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Abstract: Increasing concerns for sustainable development have motivated the study of closed-loop
supply chain network design from a multidimensional perspective. To cope with such issues, this paper
presents a general closed-loop supply chain network comprising various recovery options and further
formulates a multi-objective mixed-integer linear programming model considering enterprise profit
and service level simultaneously. Within this model, market segmentation is also considered to
meet real-world operating conditions. Moreover, an ε-constraint method and two interactive fuzzy
approaches are applied to find a global optimum for this model together with the decisions on the
numbers, locations, and capacities of the facilities, as well as the material flow through the network.
Ultimately, numerical experiments are conducted to demonstrate the viability and effectiveness of both
the proposed model and solution approaches.
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1. Introduction

During the last few decades, great attention has been paid to the practice of collecting and reusing
used up products, involving almost all of the manufacturing industries [1]. The reasons for these
interests can be attributed to environmental and economic factors. The former includes the used
items’ environmental impacts, the governmental legislation, the customers’ environmental awareness,
and the waste pollution. Among them, the government develops important functions for promoting
the implementation of product returns, especially by law enforcement (e.g., the Waste Electrical and
Electronic Equipment and End-of-life Vehicles directives of the EU) [2]. The latter involves the returns’
economical advantages, improving customer satisfaction, reducing costs, and adding value to the
logistics network. In practice, many companies, such as Dell, General Motors, and Hewlett-Packard,
have achieved great success through recovery activities [3]. Obviously, effectively managing the used
up products has become a necessary issue that cannot be neglected in designing a supply chain.

Generally, traditional supply chain network design refers to the forward materials’ and products’
flow encompassing a series of processes with information and money (financial) flows going backward
and the ultimate goal of maximizing the whole chain’s profits. These processes include entities like
suppliers, manufactures, distributors, and customers, as usual. While considering the integration of the
end-of-use products’ management and the classic supply chain, an additional backward flow, namely
reverse logistics (RL), is essential to the material’s circulation from the end customers towards possible
recovery entities. Thus, the closed-loop supply chain (CLSC) is generated with the consideration of both
forward and reverse product flows in a supply chain simultaneously. In reality, such a configuration
gains much competitive edge [4] with respect to the enterprise’s green image and resource savings.
Furthermore, it makes a huge contribution to the investigation of the sustainable supply chain [5].
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A CLSC network design is suitable for the durable products with features of a modular structure
and a long life cycle (e.g., household appliances, automobiles), as well as the technology products
characterized by a complicated function and a quick product replacement (e.g., mobile phones, laptops),
when their consumption tends to cause the unacceptable waste of resources and sever environmental
pollution [6]. In the backward flow, the returned products may be treated by multiple recovery
alternatives, as the reverse logistics activities can help capture the remaining value in the returns
collected from the end-users [7,8]. Specifically, based on the different quality of the returned items,
the possible recovery options can be determined by detecting and sorting. In general, recycling is the
most used option, when the returns are beneficial and there is no harm to the environment. Otherwise,
they can be disposed through landfill or other suitable treatments in an environmentally sustainable
way. Besides, if the returned items can be resold by remanufacturing or simple repair, the recovered
products can be redistributed to the secondary market. Due to the difference in quality between the
remanufactured items and the newly produced items, different markets (i.e., the primary market and
the secondary market) with different prices also need to be considered.

On the other hand, compared with the CLSC network design only considering a single objective
(usually attempting to minimize cost or maximize profit), multi-objective optimization is more
reasonable and practical in terms of actual applications [9]. Among other traditional measures of
the supply chain operation performance, customer satisfaction is one of the key factors in getting a
sustainable competitive advantage in today’s business environment. Undoubtedly, to gain customer
satisfaction, a high level of service should be offered to the customers. Generally, as for the supply chain
operations, the service level can be measured by the fill rate, which refers to the fraction or amount of
customer demands satisfied within the promised delivery time [10]. Therefore, in order to promote
and maintain the competitive superiority of enterprises for long term development, the customer
service level involving the delivery time should also be taken into account.

Based on the aforementioned considerations, this paper addresses the issue of multi-objective and
multi-echelon supply chain network design, including manufactures, distribution centers, customer
zones, disassembly centers (collection/inspection centers), redistribution centers, and disposal centers
in the network. In this model, we not only incorporate the forward and reverse logistics in a general
CLSC model, but also embed multiple recovery options as a distinct decision differing from the
simply recycling-or-dispose choice. Additionally, the ε-constraint method and two interactive fuzzy
approaches are applied to find Pareto-optional solutions of the multi-objective CLSC network design
problem, and specific analyses of these solution approaches, as well as the effect of some important
parameters on the optimal solution, objective function values, and network configuration are presented.

The remainder of this paper is organized as follows. Section 2 presents an overview of the
most relevant literature and outlines the main contributions. Section 3 describes more details of the
CLSC network design problem investigated in this paper, which is formulated as a multi-objective
programming model in Section 4. Subsequently, Section 5 introduces the solution approaches to the
programming model. Numerical experiments are reported in Section 6, and finally, conclusions are
given in Section 7.

2. Literature Review

Since the concept of RL was proposed by Stock in 1992, the supply chain network with reverse
recovery has received increasing attention. While the traditional, one way logistic model easily leads to
sub-optimalities from the separated configuration [11], Fleischmann et al. [12] integrated the forward
and reverse flows in a supply chain simultaneously as early as 2001, offering a commonly used
quantitative mixed-integer linear programming model (MILP) for the CLSC design. After that, many
authors, like Sahyouni, Savaskan, and Daskin [13] and Lee, Dong, and Bian [14], further demonstrated
the efficiency and effectiveness of the integrated approach compared to a sequential approach. Most of
these studies commonly investigated the network echelons, facilities, recovery options, as well as
optimization methods of the proposed network design problems. In what follows, we present a
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more detailed analysis of the related work that takes into account multiple recovery options and
multi-objective network design problems and then present the main contributions of this paper.

2.1. RL and CLSC Network Design with Multiple Recovery Options

In recent decades, the majority of relevant papers were about the RL and CLSC network design
focusing on the remanufacturing or recycling option for all returned products (e.g., [15,16]), due to the
obvious economic and ecological benefits obtained from the circular economy. Aras, Aksen, and Gonul
Tanugur [7] pointed out that both remanufacturing and recycling activities can help reduce the unit
cost of production by 40–60%. Wang et al. [17] established a system dynamic model to test and verify
the mixed-subsidy policies’ positive effects on these two treatments. Besides, there is also a number of
papers covering other different recovery alternatives. In 2006, Kannan, Sasikumar, and Devika [18]
developed a CLSC model for the case of battery recycling with multiple recovery options, which
consisted of repair, remanufacture, raw material recycling, and waste disposal, aiming at minimizing
the supply chain costs. Based on the different ways of treating the various returns, El-Sayed, Afia, and
El-Kharbotly [19] further differentiated the demand market for new products from the used products
to capture the realistic situations. On account of the profitable value recovery from the returned items,
Alumur et al. [20] presented a general MILP formulation incorporating several means of tackling these
returns in an RL network design, such as recycling, external remanufacturing, and the secondary
market. A case study of large household appliances verified the effectiveness of the proposed model.
Furthermore, the effect of the return rate was investigated, showing that the total expected profit
increased with the increase of the return rate.

