALY) Lost Due to the Use of
House Solid Fuels

[22]

PME Age-Standardized Disability-Adjusted Life Years (DALY) Lost Due to Particulate
Matter Emissions

[23]

USD Age-Standardized Disability-Adjusted Life Years (DALY) Lost Due to Lack of Access
or Use of Improved Sanitation Facilities

[22]

UWD Age-Standardized Disability-Adjusted Life Years (DALY) Lost Due to Lack of Access
or Use of Improved Drinking Water Facilities

[22]

PBD Age-Standardized Disability-Adjusted Life Years (DALY) Lost Due to Lead Exposure [22]
FOR Tree Cover Loss (hectares) [24]
CO2 CO2 Emissions (kt) [25]
CH4 CH4 Emissions (kt of CO2 equivalent) [25]
N2O N2O Emissions (kt of CO2 equivalent) [25]
SO2 SO2 Emissions (kt of CO2 equivalent) [26]

2.2. Methodology

To reduce the bias common to many composite indices (see Section 1) and provide a more
transparent evaluation of environmental sustainability, we propose a framework based on statistical
learning theory. In particular, the framework leverages unsupervised learning (e.g., clustering analysis)
to evaluate patterns in the data and group countries based on their performance in a variety of
indicators. The advantages of this framework include: (i) it is generalizable in nature, such that
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the indicators can be completely changed to match the purpose of the study (e.g., adding more
human health indicators to evaluate the public health status around the world); (ii) there is no
weighting or transforming of indicators, which leads to a more transparent evaluation of environmental
sustainability; and (iii) the results are interpretable without needing to rank countries, which ultimately
allows countries to enact policies based on specific indicators, rather than an overall rank.

The general outline of our environmental modeling framework contains three steps: (1) data
collection and pre-processing; (2) model training; and (3) inferencing and analysis. The first step was
to collect the indicator data for the time period (i.e., 2001–2010) and normalize and scale the data as
discussed above.

Following the data collection, the model was trained in an unsupervised way, after which it
was used to obtain the cluster to which each country belonged between the years 2001 and 2010.
Unsupervised learning is a branch of statistical learning theory. In unsupervised learning, the objective
is not predicting an outcome variable of interest, but rather to understand the underlying patterns and
structure of the data [27]. For example, if one has a dataset of n observations X = (x1, x2, ..., xn) with a
probability density of P(X), an unsupervised learning technique would directly infer the properties
of X without prior knowledge of the “correct answer” [27]. Often, the datasets used in unsupervised
learning learning have many dimensions, which makes estimating the density P(X) difficult. To get
around this high-dimensionality problem, many unsupervised algorithms work to reduce the data
into a lower dimensional space [27]. Ultimately, this dimensionality reduction finds any associations
between variables and whether these variables may be considered as functions of a smaller subset
of variables, thus limiting the number of dimensions. Finally, there is no loss function by which to
measure predictive accuracy in unsupervised learning. However, it is possible to draw inferences from
the patterns that emerge in the data.

Within the category of unsupervised learning, there are many algorithms, including association
rules, clustering techniques, and principal component analysis [27]. In particular, clustering techniques
are among the most well-known unsupervised learning methods [28], and lend themselves easily to
interpretation. In this paper, we implemented a clustering technique known as Self-Organizing Maps.

Self-Organizing Maps (SOM) is a clustering technique that leverages artificial neural networks
cluster data based on the underlying patterns and structure [21]. At a high level, the SOM algorithm
performs a vector quantization, which reduces high-dimensional vectors into a two-dimensional
space [29]. A key feature of SOM is the preservation of the relative distance between vectors in the
high-dimensional space after mapping them to the two-dimensional space [21]. This two-dimensional
space is represented by a neural network which is a nonlinear statistical learning model originally
inspired by the human brain. As such, the model contains interconnected “neurons” or nodes. These
nodes are the means through which the algorithm “learns” the weights associated with the various
indicators [27].

In the proposed framework, the SOM algorithm is leveraged to reduce the dimension of the
input variables while preserving their underlying topology [21]. The result of this dimensionality
reduction is a mapping of each data point (here, each country is represented by a data point) to a
node—shown as hexagons in Figure 3. Each node contains one or more data points based on their
similarity within the underlying parameter space (i.e., each node contains data points which perform
similarly in the various environmental indicators). This allows users to determine which data points
are similar (i.e., in the same node) and why they are similar. The algorithm steps are described below,
in Algorithm 1.

In this algorithm, training weights are initially assigned randomly to each node (wi,j). For each
node, x, in the set of nodes, X, nearest node, I(x) is found based on euclidean distance. Based
on the nearest node, the weights corresponding with the ith node are updated according to the
following equation

∆wj,i = η(t)× Tj,I(x)(t)× (xi − wj,i) (1)
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where ∆wj,i is the change in weights, η(t) refers to the learning rate (see Equation (2)), Tj,I(x)(t) refers to
the topological neighborhood function (see Equation (3)), and xi is the node in question. The learning
rate, which is the amount the weights are updated based on the iteration, is shown below:

η(t) = η0 exp(−t/τn) (2)

where t refers to iteration number. The topological neighborhood function is responsible for
maintaining the structure of the input space. It is mathematically represented below:

Tj,I(x)(t) = exp(−S2
j,I(x)/2σ(t)2) (3)

where I(x) refers to the winning node, Sj,i refers to the lateral distance between nodes (i.e., ||wj −wi||),
and σ(t) refers to the neighborhood size (i.e., σ0 exp(−t/τ0).

