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Abstract: Low-quality input data (such as sparse rainfall gauges, low spatial resolution soil type and
land use maps) have limited the application of physically-based distributed hydrological models
in operational practices in many data-sparse regions. It is necessary to quantify the uncertainty in
the deterministic forecast results of distributed models. In this paper, the TOPographic Kinematic
Approximation and Integration (TOPKAPI) distributed model was used for deterministic forecasts
with low-quality input data, and then the Hydrologic Uncertainty Processor (HUP) was used
to provide the probabilistic forecast results for operational practices. Results showed that the
deterministic forecasts by TOPKAPI performed poorly in some flood seasons, such as the years
1997, 2001 and 2008, despite which the overall accuracy of the whole study period 1996–2008 could
be acceptable and generally reproduced the hydrological behaviors of the catchment (Lushi basin,
China). The HUP model can not only provide probabilistic forecasts (e.g., 90% predictive uncertainty
bounds), but also provides deterministic forecasts in terms of 50% percentiles. The 50% percentiles
obviously improved the forecast accuracy of selected flood events at the leading time of one hour.
Besides, the HUP performance decayed with the leading time increasing (6, 12 h). This work revealed
that deterministic model outputs had large uncertainties in flood forecasts, and the HUP model may
provide an alternative for operational flood forecasting practices in those areas with low-quality data.

Keywords: deterministic flood forecasting; probabilistic flood forecasting; distributed hydrological
models; hydrologic uncertainty processor; low-quality data

1. Introduction

Floods are the most frequent type of natural disaster and pose a huge threat to society [1–3].
Historically, people have been trying to understand floods, fight against them, and manage them [2–5].
In the process of continuously searching for flood disaster prevention measures, people realized that
hydrological forecasting can play an effective role in flood prevention and disaster reduction [6,7].
Hydrological forecasting is an important non-engineering measure in flood prevention and mitigation
measures. It plays an important role in flood prevention and rescue, reducing flood losses and protection
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of water resources. It is based on the current understanding of the basic laws of the hydrological cycle
by human beings and predicts future hydrological behaviors using applied science and technology.
With the improvement of the level of computer application, the mathematical hydrological forecasting
technique has made breakthroughs in theoretical research and has been applied to operational practice
in many basins of world [8–13]. Overall, in current operational flood forecasts, forecasting accuracy
has improved and the leading time has been extended. The information of forecasting results has been
also enriched. These advances have largely supported flood prevention decisions [14–16].

Hydrological models are an important tool for hydrological forecasting. The development
of hydrological models has undergone major stages, such as empirical models, black-box models,
conceptual hydrological models and distributed hydrological models. From the beginning, only models
with system concepts have gradually developed into models with physical foundations [14,17].
Theoretically, the distributed hydrological model could provide more reliable results than before
when the model parameters were physically determined according thematic maps, field measurement,
literature and catchment characteristics or hydrological behavior analysis [6,14]. Data in many regions
of the world do not perfectly meet the requirement of distributed hydrological models, although these
models have been simplified to some extent. The lack of model input is particularly serious in some
developing countries [18–20]. For example, high resolution thematic maps of digital elevation model
(DEM), soil type, land cover and geology are difficult to obtain in many regions of China, and generally,
only coarse resolution (low spatial resolution) thematic maps downloaded from the Internet could
be used for the application of distributed hydrological models [21,22]. Besides, although distributed
hydrological models are applied, only the river discharge type observation data are available for model
test [23]. This case does not reflect the value and advantages of applying distributed hydrological
models. Therefore, in many cases in China, the accuracy of distributed hydrological models will not be
significantly improved compared to lumped models [24,25].

The hydrological process is extremely complicated, and humans have a limited level of cognition
of hydrological laws. The development of hydrological models inevitably involves uncertainties in
model inputs, structures and parameters. The existence of these uncertainties will inevitably lead
to uncertain results of flood forecasts [18–20,26,27]. Deterministic forecasting is often applied in
current operational flood forecasting. It is impossible to quantify the uncertainty of the forecast results,
and therefore it is not possible to make an objective assessment of the possible risks of flood control
decisions. Therefore, the realization of probabilistic flood forecasting to quantitatively describe the
uncertainty of the forecasting process has gradually become a trend in operational forecasts [13,18,19].