Considering whether the rate of each recovery option was varied or fixed, many models were
proposed with a fixed recovery rate per option (e.g., [21–24]), whereas a few models considered
the variation of proportions of products assigned to every recovery option. For example, Krikke,
Bloemhof-Ruwaard, and Van Wassenhove [25] constructed a CLSC network model with cost
minimization in which the returned products could be reused or remanufactured in modules or
components instead of the virgin materials. A “feasibility rate” was provided for each option, which
restricted the recovery rate per option within a given limit. Then, the authors performed a sensitivity
analysis to investigate the impact of the varying rate of return, recovery feasibility, and recovery targets
on the product cost. Ozkir and Basligil [26] presented another sensitivity analysis for a capacitated
CLSC model incorporating three product recovery alternatives. They studied the impact of varying
return rates and return quality showing that the return rate variation had more significant influence
on the total profit than the return quality did. Recently, Jerbia et al. [27] investigated a stochastic
CLSC network design model with multiple recovery options, where they explored the changes of the
network structure and the total profitability when the main parameters (i.e., return rates, revenues,
costs and quality of return) of the model varied.

2.2. RL and CLSC Network Design with Multiple Objectives

In RL and CLSC network design, multi-objective programming models have been studied by
many researchers in recent years. On the basis of the usual economic indicators (e.g., minimum
cost, maximum profit), some papers considered sustainability, the enterprise’s social responsibility,
customer service level, and others as additional objectives.

Prior to the sustainable supply chain network design, studies mainly focused on the economic
and financial business performance in the early stage. With the enrichment of sustainability theory,
the environmental and social impacts of supply chain operations, as well as the economic benefits
began to be considered in the multi-objective network design problems. For instance, Ozkir and
Basligil [28] established a CLSC model considering three recovery options and deduced three levels
of objective functions relating to profit maximization, trade satisfaction, and customer satisfaction.
Talaei et al. [29] investigated the remanufacturing issue in a closed-loop green supply chain network
design and proposed a bi-objective model considering reducing total costs and the rate of CO2 emission.
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The applicability of their model and the effectiveness of the solution method were illustrated via an
application in the electronics industry. Furthermore, Devika et al. [5] emphasized the economic
performance and environmental, as well as social impacts in the model construction simultaneously,
which aimed to capture the trade-off between three pillars of sustainability. In regards to the complexity
of the model, they further developed competitive algorithms integrating a variable neighborhood
search to solve it. Focusing on the notions of sustainable and green supply chains, Soleimani et
al. [30] extended the multi-objective model of Ozkir and Basligil [28] by appending the reduction
of CO2 emissions and lost working days. Besides, Masoudipour et al. [31] developed a novel
multi-objective model in which total costs, CO2 emissions, and the quality of returned products
were taken into account.

Except for the economic and sustainable objectives, a good network design would also help
the enterprise accelerate its operation efficiency and further improve the customer satisfaction level,
which ultimately benefits the enterprise. Hence, there is a growing trend to regard customer service
level as an important measurable goal [32]. Generally, this goal can be measured via the delayed
delivery time, responsiveness rate, defective products’ rate, and others. For example, Pishvaee and
Torabi [33] proposed a structure to model a CLSC network with costs and service level considerations
and presented an efficient interactive fuzzy approach to minimize the total costs and tardiness of
delivered products. Since the quicker the network responsiveness, the higher the customer satisfaction,
Khajavi et al. [34] investigated the integrated forward/reverse logistics network and presented a
bi-objective mixed-integer programming model, in which the minimization of costs and maximization
of the network responsiveness were taken into account. For the long lasting efficient operation
of the entire supply chain, Ramezani et al. [10] designed a stochastic multi-objective model for a
forward/reverse supply chain network, considering the maximization of profit and responsiveness
and the minimization of defective parts delivered from suppliers.

2.3. Main Contributions

As stated above, most of the literature on RL and CLSC network design considers only one
or two recovery options for returned items, such as Guide and Danial [15], Dowlatshahi [16], and
so on. Just a few papers that we surveyed in our literature review took into account multiple recovery
options. However, among of them, some papers constructed models for some particular products
(e.g., [18,22]), which lacked generality. Besides, the separated design of the forward and reverse chains
easily resulted in sub-optimalities (e.g., [20]). Hence, our paper comes to enrich this stream of literature
by presenting a general CLSC network design model including repair, recycling, remanufacturing,
redistributing, and disposal. Furthermore, the model also considers the secondary markets for the
remanufactured products. Additionally, while the promotion of operational efficiency can improve the
service level for each customer and the economic value for every enterprise, the objective function of the
proposed MILP model is to maximize the enterprise profit and customer service level simultaneously.
This was rare in the above mentioned studies, where many papers focused on a single objective in the
research for multiple options (e.g., [19,25–27]) or the measurement of CO2 emissions for the sustainable
multi-objective investigation (e.g., [29–31]). Up to now, to the best of our knowledge, there is no such
paper that has designed such a network programming model with all the situations taken into account
at the same time.

On the other hand, considering the multi-objective programming model proposed in this paper,
we aim to adopt various effective and well behaved solution methods to solve this problem and
offer much more flexible recommendations to decision makers. In the aforementioned papers,
which concentrated on multi-objective investigations, most of them only utilized a single method
(e.g., [29,31,34]). However, in this paper, we use the ε-constraint method and two interactive fuzzy
methods to solve the proposed model. Furthermore, similarities and differences among those
multi-objective methodologies are discussed and analyzed theoretically, and they are tested in the
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experiments. Regarding the impact of the return rate, which had recently been emphasized by
researchers (e.g., [25–27]), we give a thorough analysis of the return rate in the end.

3. Problem Definition

The CLSC network design problem discussed in this paper is an integrated multi-stage logistics
network including three echelons in the forward direction (i.e., production/remanufacturing centers,
distribution centers, primary markets) and four echelons in the backward direction (i.e., disassembly
centers, redistribution centers, disposal centers, secondary markets), as illustrated in Figure 1. In the
forward flow, new products are shipped from production centers to primary markets (customers
of primary markets consuming the original products) through distribution centers to meet the
demand of each customer. In the reverse flow, firstly, returned products collected from the primary
markets are sent to disassembly centers, and then, they are tested/classified to determine the specific
recovery options: (i) sent to the secondary markets (customers of secondary markets consuming
remanufactured/repaired products) by the redistribution centers after simple repair for the slightly
damaged products; (ii) delivered to the plants for remanufacturing for the partly available products
and then sent to the secondary markets finally; (iii) recovered as raw materials for the partly recycled
products; (iv) disposed by the disposal centers for the completely non-valuable products. In this model,
production centers are also used for remanufacturing products. The proposed network incorporates
the multiple treatment approaches that can make the best use of the returned products. To fulfill the
real-life scenario, market segmentation divided by product nature is also considered.