Algorithm 1 Self-Organizing Maps [21].

1: for t in iterations do

2: wi,j = random ∈ R
3: for i ∈ X do

4: I(X) = argmin
x
||wi − wx||

5: ∆wj,i = η(t)× Tj,I(x)(t)× (xi − wj,i)
6: end for
7: end for

In summary, each vector in the input space is assigned to a node—the winning node—in the
neural network based on its distance to other vectors (i.e., the weight vector of the node). The weights
of the nodes in the neural network are continuously updated based on the relative distances between
all elements in the input space associated with that specific node. In the context of this proposed
framework, the raw environmental data for each country is mapped to a two-dimensional neural
network such that the relative distance between each node in the network approximates the distance
between the countries’ environmental performance within it. As such, we are able to look for the
emergent similarities in the environmental profiles of the countries, and identify changes in the
countries environmental performance by their cluster membership. For more information on the SOM
model process, see Figures S1 and S2.

Unlike supervised learning, the accuracy of the SOM model output cannot be measured using a
loss function as the goal is not prediction, but rather elucidating patterns in the data [27]. Since the
output of SOM is a map of nodes, it is possible to visualize the clusters and make inferences based on
the patterns that emerge. One such way to view the results is to evaluate the clusters on a continent
basis. In this sense, one can test the level of heterogeneity in environmental sustainability within a
continent. Another way we analyzed the results was by comparing the nodes of specific countries in
the different years of the study (i.e., 2001–2010). Through this process, it was possible to determine if a
country made progress on a given indicator over the decade. Finally, the results from the proposed
framework can be compared to the EPI. This was done by comparing the node location of a given
country to their EPI rank. It is possible that a country has a low EPI rank, but is in one of the nodes that
represent relatively better environmental performance. The SOM algorithm has been implemented in
a variety of applications from ecological to urban systems [30–35]. However, the framework presented
here is one of the first studies, to our knowledge, in which SOM has been implemented as part of a
larger framework aimed at evaluating environmental sustainability, rather than simply being used to
classify the evaluations of other indices.



Sustainability 2019, 12, 563 8 of 12

(a) (b)

Figure 3. SOM Model: (a) breakdown of countries by nodes and by continents in the SOM Model;
and (b) weight vectors and clusters in the SOM model

3. Results and Discussion

The output of the SOM algorithm is a map of nodes, which are directly related to the
environmental performance data considered in the study. Each country is categorized to a node based
on their performance within all the indicators. In this sense, the countries are clustered based on their
similar environmental performance. The results of the modeling framework are shown in Figure 3a,b.
Each hexagon in Figure 3 represents one of the SOM nodes. Accordingly, countries assigned to each
node represent those which have similar performance within the various indicators. Analyzing the
distribution of countries across the SOM nodes and categorizing them by their continent, there are clear
trends in the environmental performance (see Figure 3a). Countries in Africa (red points), for example,
tend to cluster by their environmental performance as well as countries in Europe (green points).
Within each cluster, average environmental performance as measured by each indicator is shown in
Figure 3b. Larger wedges indicate higher values of a given indicator, consequently indicating poorer
environmental performance. In this sense, one can determine the relative environmental performance
of each cluster based on the size of the wedges. This results in a snapshot of relative environmental
performance, and provides a clear pathway for determining which aspects drive inclusion in a cluster.

A key benefit of this methodology is the ability for decision makers and policymakers to evaluate
how one country performs relative to another and to determine the specific indicators in which a
country is not performing well. For example, a country located in the bottom right node in Figure 3b
would not be performing well in terms of access to clean drinking water (UWD) and sanitation facilities
(USD), as indicated by the relatively high magnitude of those wedges. Policymakers, therefore, would
know to focus on drinking water and sanitation to improve their overall environmental performance,
as opposed to trying to focus on all aspects of sustainability at once. Additionally, it can be used to
assess not only the current state of environmental sustainability, but also the level of improvement or
deterioration over time. This framework, therefore, circumvents the biases inherent in weighting and
ranking processes raised in Section 1, and allows for assessing the trajectory of countries’ environmental
performances relative to one another. A schematic of how the method detailed above can be used to
determine progression of the environmental sustainability in a given country can be seen in Figure 4.