In this study, we used a physically based rainfall-runoff model, the TOPographic Kinematic
Approximation and Integration (TOPKAPI) model, with coarse (low spatial resolution) thematic
maps and discharge data as inputs for deterministic flood forecasting in a mountainous basin of the
middle Yellow River. Furthermore, the TOPKAPI model was coupled with a general uncertainty
analysis framework, the Hydrologic Uncertainty Processor (HUP), to conduct probabilistic flood
forecasting considering uncertainties in deterministic forecasting results. This study could provide a
reference for deterministic and probabilistic operational flood forecasting practices in similar basins.
More importantly, this study will contribute to the operational flood forecasting practices research with
low-quality data in some data-sparse regions, although the models used (i.e., TOPKAPI and HUP)
have been frequently applied.

2. Materials and Methods

2.1. Study Basin

The drainage area above the Lushi hydrological station (Lushi basin) has a spatial extension
of 4482 km2 and could be viewed as the source area of the Yiluohe River (Figure 1). The Yiluohe
River is a first tributary in the middle reaches of the Yellow River. The topography of the Lushi
basin is complex, with landforms dominated by mountains and hills. Precipitation in the basin is
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characterized by uneven spatial and temporal distribution. On the spatial scale, mountainous areas are
rainy zones, while river valleys and hills are less rainy zones. On the time scale, rainfall events are
mainly concentrated in the flood season (June–October), accounting for more than 60% of the rainfall
in the whole year, and occur in the form of heavy rain, which is characterized by high flood peaks,
large floods and sharp rises and falls.

There are 13 rainfall stations and one air temperature station distributed within the basin. In this
study, several rainfall stations outside the basin were also used in precipitation interpolation for
providing reliable spatial estimates of precipitation. The Lushi hydrological station located at the basin
outlet controls the streamflow process from the whole drainage basin.
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Figure 1. The drainage catchment above the Lushi hydrological station.

2.2. Data

2.2.1. Thematic Maps

A DEM with a spatial resolution of 78 × 78 m and a land use map of the study area were
provided by the Yellow River Conservancy Commission of the Ministry of Water Resources, P. R. China
(YRCC-MWR). The source area of the Yiluohe River is located in a mountainous area with steep
slopes, and its elevations range, approximately, from 551 m to 2636 m. The catchment is characterized
by a central valley where the main river flow is receiving water from side tributaries flowing on
the mountainside.

According to the land use map, the study basin is characterized by nine different types of land
use (Figure 2a). The dominating land use of the Lushi basin is deciduous broadleaf forest with a
percentage of 32%, followed by shrubland, irrigated cropland and pasture and cropland/grassland
mosaic, which account for 18%, 17% and 15%, respectively. The remaining five types of land use have
a smaller distribution area in the catchment, and the area percentages are all less than 10%.

The soil type map at a 1:5,000,000 scale was obtained from the Food and Agriculture Organization
(FAO) of the United Nations. Only three soil types in the basin could be obtained from the data set
(Figure 2b). The number of soil types is small, and the main type is soil I-Bc–2c with a percentage
of 78%. Soil I-Be–2c mainly characterizes the mountains upstream at high elevations.

For the purpose of operational flood forecasting practice, the hydrological model was conducted
at a spatial resolution of 1 × 1 km in the study basin. Thus, the thematic maps of DEM, land use and
soil type were resampled to a 1 × 1 km resolution accordingly.



Sustainability 2020, 12, 8268 4 of 16
Sustainability 2020, 12, x FOR PEER REVIEW 4 of 16 

 

Figure 2. The land use and soil type maps of the Lushi basin. 