Therefore, the network studied in this paper is a general CLSC network combining
manufacture-repair-remanufacture and resource recycling into one, which can be applied to the
automotive, electronics, and other consumer product industries, involving relevant enterprises like
electrical equipment manufacturers, automotive parts makers, and so on.

Plants
(I)

Distribution centers
(J)

Redistribution centers
(M)

Primary markets
(K)

Secondary markets
(N)

Disassembly centers
(L) Raw material recycling

Disposal centers
(P)

Remanufactured
products

Recycling and 
remanufacturing

Repair

Products collecting 

Forward flow Reverse flow

Figure 1. The closed-loop supply chain (CLSC) network with multiple recovery options.

Given the aforementioned network configuration, the CLSC design model is to determine the
numbers and locations of these five types of facilities, namely plants, distribution centers, disassembly
centers, redistribution centers, and disposal centers, and allocate shipped quantities of products
between these facilities. Moreover, the network design of this paper is obligated to adhere to the
principles of economy and efficacy, which are devoted to helping companies perfect the supply chain
management and reduce energy consumption, as well as waste disposal. In this way, we aim to
maximize the total profit of the enterprise through sales and recovery activities and maximize the
service level through the highly efficient network operation.
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The assumptions made for the problem formulation are as follows:

• A single product and single period are considered in this CLSC network design.
• Given that the quality of remanufactured and repaired products is different from the new ones,

they should be sold in different markets at different prices. The new and remanufactured/repaired
products correspond to the primary and secondary markets, respectively.

• Customer locations are fixed, and customer demands are known, among which the demand in
primary markets must be satisfied, while the secondary markets’ may not be totally satisfied.

• On account of the products available for collecting being limited, the maximum rate of return is
predetermined.

• In the four recovery options, the rate of simple repairs and the disposal rate of returns are
predetermined.

• There is no flow between the facilities of the same echelon.
• Considering the instability of the recycling of waste products, the primary market customer

service level is studied only.
• The capacity of each facility is restricted.

Based on the above foundational assumptions, the problem studied in this paper can be defined
as a single period and single product multi-objective CLSC network design problem with multiple
recovery alternatives under the capacity restrictions.

4. Model Formulation

As the problem definition stated in Section 3, in this section, the CLSC network design problem is
formulated as a novel multi-objective mixed-integer linear programming (MOMILP) model. Firstly,
the sets, parameters, and decision variables of the problem are introduced, and then, the model’s
objective functions and constraints are explained specifically.

The model involves the following sets, parameters, and decision variables:

Sets
I Set of potential locations of plants, (i = {1, 2, · · · , I});
J Set of potential locations of distributions, (j = {1, 2, · · · , J});
K Set of primary markets, (k = {1, 2, · · · , K});
L Set of potential locations of disassembly, (l = {1, 2, · · · , L});
M Set of potential locations of redistributions, (m = {1, 2, · · · , M});
N Set of secondary markets, (n = {1, 2, · · · , N});
P Set of potential locations of disposal, (p = {1, 2, · · · , P});

Parameters
dk Demand of customer k from the primary market;
dn Demand of customer n from the secondary market;
fi Fixed establishing cost of plant i;
f j Fixed establishing cost of distribution center j;
fl Fixed establishing cost of disassembly center l;
fm Fixed establishing cost of redistribution center m;
fp Fixed establishing cost of disposal center p;
pi Capacity of plant i;
pj Capacity of distribution center j;
pl Capacity of disassembly center l;
pm Capacity of redistribution center m;
pp Capacity of disposal center p;
tcij Unit transportation cost from plant i to distribution center j;
tcjk Unit transportation cost from distribution center j to customer k;
tcli Unit transportation cost from disassembly center l to plant i;
tclm Unit transportation cost from disassembly center l to redistribution center m;
tclp Unit transportation cost from disassembly center l to disposal center p;
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tcim Unit transportation cost from plant i to redistribution center m;
tcmn Unit transportation cost from redistribution center m to customer n;
tclp Unit transportation cost from disassembly center l to disposal center p;
tcim Unit transportation cost from plant i to redistribution center m;
tcmn Unit transportation cost from redistribution center m to customer n;
vci Unit remanufacturing cost at plant i;
rcl Unit repairing cost at disassembly center l;
dcp Unit disposal cost at disposal center p;
hcj Unit treatment cost at distribution center j;
hcl Unit treatment cost at disassembly center l;
hcm Unit treatment cost at redistribution center m;
mci Unit manufacturing cost at plant i;
cckl Unit recovery cost of used product from customer k to disassembly center l;
ω Maximum recovery ratio of used product;
θ1 Disposal ratio;
θ2 Repairing ratio;
dtjk Delivery time from distribution center j to customer k;
etk Expected delivery time of customer k;
s1 Unit income of new product;
s2 Unit income of remanufactured product;
s3 Unit recovery income of raw material;

Decision variables
Xij Flow of product from plant i to distribution center j;
Xjk Flow of product from distribution center j to customer k;
Xkl Flow of returned product from customer k to disassembly center l;
Xli Flow of recoverable product from disassembly center l to plant i;
Xlm Flow of repaired product from disassembly center l to redistribution center m;
Xlp Flow of scrapped product from disassembly center l to disposal center p;
Xim Flow of remanufactured product from plant i to redistribution center m;
Xmn Flow of repaired product and remanufactured product from redistribution center m to second customer n;
Xl Flow of raw material from disassembly center l to suppliers;
Yi Binary variable equal to 1 if plant i is open and 0 otherwise;
Yj Binary variable equal to 1 if distribution center j is open and 0 otherwise;
Yl Binary variable equal to 1 if disassembly center l is open and 0 otherwise;
Ym Binary variable equal to 1 if redistribution center m is open and 0 otherwise;
Yp Binary variable equal to 1 if disposal center p is open and 0 otherwise.

In terms of the above mentioned notations, the multi-objective CLSC network design problem
can be formulated as follows.

4.1. Objective Functions

4.1.1. Objective Function 1: Maximizing the Enterprise Profit

The first objective function is to maximize the total profit, which can be calculated by the total
sales revenue minus total costs.