To determine a country’s improvement over time, both with regard to specific indicators and
overall environmental performance, one can use Figure 4. For example, if a country is located in
the node of interest, circled in yellow, it tends to have lower life expectancy due to the use of house
solid fuels (HAD), poor sanitation conditions (USD), and poor drinking water conditions (UWD).
If that same country, in later years, shifts to a node circled in red, it would be considered a negative
progression, as the indicators of interest (i.e., HAD, USD, and UWD) are significantly larger in those
nodes than the original node. On the other hand, if the country shifts to the node circled in green,
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it would be a positive progression, as the magnitude of the indicators is smaller than the original node.
Finally, if a country shifts to the node circled in blue, it would be difficult to track the progression
(i.e., the progression is incomparable), as the country now has new challenges, namely higher CO2

emissions (CO2) and lower life expectancy due to particulate matter emissions (PME).

Figure 4. Schematic showing the progression (positive, negative, or incomparable) between nodes.

This way of evaluating changes in environmental sustainability has significant implications
for countries working on developing policies aimed at improving sustainability. If one considers
the countries of Jordan, Morocco, and Sri Lanka, for example, we see different progressions in the
proposed framework than those of the EPI. In the EPI, Jordan was ranked 64th in 2006 and dropped
to 70th in 2008, an apparent deterioration in ranking. However, as demonstrated in Figure 5, Jordan
actually improved its environmental sustainability between 2006 and 2008. Specifically, Jordan spent
2001–2006 in a node represented by lower life expectancy due to particulate matter emissions (PME),
but, from 2007 to 2010, the country shifted to a node with a lower PME magnitude—indicating a
positive shift in overall environmental sustainability. By following the EPI ranking, the policymakers
in Jordan may have assumed that their decisions between 2006 and 2008 led to a deterioration in
environmental sustainability, when, in fact, the inconsistent nature of the weighting process involved
in the EPI rankings is a likely cause. Similar to Jordan, Morocco dropped in rank between 2006 and
2008, falling from 68th to 72nd. However, in the method presented here, Morocco saw no change
over the years; instead, they remained stagnant in the same node that Jordan was in from 2001 to
2006. This presents an opportunity for Morocco, should they wish to improve their environmental
sustainability, since Jordan would make an optimal model of a country that was in their node and was
able to progress to a relatively better node. Finally, between 2006 and 2008, Sri Lanka was considered
to have improved in environmental sustainability, rising from 67th to 50th. The proposed method,
on the other hand, shows no change for Sri Lanka over the 10-year period studied. In fact, Sri Lanka
remained in one of the nodes that represent relatively better environmental sustainability for the entire
period. In this sense, Sri Lanka’s increase in EPI rank does not necessarily imply an improvement
on their part, but more likely the continuation of successful policies while other countries dropped.
For the node locations of all 180 countries over the 10-year period, see Table S1.
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Figure 5. Positions of Jordan, Morocco, and Sri Lanka in the SOM grid structure during 2001–2010.

4. Conclusions

The purpose of this study was to develop a framework to better assess environmental
sustainability worldwide. Many of the current indices, including the Environmental Performance
Index (EPI), rely on somewhat arbitrary data weighting and transformation processes that may change
from year to year. This practice introduces biases to the final outcomes. Moreover, most indices present
the results as ordinal rankings, which only demonstrates environmental performance relative to other
countries. The framework presented here aimed to circumvent these shortcomings (i.e., weighting,
transformations, and ranking) by leveraging an unsupervised data clustering technique known as
Self-Organized Maps to extract the inherent patterns present in the environmental performance data.
In contrast with traditional ranking measures such as the EPI, the proposed framework for analyzing
the environmental performance of countries does not use arbitrary rankings or data transformations
and instead constructs a data-driven representation of the underlying similarity between the respective
environmental performance of countries. The results demonstrate significant discrepancies between
the EPI rankings and cluster membership. For example, the country of Jordan dropped in EPI rank
over time; however, our analysis showed that Jordan had a positive progression through the clusters,
based on key improvements in a few critical environmental performance indicators. This is indicative
that the EPI might not be the optimal measure of environmental sustainability, especially given the
criticisms of the weighting and transformation processes.

The proposed framework can be utilized by decision-makers and policymakers to not only
determine their level of environmental sustainability, but also which particular indicators they need to
work on (if any). This ability to see which indicators are impacting their environmental performance is
crucial to using the framework to enact real change, and something that ranked indices do not provide.
Additionally, the nature of the clustering map provides the opportunity for sustainability role models,
so to speak. For example, Jordan and Morocco were initially in the same cluster, but Jordan improved
over time and eventually moved into a relatively better cluster. In this sense, Morocco could use Jordan
as a role model for developing and implementing policies. Finally, the presented framework was
developed for the purposes of environmental sustainability and included indicators that were relevant
to that topic. These indicators, however, are interchangeable depending on the application, making the
framework itself generalizable across a variety of different disciplines and research areas. In conclusion,
the framework presented here evaluates environmental performance in a way that is both practical for
policymakers working to improve environmental sustainability in their country, as well as researchers
and practitioners interested in objectively evaluating environmental performance.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: SOM Model
Training and Convergence, Figure S2: Hierarchical clustering evaluation, Figure S3: Node location reference
numbers, Table S1: List of countries and their respective node locations from 2001 to 2010.

www.mdpi.com/xxx/s1
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