2.2.2. Hydrometeorological Data 

The hydrometeorological database contains rainfall, discharge at Lushi hydrological station and 
air temperate data for the period of 1996 to 2008. The time steps of the original rainfall data are 
unequally spaced, and the steps in the flood season are mainly one hour to several hours, while the 
time steps in the non-flood season are mostly 1 day. The flood forecasts were conducted using hourly 
time steps in this study. Thus, observed rainfall measurements at different time steps were sampled 
using equal values to 1 h time steps. Point rainfall data have good quality control and were 
interpolated to each grid cell using the Inverse Squared Distance (ISD) technique. In fact, many 
popular rainfall interpolation methods do not particularly consider the influence of elevation factors, 
so the interpolation effect in mountainous areas is not as good as in plain areas. Previous studies [28–
32] have proven that some spatial interpolation techniques (such as ISD, Kriging and others) may be 
superior under certain conditions (e.g., affected by data conditions and climatic conditions). The ISD 
method was chosen because we have compared and confirmed that the interpolation accuracy was 
better than the Block Kriging (BK) method in the period when data of some rainfall stations were 
missing, and the interpolation accuracy was comparable to the BK method in the rainfall data-rich 
period. 

Air temperature at Lushi station was collected and interpolated with a lapse rate of –0.6 ℃/100 
m estimated using the 0.5 Degree Gridded Monthly China Surface Precipitation and Air Temperature 
Dataset (Version 2) [33]. This data product is developed by the Climate Data Center, China 
Meteorological Administration based on the data collected at 2472 climate stations and the Thin Plate 
Spline interpolation technique. The data quality is strictly controlled and can be used directly. The 
historical air temperature data were recorded at 6-h time steps (02:00, 08:00, 14:00, 20:00) and they 
include daily minimum and maximum values. The original temperature data were interpolated to 
hourly time steps for operational flood forecasting purposes.  

Hourly discharge data were only available during the flood season. During the non-flood 
season, some discharge data are missing. In the non-flood season, when daily discharge was reported 
at Lushi hydrological station, the daily discharge was assumed constant over 24 h. 

2.3. The Distributed Hydrological Model 

A physically based rainfall-runoff model, TOPKAPI (TOPographic Kinematic Approximation 
and Integration) [21,34,35], was used for deterministic flood forecasts in the study basin. TOPKAPI 
uses three ‘structurally-similar’, zero-dimensional, non-linear reservoir equations to represent the 
drainage in the soil, the overland flow and the channel flow. The TOPKAPI structure is model 
lumping, preserving the process’ non-linearities and retaining the physically meaningful parameters. 
This enhances the model’s practicality in basins with low-quality data that cannot meet the 
requirement of fully distributed hydrological models, e.g., the Systeme Hydrologique Europeen 

Figure 2. The land use and soil type maps of the Lushi basin.

2.2.2. Hydrometeorological Data

The hydrometeorological database contains rainfall, discharge at Lushi hydrological station and
air temperate data for the period of 1996 to 2008. The time steps of the original rainfall data are
unequally spaced, and the steps in the flood season are mainly one hour to several hours, while the
time steps in the non-flood season are mostly 1 day. The flood forecasts were conducted using
hourly time steps in this study. Thus, observed rainfall measurements at different time steps were
sampled using equal values to 1 h time steps. Point rainfall data have good quality control and were
interpolated to each grid cell using the Inverse Squared Distance (ISD) technique. In fact, many popular
rainfall interpolation methods do not particularly consider the influence of elevation factors, so the
interpolation effect in mountainous areas is not as good as in plain areas. Previous studies [28–32] have
proven that some spatial interpolation techniques (such as ISD, Kriging and others) may be superior
under certain conditions (e.g., affected by data conditions and climatic conditions). The ISD method
was chosen because we have compared and confirmed that the interpolation accuracy was better than
the Block Kriging (BK) method in the period when data of some rainfall stations were missing, and the
interpolation accuracy was comparable to the BK method in the rainfall data-rich period.

Air temperature at Lushi station was collected and interpolated with a lapse rate of
−0.6 ◦C/100 m estimated using the 0.5 Degree Gridded Monthly China Surface Precipitation and Air
Temperature Dataset (Version 2) [33]. This data product is developed by the Climate Data Center,
China Meteorological Administration based on the data collected at 2472 climate stations and the Thin
Plate Spline interpolation technique. The data quality is strictly controlled and can be used directly.
The historical air temperature data were recorded at 6-h time steps (02:00, 08:00, 14:00, 20:00) and they
include daily minimum and maximum values. The original temperature data were interpolated to
hourly time steps for operational flood forecasting purposes.

Hourly discharge data were only available during the flood season. During the non-flood season,
some discharge data are missing. In the non-flood season, when daily discharge was reported at Lushi
hydrological station, the daily discharge was assumed constant over 24 h.