• Total sales revenue:

Based on the functions and activities of each entity in the supply chain, the total sales revenue
of the network includes the new product sales, the remanufactured product sales, and the recovery
income of raw material sales. Hence, the total sales revenue TS is calculated as follows:

TS = ∑
j∈J

∑
k∈K

s1Xjk + ∑
m∈M

∑
n∈N

s2Xmn + ∑
l∈L

s3Xl . (1)
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• Total costs:

Two types of costs are considered in the CLSC network design, i.e., fixed costs of establishing and
operating these facilities and variable operation costs that depend on the volumes of products to be
handled. Specifically, the fixed cost FC and various variable operation costs, including transportation
costs TC, manufacturing costs MC, treatment costs HC, recovery costs CC, remanufacturing costs
RMC, repairing costs RC, and disposal costs DC, are formulated by Equations (2)–(9), respectively.
Note that since almost all costs can be divided into these two types, fixed or variable costs, in terms of
whether they change with the volumes being processed, other costs not being considered in this study
can be similarly treated in our proposed model and solution approaches.

FC = ∑
i∈I

fiYi + ∑
j∈J

f jYj + ∑
l∈L

flYl + ∑
m∈M

fmYm + ∑
p∈P

fpYp (2)

TC = ∑
i∈I

∑
j∈J

tcijXij + ∑
j∈J

∑
k∈K

tcjkXjk + ∑
l∈L

∑
i∈I

tcliXli + ∑
l∈L

∑
m∈M

tclmXlm

+ ∑
l∈L

∑
p∈P

tclpXlp + ∑
i∈I

∑
m∈M

tcimXim + ∑
m∈M

∑
n∈N

tcmnXmn
(3)

MC = ∑
i∈I

∑
j∈J

mciXij (4)

HC = ∑
j∈J

∑
k∈K

hcjXjk + ∑
k∈K

∑
l∈L

hclXkl + ∑
m∈M

∑
n∈N

hcmXmn (5)

CC = ∑
k∈K

∑
l∈L

ccklXkl (6)

RMC = ∑
l∈L

∑
i∈I

vciXli (7)

RC = ∑
l∈L

∑
m∈M

rclXlm (8)

DC = ∑
l∈L

∑
p∈P

dcpXlp (9)

Accordingly, the total profit of the enterprise, denoted as Z1, is:

Z1 = TS− FC− TC−MC− HC− CC− RMC− RC− DC. (10)

4.1.2. Objective Function 2: Maximizing the Service Level

The second objective function is to maximize the customer service level, which refers to satisfying
the customer requirements and providing more efficient service at the same time. In this study, it is
measured by the delay time, which also indicates the responsiveness of the network. If the actual
delivery time dtjk is less than the expected delivery time etk of customer k, then delivering products
from distribution center j to customer k totally meets his/her requirements on delivery time. Otherwise,
the delayed delivery time, subtracting etk from dtjk, should be taken into account to increase the service
level, and it is wise to avoid delivering products from distribution center j to customer k or to decrease
the amount delivered on this flow if possible. Hence, the total delayed delivery time weighted by the
corresponding delivered volumes to be minimized, denoted as Z2, is:

Z2 = ∑
k∈K

∑
j∈J

(dtjk − etk)
+Xjk, (11)

where (·)+ = max{·, 0}.
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4.2. Constraints

4.2.1. Demand Constraints

∑
j∈J

Xjk = dk ∀k ∈ K, (12)

∑
m∈M

Xmn ≤ dn ∀n ∈ N. (13)

Constraints (12) and (13) are demand constraints. These constraints ensure that the new and
remanufactured/repaired products are sold in the different markets. Precisely, Constraint (13)
guarantees that the demands of all customers in the primary markets are fully satisfied, while
Constraint (13) states that the demands in the secondary markets may not be totally satisfied.

4.2.2. Flow Balance Constraints

∑
i∈I

Xij = ∑
k∈K

Xjk ∀j ∈ J, (14)

∑
l∈L

Xkl ≤ ω ∑
j∈J

Xjk ∀k ∈ K, (15)

∑
k∈K

Xkl = ∑
i∈I

Xli + ∑
m∈M

Xlm + ∑
p∈P

Xlp + Xl ∀l ∈ L, (16)

θ1 ∑
k∈K

Xkl = ∑
p∈P

Xlp ∀l ∈ L, (17)

θ2 ∑
k∈K

Xkl = ∑
m∈M

Xlm ∀l ∈ L, (18)

(1− θ1 − θ2) ∑
k∈K

Xkl = ∑
i∈I

Xli + Xl ∀l ∈ L, (19)

∑
l∈L

Xli = ∑
m∈M

Xim ∀i ∈ I, (20)

∑
i∈I

Xim + ∑
l∈L

Xlm = ∑
n∈N

Xmn ∀m ∈ M. (21)

Constraints (14)–(21) are flow balance constraints. Constraint (14) guarantees that for each
distribution center, the flow from all plants is equal to the flow distributed to all primary markets.
Constraint (15) indicates that the amount of the returned products is restricted by the maximum return
rate ω. Constraint (16) ensures that the sum of the returned products at the disassembly center is equal
to the flow entering to the four recovery treatment centers. Constraints (17)–(19) show that the flow
of returned products in the four directions is controlled by the fixed disposal rate θ1 and the simply
repairing rate θ2. Constraints (20) and (21) show the flow balance at the plants and the redistribution
centers, respectively.

4.2.3. Capacity Constraints

∑
j∈J

Xij + ∑
m∈M

Xim ≤ piYi ∀i ∈ I, (22)

∑
k∈K

Xjk ≤ pjYj ∀j ∈ J, (23)

∑
k∈K

Xkl ≤ plYl ∀l ∈ L, (24)

∑
n∈N

Xmn ≤ pmYm ∀m ∈ M, (25)

∑
l∈L

Xlp ≤ ppYp ∀p ∈ P. (26)
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Constraints (22)–(26) show the capacity constraints of plants, distribution centers, disassembly
centers, redistribution centers, and disposal centers, respectively.

4.2.4. Variables’ Constraints

Xij, Xjk, Xkl , Xli, Xlm, Xlp, Xim, Xmn, Xl ≥ 0, ∀i, j, k, l, m, n, p, (27)

Yi, Yj, Yl , Ym, Yp ∈ {0, 1}, ∀i, j, l, m, p. (28)

Constraints (27) and (28) are non-negative and binary constraints on the corresponding
decision variables.

4.3. MOMILP Model

In terms of the objective functions and constraints mentioned above, the simplified formulation
of this multi-objective CLSC programming model can be presented as follows:

max Z1 = TS− FC− TC−MC− HC− RMC− RC− DC− CC

min Z2 = ∑k∈K ∑j∈J(dtjk − etk)
+Xjk

s.t.

(12)− (28).

(29)

As stated above, this section constructs a CLSC network optimization model with different
recovery alternatives for returned items. Moreover, there are three edges of this model compared
to the previous studies: (i) considering four different recovery options for the quality of the actual
returned products; (ii) setting the enterprise profit and the delayed delivery time as the bi-objective
to maximize the economic benefits and service effects; (iii) segmenting the markets into two parts,
namely the primary markets for new products and the secondary markets for the remanufactured
products. Such a model considering all the situations above at the same time has not been investigated
before, which can provide valuable insights for the enterprise’s operation.