2.3. The Distributed Hydrological Model

A physically based rainfall-runoff model, TOPKAPI (TOPographic Kinematic Approximation
and Integration) [21,34,35], was used for deterministic flood forecasts in the study basin. TOPKAPI
uses three ‘structurally-similar’, zero-dimensional, non-linear reservoir equations to represent the
drainage in the soil, the overland flow and the channel flow. The TOPKAPI structure is model
lumping, preserving the process’ non-linearities and retaining the physically meaningful parameters.
This enhances the model’s practicality in basins with low-quality data that cannot meet the requirement
of fully distributed hydrological models, e.g., the Systeme Hydrologique Europeen (SHE) model [36,37].
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The TOPKAPI parameters are reported as scale-independent and could be determined from digital
elevation maps, vegetation or land use maps and soil type maps in terms of slopes, soil permeability,
topography and surface roughness. The runoff production and routing processes are described on grid
scales. The study basin is divided into several square grids and the calculation of runoff generation is
conducted at each grid cell. Thus, the spatial variabilities of meteorological inputs (e.g., precipitation
and air temperature) and model parameters could be considered. TOPKAPI is developed based on the
saturation-excess runoff mechanism and includes five basic components, namely evapotranspiration,
snowmelt, surface flow, interflow and channel flow (Figure 3). The model assumes that soil water
percolation towards the deeper subsoil layers does not contribute to the basin discharge. It is acceptable
for flood forecast cases because the response time of deep aquifer flow is so large for one specific storm
event in a catchment. The percolation rate from the upper soil layer is assumed to increase as a function
of the soil water content according to an experimentally determined power law [21].
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In the calculation of interflow, the constant saturated hydraulic conductivity (Ks), along with
depth in the non-saturation soil zone, is used. This implies the assumption that the total soil content
integrated along the vertical profile with constant Ks does not differ strongly from the horizontal
flux evaluated from the integration of the vertical soil moisture content profile. The total soil water
content is addressed using the continuity equation and the dynamic equation and described in a
non-linear reservoir equation. Surface flow only occurs in a grid cell when the soil is already saturated.
In addition, water in the soil can exfiltrate on the surface as return flow due to a sudden change in hill
slope or soil properties. Surface flow routing is described similarly to the soil component, according to
the Kinematic approach, in which the momentum equation is approximated by means of the Manning’s
formula. The interflow flow and the surface flow together feed the channel along the drainage network.
The channel flow routing is described using the Kinematic non-linear reservoir, and two types of river
reach, namely rectangular and triangular cross sections, could be considered.

The TOPKAPI model uses a simplified method to calculate evapotranspiration starting from air
temperature and from other topographic, geographic and climatic information. Potential evapotranspiration
can be computed for a given grid cell using the Thornthwaite equation [38] with the input data of air
temperature and is further corrected as a function of the actual soil moisture content to obtain the
actual evapotranspiration. A radiation estimate based upon air temperature is developed to represent
the snowmelt module. In practice, the inputs to the module are precipitation, air temperature and the
same radiation approximation which was used in the evapotranspiration module.
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2.4. Hydrologic Uncertainty Processor

The Hydrologic University Processor (HUP) is a main sub-model within the Bayesian Forecasting
System (BFS) proposed by R. Krzysztofowicz [39]. BFS is one of the most representative probabilistic
forecasting models. It provides a general theoretical framework for probabilistic forecasting of
hydrological variables. It combines the effects of various random factors on the forecasting results
of hydrological models. It can be coupled with any hydrological model or forecasting scheme to
obtain probabilistic forecasting results. Currently, BFS has been used in different river basins in the
world [40–45]. BFS includes three sub-models: precipitation uncertainty processor (PUP), HUP and
integrator (INT). Within the BFS framework, total uncertainty of hydrological forecasting is decomposed
into two kinds of uncertainty: input and hydrological uncertainties. They are processed by PUP
and HUP, respectively. BFS does not directly deal with the uncertainty of the model structure and
model parameters. Instead, it takes the model output into consideration and can be coupled with
any form of deterministic hydrological model. In view of the data limitation of the precipitation
uncertainty analysis in our case, we do not consider the precipitation uncertainty, but only consider
the hydrological uncertainty, and use the HUP model to realize the probability flood forecasting.

In the HUP model, H0 is defined as the measured flow that is known at the time of forecasting.
The variables Hn and Sn are the measured flow process and the flow process predicted by the
deterministic hydrological model, respectively, and N is the leading time. The measured value of
Hn and the estimated value of Sn are represented by hn and sn, respectively. For any time n and
the observed value Hn = hn, the prior probability function gn and the likelihood function fn could
be synthesized using the total probability rule. According to Bayes’ theorem, the posterior density
function of Hn under the condition of Sn = sn is as [46]:

∅n(hn|sn, h0) =
fn(sn|hn, h0)gn(hn|h0)∫

∞

−∞
fn(sn|hn, h0)gn(hn|h0)dhn

(1)

In this study, the marginal distribution functions of the given measured discharge and the calculated
discharge with the leading times (1, 6 and 12 h) were described by the log-Weibull distribution [39].
The parameters of the distribution could be estimated by the method of Moments. Using Equation (1),
the probabilistic forecasting results could be obtained in the study basin.

2.5. Model Coupling

2.5.1. Model Combination of TOPKAPI and HUP

The TOPKAPI model is a deterministic hydrological simulation tool and was used for flood forecasting
in this study to provide deterministic results of river discharge. HUP is a “model-free” uncertainty
analysis framework that could be coupled with any deterministic models. The coupling between HUP
and TOPKAPI is loose, not a form of coupling on the internal structure. Therefore, HUP only needs the
output of the TOPKAPI model (such as the forecast flow process) as its input. Finally, the river discharge
output of HUP is probabilistic (and could be further analyzed to provide a deterministic form).

In this study, therefore, TOPKAPI independently provides deterministic results, while HUP
provides both deterministic and probabilistic results on the basis of the TOPKAPI outputs.

2.5.2. Performance Metrics

In the model simulations, Oi and Si are defined as the observed and simulated discharges at
the i-th time step, respectively, and n is the sample size. The variables O and S represent the mean
values for the n-sized observed and simulated data series, respectively. For deterministic forecasts,
the following four indices were used to evaluate the model’s performance in consecutive hydrological
simulation or multi-flood-event simulation:
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• Correlation Coefficient (CC)

CC =

∑n
i = 1

(
Oi −O

)(
Si − S

)
√∑n

i = 1

(
Oi −O

)2
·

√∑n
i = 1

(
Si − S

)2
, (2)

• Mean Absolute Error (MAE)

MAE =
1
n

∑n

i = 1
|Si −Oi|, (3)

• Nash–Sutcliffe Coefficient Efficiency (NSCE)

NSCE = 1−

∑n
i = 1(Oi − Si)

2∑n
i = 1

(
Oi −O

)2 , (4)

• Index of Agreement (IOA)

IOA = 1−

∑n
i = 1(Oi − Si)

2∑n
i = 1

(∣∣∣Si −O
∣∣∣+ ∣∣∣Oi −O

∣∣∣)2 , (5)

For the model performance evaluation of a specific flood event, the relative bias of flood peak
(RBP) and the relative bias of flood volume (RBV) were also used: RBP =

Sp−Op
Op
× 100%

RBV = Sv−Ov
Ov
× 100%

, (6)

where Sp and Op are the values of peak discharge for simulated and observed samples, respectively,
while Sv and Ov represent the volumes of a specific flood event for simulated and observed
samples, respectively.

In the evaluation of probabilistic flood forecasts, the statistics of contained percent (CP) and
dispersion index (DI) could be used [13,18,19]. The CP index measures the percentage of observations
that are contained within the predictive uncertainty (PU) bounds at a given Confidence Interval (CI).
The DI measures the average width of the predicted interval at a given CI after eliminating the influence
of magnitude.  CP = nc

n × 100%

DI = 1
n
∑n

i = 1
Qu

i −Qd
i

Oi

(7)

where nc is the number of observed discharge samples enveloped by the PU bounds; Qu
i and Qd

i
represent the PU bounds at the i-th time step. Theoretically, an ideal result of probabilistic forecasting
should have the value of CP at a given CI close to the value of CI, and the value of DI should be as
small as possible to ensure that the PU bounds are not too wide [13]. In this study, the PU bounds from
5% to 95% were calculated for flood events.