Moreover, this proposed optimization model is a multi-objective mixed-integer linear
programming (MOMILP) model. In the following section, three different methods are discussed
to tackle the multiple objectives. Following these approaches, the MOMILP model is transformed into
a single objective MILP model, and then, it can be effectively solved by utilizing some well developed
optimization software (e.g., Cplex).

5. Multi-Objective Methodology

Since most multi-objective optimization problems have more than one conflicting objective and
there is no single optimal solution that can optimize all the objective functions simultaneously [35],
decision makers usually look for the “most preferred” solution. For this purpose, the ε-constraint
method with a priori articulation of the decision maker’s preference information is widely used to
figure out the Pareto-optimal solution of the multi-objective optimization problem. In this study,
the ε-constraint method is also applied to solve the MOMILP model first. Then, in order to select
the “best” compromised solution among the Pareto-optimal solutions, two interactive fuzzy methods
are further discussed. In the following, more details about the proposed multi-objective methods,
as well as their relations are presented.

5.1. ε-Constraint Method

The ε-constraint method, as a common multi-objective method, was first presented by
Haimes et al. [36]. It optimizes one objective by considering the other objectives as constraints
with allowable bounds. Then, the bounds are consecutively modified to generate other Pareto-optimal
solutions. Obviously, it is easy to prove that these optimal solutions are efficient solutions in theory.
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Following the ε-constraint method, the MOMILP model of the aforementioned CLSC network design
problem can be presented as: 

max Z1(X)

s.t.
Z2(X) ≤ ε

X ∈ F,

(30)

where ε is the upper bound of the objective Z2, X denotes the decision vector involving all of
the decision variables in the original model (29), F represents the feasible solution set defined by
Constraints (12)–(28), and thus, X ∈ F denotes a feasible solution.

Solving (30), we can obtain multiple Pareto-optimal solutions via altering the value of ε. By means
of this strategy, the final supply chain configuration with the desired compromise can be chosen among
the different solutions based on the decision maker’s preferences.

5.2. Interactive Fuzzy Methods

Fuzzy solution methods have been commonly applied to address the multi-objective optimization
problems in recent years because of their capability of measuring the satisfaction degree of each
objective directly. The first one was introduced by Zimmermann [37], called the min-max method,
which converts the bi-objective model to a single objective model. It allows the decision maker to
make a trade-off between the multiple objectives and gives the achieved level of each objective under
different preferences. However, there is a well known deficiency that the solution yielded by the
max-min operator might not be unique nor efficient [38]. Therefore, several methods were further
developed to improve this method. Of particular note, Werners [39], Torabi and Hassini [40] (the TH
method), and Selim and Ozkarahan [32] (the SO method) effectively remedied the original defect by
adding the coefficient of compensation γ into the model. In this study, we apply the TH method and
the SO method simultaneously for exploring the optimal solution more effectively. Following these
two methods, the procedure to solve the MOMILP model is summarized as below.

Step 1: Determine the positive ideal solution (PIS) and the negative solution (NIS) for each
objective. The former is the optimum value of the objective function to be optimized while other
objectives are ignored, and the latter is the possible worst value under the scenarios in which other
objectives achieve their optimum values. In terms of Model (29), let XPIS/NIS

g and ZPIS/NIS
g (g = 1, 2)

denote the decision vector associated with the PIS/NIS of the gth objective and the corresponding
value of the objective function, respectively. Accordingly, the positive ideal solutions for the two
objectives of (29) can be denoted as (ZPIS

1 , XPIS
1 ) and (ZPIS

2 , XPIS
2 ). Then, the related NIS can be

obtained as follows:
ZNIS

1 = Z1(XPIS
2 ), ZNIS

2 = Z2(XPIS
1 ). (31)

Step 2: Specify a linear membership function for each objective as follows:

µ1(X) =


0, if Z1(X) < ZNIS

1

Z1(X)− ZNIS
1

ZPIS
1 − ZNIS

1
, if ZNIS

1 ≤ Z1(X) ≤ ZPIS
1

1, if Z1(X) > ZPIS
1

(32)

µ2(X) =


0, if Z2(X) > ZNIS

2

ZNIS
2 − Z2(X)

ZNIS
2 − ZPIS

2
, if ZPIS

2 ≤ Z2(X) ≤ ZNIS
2

1, if Z2(X) < ZPIS
2 ,

(33)
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where µg(X) represents the satisfaction degree of the gth objective, g = 1, 2.
Step 3: Construct the aggregation function on the basis of the membership function.

This procedure converts the MOMILP into a single objective MILP model by using the TH method
and SO method. Note that both of these methods ensure obtaining the efficient solutions.

The TH aggregation function is given as follows:
max λ(X) = γλ0 + (1− γ)∑g wgµg(Zg(X))

s.t.
λ0 ≤ µg(Zg(X)), g = 1, 2

X ∈ F, λ0 ∈ [0, 1],

(34)

where γ ∈ [0, 1] indicates the coefficient of compensation and wg ∈ [0, 1] denotes the importance of the
gth objective such that ∑g wg = 1.

Furthermore, the SO aggregation function is given as follows:
max λ(X) = γλ0 + (1− γ)∑g wgλg

s.t.
λ0 + λg ≤ µg(Zg(X)), g = 1, 2

X ∈ F, λ0, λg ∈ [0, 1],

(35)

where γ, wg ∈ [0, 1] is similarly defined as that in (34).
Step 4: Specify the value of the coefficient of compensation γ and relative importance of each

objective wg and solve the respective single objective MILP model. If the decision maker is satisfied
with the current solution, stop, otherwise provide another compromise solution by changing the value
of γ and wg, and go to Step 3.

5.3. Comparison of the Proposed Methods

To discuss the relation between the proposed methods, which may provide more insights to
the decision maker while determining the “most preferred” solution by utilizing these methods,
some theoretical analyses are presented here first. Then, they are further illustrated by the numerical
experiments given in the next section.

As for the TH method, it is easy to obtain that λ0 = ming{µg(Zg(X))} must hold true, if the
objective function of Model (34) is optimized. Therefore, the decision variable λ0 in (34) indicates the
minimum satisfaction degree of the two objectives. Furthermore, the TH Model (34) can be rewritten
in an equivalent form as:

max λ(X) = γ ming{µg(Zg(X))}+ (1− γ)∑g wgµg(Zg(X))

s.t.
X ∈ F.

(36)

As for the SO method, it can be verified that λ0 + λg = µg(Zg(X)) must hold true for both g = 1, 2,
if the objective function of Model (35) is optimized. Therefore, the constraint λ0 + λg ≤ µg(Zg(X))
in (35) can be replaced by λ0 ≤ µg(Zg(X)) and λg = µg(Zg(X))− λ0. Then, the SO Model (35) can be
reformulated as: 

max λ(X) = (2γ− 1)λ0 + (1− γ)∑g wgµg(Zg(X))

s.t.
λ0 ≤ µg(Zg(X)), g = 1, 2

X ∈ F, λ0 ∈ [0, 1].

(37)
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If 0 ≤ γ < 0.5 in the SO Model (37), the coefficient (2γ− 1) before λ0 in the objective function
becomes negative. Then, which the objective function being optimized, λ0 = 0 can be deduced. In such
a case, the SO model actually seeks to maximize ∑g wgµg(Zg(X)) (the positive constant coefficient
(1− γ) before it can be ignored), i.e., the weighted sum of the satisfaction degrees of the two objectives.
Furthermore, if γ = 0.5, Model (37) maximizes ∑g wgµg(Zg(X)) as well. Therefore, if 0 ≤ γ ≤ 0.5,
the SO Model (37) equals the TH Model (34) by setting the compensation coefficient as zero.

If γ > 0.5 in the SO Model (37), the coefficient (2γ− 1) before λ0 in the objective function becomes
positive. Correspondingly, λ0 in Models (35) and (37) can be explained as the minimum satisfaction
degree of the two objectives, whereas λg in Model (35) is the difference between the satisfaction degree
of the gth objective and the minimum satisfaction degree λ0. Similarly to that converting (34) to (36),
the SO Model (35) can be further rewritten in an equivalent form as:

max λ(X) = (2γ− 1)ming{µg(Zg(X))}+ (1− γ)∑g wgµg(Zg(X))

s.t.
X ∈ F.

(38)

Comparing Models (30) and (34)–(38), formulated following the three different methods,
the ε-constraint, TH, and SO, some conclusions regarding the relation of these methods are presented
as below.

(1) For the proposed multi-objective methodology, the ε-constraint method fails to achieve
the measurement of the satisfaction level of each objective function when generating multiple
optimal solutions. Nevertheless, the TH and SO methods can make up for this demerit through
the transformation of membership functions, to ensure the assessment of the optimization of each
object function. Besides, when the the parameter γ = 0 and wg = 1, both the TH and SO methods lead
to a single objective problem with the optimization of the gth objective function. In such a case, the
same solution can be obtained by utilizing the ε-constraint method with a very large value of ε.

(2) In terms of the TH and SO methods, there are some similarities and connections between them.
First, as discussed above, the SO model with a compensation coefficient γSO ∈ [0, 0.5] equals the TH
model with a compensation coefficient γTH = 0. Second, while the compensation coefficient γ takes a
value of 1 in both methods, the two methods also yield equivalent models (see Models (36) and (38)
with γ = 1). Furthermore, following from (36) and (38), it is easy to prove that for each SO model with
a compensation coefficient γSO ∈ (0.5, 1) can be found an equivalent counterpart in the TH method
with a compensation coefficient γSO ∈ (0, 1) by setting:

2γSO − 1
1− γSO

=
γTH

1− γTH

. (39)

To display the connections between these two methods explicitly, Table 1 lists the objective
functions to be optimized for the two methods while the compensation coefficient γ takes some critical
values. For instance, the objective functions with γTH = 0.5 in the TH method and γSO = 2/3 in the
SO method are 0.5(ming{µg(Zg(x))}+∑g wgµg(Zg(x))) and 1

3 (ming{µg(Zg(x))}+∑g wgµg(Zg(x))),
respectively. For such a case, obviously, both methods would gain the same optimal solution.

Table 1. Objective functions of the Torabi and Hassini (TH) and Selim and Ozkarahan (SO) methods
with different compensation coefficients γ.

γ TH Method SO Method

0 ∑g wgµg(Zg(x)) ∑g wgµg(Zg(x))
1/3 1

3 ming{µg(Zg(x))}+ 2
3 ∑g wgµg(Zg(x)) 2

3 ∑g wgµg(Zg(x))
0.5 0.5ming{µg(Zg(x))}+0.5∑g wgµg(Zg(x)) 0.5∑g wgµg(Zg(x))
2/3 2

3 ming{µg(Zg(x))}+ 1
3 ∑g wgµg(Zg(x)) 1

3 ming{µg(Zg(x))}+ 1
3 ∑g wgµg(Zg(x))

1 ming{µg(Zg(x))} ming{µg(Zg(x))}
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(3) According to the connections between the TH and SO methods, it can be seen that these
two methods are both capable of yielding a comprise solution between the min operator and the
weighted sum operator depending on the value of the compensation coefficient γ, but with different
weights between the terms ming{µg(Zg(x))} and ∑g wgµg(Zg(X)). In other words, both methods can
generate balanced and unbalanced compromised solutions via manipulating the value of parameters
wg and γ based on the decision maker’s preferences. More specifically, the higher value of γ means
more attention is paid to obtain a higher lower bound of the satisfaction degrees of all objectives,
thus yielding a more balanced solution for decision makers. While γ = 1, both methods only seek to
minimize ming{µg(Zg(x))}, i.e., the lower bound of the satisfaction levels with respect to all objectives.

6. Numerical Experiments

To illustrate the viability of the proposed MOMILP model and the aforementioned multi-objective
methods, computational experiments were implemented, and the related results are presented in this
section. To this end, we first describe the data generation process and then make a single objective
analysis and multi-objective analysis, respectively. Finally, a detailed parametric analysis is conducted
to explore the impacts of the return rate. These experiments were implemented in the MATLAB
software environment using the Cplex 12.6.1 solver developed by IBM.

6.1. Data Generation

Since there were no benchmark instances in the literature with all the required data, the dataset
used for numerical analysis was generated similarly to some relevant literature (e.g., [12,33,41]) along
with realistic assumptions about the parameters, such as the remanufacturing cost being around 60%
of the manufacturing cost and the return rate being 60% to 80%. In this paper, we consider a network
of 4 potential plants, 8 potential distribution centers, 12 primary markets, 6 potential disassembly
centers, 4 potential redistribution centers, 8 secondary markets, and 3 potential disposal centers.
The parameters were randomly generated following the uniform distributions, as listed in Table 2.
More details about the generated parameter values can be found in the Supplementary Materials.

Table 2. Parameter setting.

Parameter Corresponding Random Distribution Parameter Corresponding Random Distribution

fi U(34,000–35,500) mci U(110–130)
f j U(1500–1800) vci U(60–80)
fl U(25,000–27,500) rcl U(45–65)
fm U(1500–1800) dcp U(5–10)
fp U(1200–1300) hcj U(6–10)
pi U(6000–6800) hcl U(10–15)
pj U(2200–2860) hcm U(6–10)
pl U(2780–3400) cckl U(15–20)
pm U(1300–1500) dk U(907–1028)
pp U(800–1200) dn U(387–480)
tcij U(6–10) ω U(0.6–0.8)
tcjk U(8–12) θ1, θ2 U(0.05–0.1), U(0.2–0.25)
tcli U(6–8) dtjk U(5–7)
tclm U(6–10) etk U(4–6)
tclp U(4–6) s1 U(400–500)
tcim U(6–10) s2 U(250–300)
tcmn U(8–10) s3 U(25–30)
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6.2. Computational Results

6.2.1. Single Objective Analysis

First, consider the objective of maximizing the total profit as the only objective for the network
design. In such a case, the optimum value of the profit was 3,895,901, and 2 out of 4 plants, 5 out of 8
distribution centers, 2 out of 6 disassembly centers, 2 out of 4 redistribution centers, and 1 out of 3
disposal centers were selected to be opened. With this configuration, all the demands of the primary
and secondary markets were fully satisfied. This indicated that recycling and reusing of products could
increase the enterprise profit (otherwise, the enterprise may chose not to serve the secondary markets),
and the processing ways of repairing and remanufacturing played an important role. To shorten the
length of this paper, the detailed results of the flow allocation between these facilities are reported in
the Supplementary Materials.

Then, take the service level as the only objective to be optimized. At this stage, the minimum
delayed delivery time was 4456, and all the plants and distribution centers were selected at the
same time. It was not confusing that this result permitted all the demands to be met by the nearest
distribution centers. However, this was an extreme situation, which would lead to high construction
and operating costs and in turn the idling and waste of resources. Therefore, it was not wise to choose
the objective of the service level solely as the decision making basis.

6.2.2. Multi-Objective Analysis

After the single objective analysis, the two objectives were taken into account simultaneously
to find a balanced solution between the enterprise profit and the delay time. Hence, the proposed
methods (i.e., the ε-constraint method and two interactive fuzzy methods) were utilized to achieve this
goal and verify the relations among them.

First, determine the PIS and NIS of each objective. Based on the single objective analyses above,
we could easily obtain the PIS of both objectives: ZPIS

1 =3,895,901, ZPIS
2 = 4456. According to

Equation (31), taking the optimal solution associated with one objective into another objective function,
the NIS of those two objectives could be obtained as ZNIS

1 =3,421,561, ZNIS
2 =12,986. Therefore, for any

Pareto-optimal solutions, the objective function values of these two objective must fall in the ranges
Z1 ∈ [ZNIS

1 , ZPIS
1 ] =[3,421,561, 3,895,901] and Z2 ∈ [ZPIS

2 , ZNIS
2 ] =[4456, 12,986], respectively.

It was noted that the economic performance was the main driving force for the enterprise to
promote further implementation of the CLSC management. Therefore, in the ε-constraint method, we set
the enterprise profit as the objective function and the service level as the constraint, constructing the
mono-objective model as shown in Model (30). Additionally, in order to get the different Pareto-optimal
solutions over the whole efficient set, the value of ε should be varied systemically in the range of the
second objective [ZPIS

2 , ZNIS
2 ]. For this purpose, the range was segmented into four equal intervals, and

the corresponding five critical points were used as the value of ε in different runs of Model (30). Table 3
presents the five Pareto-optimal solutions generated for each model by the aid of the ε-constraint method.
As can be seen from Table 3, the enterprise profits and the delay time were two conflict objectives, which
meant that it was impossible to improve the service level without sacrificing the economic benefits.
Therefore, the final optimal solution could be selected based on the decision maker’s preferences for the
two objectives.

Though the ε-constraint method could obtain multiple sets of Pareto-optimal solutions,
the trade-off between the two objectives was not clearly quantified. Therefore, the value ranges
of these two objectives [ZNIS

1 , ZPIS
1 ] and [ZPIS

2 , ZNIS
2 ] were further utilized to define the satisfaction

level of the two objectives according to Equations (32) and (33). Then, the interactive fuzzy methods
(i.e., TH and SO) were employed to figure out more desirable Pareto-optimal solutions.

In the following numerical experiments, we set the two objectives having the same relative
importance (i.e., w1 = w2 = 0.5) and tested the solutions of the TH and SO methods with different
compensation coefficients γ. The results of these experiments are reported in Table 4 and illustrated
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graphically in Figures 2 and 3. As can be observed, several interesting solutions are highlighted
in Table 4, which correspond to the conclusion about the same solutions generated by the TH
and SO methods given in the previous section. These results totally agreed with the previous
theoretical analysis.

Table 3. Results of the ε-constraint method.

Test Profit Z1 Delay Time Z2 CPU Time (s)

1 3,895,901 12,986 4.11
2 3,895,142 10,853 4.05
3 3,893,206 8721 4.29
4 3,890,505 6588 4.03
5 3,421,561 4456 4.12

Table 4. Summary of the solutions of the TH and SO methods with different γ values.

γ
TH SO

Z1 Z2 µ1(%) µ2(%) Z1 Z2 µ1(%) µ2(%)

0 3,870,698 4456 94.69 100.00 3,870,698 4456 94.69 100.00
0.1 3,870,698 4456 94.69 100.00 3,870,698 4456 94.69 100.00
0.2 3,871,985 4485 94.96 99.65 3,870,698 4456 94.69 100.00
0.3 3,877,474 4647 96.12 97.75 3,870,698 4456 94.69 100.00
0.4 3,877,474 4647 96.12 97.75 3,870,698 4456 94.69 100.00
0.5 3,878,633 4701 96.36 97.12 3,870,698 4456 94.69 100.00
0.6 3,879,512 4750 96.55 96.55 3,877,474 4647 96.12 97.75
0.7 3,879,512 4750 96.55 96.55 3,879,512 4750 96.55 96.55
0.8 3,879,512 4750 96.55 96.55 3,879,512 4750 96.55 96.55
0.9 3,879,512 4750 96.55 96.55 3,879,512 4750 96.55 96.55
1 3,879,512 4750 96.55 96.55 3,879,512 4750 96.55 96.55
Average 3,876,775 4649 95.97 97.73 3,874,519 4580 95.49 98.54

To get more precise solution results, the scales of the satisfaction degrees, µ1 and µ2, in the experiment code are amplified
to [0,100].
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Figure 2. Objective function values of the TH and SO methods with different γ values.

Furthermore, Figures 2 and 3 graphically show the objective function values and the satisfaction
levels of the two objectives, respectively. It can be seen that, for both methods, the solutions had a
similar changing tendency regarding the variation of the parameter γ. This was due to the connections
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between these two methods, which indicated that for each solution of one method, a counterpart could
be found in the other method, as discussed in the theoretical analysis. Notably, with the increasing
of γ, both methods tended to get more balanced satisfaction levels of the two objectives.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compensation coefficient ( )

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01
S

a
ti
s
fa

c
ti
o
n
 l
e
v
e
l

TH Profit

SO Profit

TH Delay time

SO Delay time

Figure 3. Objective satisfaction levels of the TH and SO methods with different γ values.

In total, it could be concluded that the TH and SO methods were both appropriate and qualified
methods for solving the proposed MOMILP problem, since they could obtain efficient solutions and
all satisfaction degrees of the objectives performed well. However, the TH method is more appropriate
when decision makers want to make a clear trade-off between the goals of maximizing the lower
bound (i.e., worst case) of the satisfaction degrees or the total (weighted sum) satisfaction degrees of
the objectives, as illustrated by Table 1 and Figure 3.

6.3. Impact of Return Rate

Since the maximum return rate of the used products was an important parameter of the proposed
model, we aimed to investigate how the CLSC network structure and profitability changed when the
return rate varied. In this regard, test results with a uniform variation of the maximum return rate ω

from 0 to 0.6 (only the profit objective was considered here) are reported in Table 5 and Figures 4 and 5.

Table 5. Network structure and profitability with variation of the maximum return rate ω.

ω Profit Satisfaction
Level
of the
Secondary
Markets

Satisfaction
Level
of the
Recycling
Demands

Remanufa
-cture
Ratio

No. of
Plants

No. of
Potential
Distribution
Centers

No. of
Potential
Collection
Centers

No. of
Potential
Redistribution
Centers

0 3,509,219 - - - 2 5 0 0
0.05 3,570,049 20.64% 100.00% 69.08% 2 5 1 1
0.1 3,659,171 41.27% 100.00% 69.08% 2 5 1 1
0.15 3,747,184 61.91% 100.00% 69.08% 2 5 1 2
0.2 3,813,807 77.24% 100.00% 63.15% 2 5 1 2
0.2423 3,875,666 100.00% 100.00% 69.08% 3 5 1 2
0.25 3,875,918 100.00% 96.92% 69.08% 3 5 1 2
0.3 3,877,472 100.00% 80.77% 69.08% 3 5 1 2
0.35 3,878,844 100.00% 75.44% 61.48% 3 5 1 2
0.4 3,883,735 100.00% 100.00% 31.58% 2 5 2 2
0.45 3,893,321 100.00% 98.25% 27.34% 2 5 2 2
0.5 3,894,130 100.00% 91.92% 25.42% 2 5 2 2
0.55 3,894,751 100.00% 86.37% 23.83% 2 5 2 2
0.6 3,895,310 100.00% 81.92% 22.25% 2 5 2 2
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As shown in Figure 4, it is easy to learn that when the return rate increased, the overall profit
increased rapidly at first, but then with a slow growth. To better understand this phenomenon,
we further subdivided the parameter ω. It was found that the turning point for the profit growth
appeared when the customers’ demands of the secondary markets were just completely satisfied.
At this point, ω equaled 0.2423. The reasons for this could be viewed in two stages: (i) Both the product
recycling and remanufacturing could help with increasing the enterprise’s profit. The earnings from
the product remanufacturing were greater than the cost of product recycling. Therefore, the reused
products flowed into the direction of remanufacturing (also restricted with the capacity of facilities),
when the secondary market’s customer demands were not yet satisfied. Hence, the profits grew at
a fast speed. (ii) However, when the demands in the secondary markets were all met, the product
recycling contributed to the profit’s increasing, but with a slower pace.
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Figure 5. Effect of ω on the number of facilities.
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Furthermore, whether to recycle products fully according to the maximum return rate depended
on the impact on the enterprise profit, as well as the capacities of these facilities (facilities to be
opened with different ω are shown in Figure 5). For further analysis, the satisfaction degree of the
recycling demands was defined as the rate of the actual recycling number to the amount generated
by the maximum return rate. Figure 4 shows that when ω was less than 0.2423, the satisfaction level
of the recycling-demands was 100%, and when ω increased from 0.2423 to 0.4, the rate began to
drop. However, it regained 100% when ω was 0.4. Considering the illustration given in Figure 5,
the occurrence of this phenomenon was due to the insufficient capacity of the recycling center. Note that
the satisfaction degree of the recycling demands showed a downward trend when ω was higher
than 0.4. The overall profit increased with a slow pace, and the number of facilities no longer changed.
That also resulted in the immutable capacity of the existing facilities. Hence, the satisfaction level of
the recycling demands declined.

In the proposed model, the repairing and disposal rates were fixed. Therefore, from the perspective
of profit maximization, the remanufacturing rates should be maintained at the level of 69.08% when
ω was less than 0.2423. However, that was not the case. Figure 4 shows that the minimum value
of the remanufacturing rate given ω ≤ 0.2423 appeared when ω = 0.2. Similarly, this was due to
the constraint regarding the capacities of the facilities. In addition, Figure 4 also shows that the
remanufacturing rates held still after the demands of secondary markets were satisfied. This is because
the recycling number was less than the amount generated by the maximum return rate. After that,
since all demands of the secondary markets were covered, the remanufacturing rates naturally trended
downward with the increase of ω.

From the aforementioned experimental analysis, we could verify the validity of the proposed
model in solving the CLSC design problem and the practicability of the solution for offering the
enterprise various decision making plans with differing preferences. It is notable that the return rate, as
an important parameter in the proposed model, had great impacts on the network structure, as well as
the enterprise profits. To this end, the decision maker should pay more attention to the setting of
the return rate. With regard to the increase of the return rate, in practice, government incentives
and subsidies and growing environmental concern among customers could play a supportive role in
product recovery. Besides, from the perspective of enterprise management, setting up an appropriate
and flexible CLSC network, as discussed in this study, with specific strategic and tactical plans could
also contribute to this goal. In this way, a better implementation of product recovery could be achieved.

7. Conclusions

This paper addressed a closed-loop supply chain network design problem for industrial reuse
of products, components, and materials with two objectives, enterprise profit and service level, from
the sustainable development perspective. The main conclusions of this paper can be summarized
as follows:

(1) A general, but practical network structure supporting multiple recovery options, like repair,
remanufacture, redistribution, and recycling, was proposed. Such a configuration catered to the
relationship between environment protection and social development. Moreover, market segmentation
based on the nature of the products showed the practical significance in the real-life network design.

(2) The ε-constraint method and two interactive fuzzy methods (i.e., TH and SO) were adopted to
solve the multi-objective network design problem. Furthermore, the proposed multi-objective methods
were compared in detail to provide more insights into their relations, which was exactly verified by
the numerical experiments. The results also illustrated the viability of both the proposed model and
solution approaches.

(3) From the view of the managerial decision, this paper also provided valuable strategic
and tactical references on how to promote the economic benefit of the enterprise while achieving
sustainable development.
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Generally, the proposed model is applicable to any manufacturing industry. Considering the
uncertainty about demands, costs, and prices and the complexity in real recycling, production, and
transportation scheduling, the future work can be extended to the close-loop supply chain network
design for multiple products in multiple periods under an uncertain environment.
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