3. Results and Discussion

3.1. Model Calibration and Validation

The TOPKAPI model was calibrated in the Lushi basin using the hydrometeorological data
for the period of 1996 to 2005; successively, the data for the period of 2006 to 2008 were used as a
validation test. For flood forecasting purposes, hourly time steps were used. Since the TOPKAPI
model is a physically distributed model at the theoretical level, the model parameters can be obtained
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through thematic maps, literature and catchment characteristics or hydrological behavior analysis.
However, due to the coarse resolution of thematic maps and the complexity of underlying surface
characteristics, the values of model parameters directly obtained from thematic maps, literature and
catchment characteristics analysis would introduce obvious errors in the model results. To reproduce
the behavior of the catchment, the initial values of the parameters from thematic maps, literature and
catchment characteristics analysis were modified. Model simulated discharges were compared with
observations at the Lushi station.

3.1.1. Parameters of the TOPKAPI Model

1. Evapotranspiration

TOPKAPI calculates potential evapotranspiration and actual evapotranspiration at each grid
cell for each time step based on the soil water content. The minimum soil water content for having
evapotranspiration was fixed at 20% of the soil saturation water content, while soil saturation that was
above 80% of the actual evapotranspiration was equal to the potential evapotranspiration.

2. Soil Type Parameters

Hydrological behavior of the soil at each grid cell was characterized by hydro-geological
parameters. The parameters for each soil type were obtained based on FAO soil classification,
and the initial values of these hydro-geological parameters were retrieved from a previous TOPKAPI
application study [35]. These initial values were used for model calibration in this study. Table 1 shows
the final calibrated values of the soil type parameters.

Table 1. Calibrated values of soil type parameters for the Lushi basin.

FAO
Soil
Type

Horizontal
Permeability
at Saturation

(m/s)

Saturated
Water

Content

Residual
Water

Content

Soil
Depth

(m)

Horizontal
Non-Linear
Reservoir
Exponent

Vertical
Permeability
at Saturation

(m/s)

Vertical
Non-Linear
Reservoir
Exponent

I-Bc–2c 2.19 × 10−3 0.423 0.303 0.85 2.5 2.19 × 10−7 23.8
I-Be–2c 9.27 × 10−4 0.39 0.27 0.55 2.5 3.27 × 10−7 18.5
Bc28–2b 7.67 × 10−4 0.33 0.21 1.35 2.5 7.67 × 10−8 17.2

3. Land Use Parameters

The values of surface roughness and crop factors were obtained from literature according to the
land use classification [35]. These parameter values were considered as the initial values and would be
modified during the calibration procedure. Tables 2 and 3 show the calibrated values of Manning’s
coefficient for superficial roughness and crop factors for each month of the year.

Table 2. Calibrated values of land use parameters for the Lushi basin.

Land Use Type Manning Coefficient (s/mˆ(1/3))

Dryland cropland and pasture 0.08
Irrigated cropland and pasture 0.10

Cropland/grassland mosaic 0.12
Cropland/woodland mosaic 0.14

Grassland 0.12
Shrubland 0.13
Savanna 0.13

Deciduous broadleaf forest 0.19
Mixed forest 0.19
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Table 3. Calibrated values of land use parameters for the Lushi basin.

Land Use Type
Crop Factors

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dryland cropland and pasture 0.7 0.7 0.8 0.8 0.9 1.1 1.15 1 1 0.9 0.8 0.8
Irrigated cropland and pasture 0.7 0.7 0.8 0.8 0.9 1.1 1.15 1 1 0.9 0.8 0.8

Cropland/ grassland mosaic 0.7 0.7 0.8 0.8 0.9 1.1 1.15 1 1 0.9 0.8 0.8
Cropland/ woodland mosaic 0.7 0.7 0.8 0.8 0.9 1.1 1.15 1 1 0.9 0.8 0.8

Grassland 0.7 0.7 0.8 0.8 0.9 1.1 1.2 1 1 0.9 0.8 0.8
Shrubland 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Savanna 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Deciduous broadleaf forest 0.63 0.63 0.72 0.72 0.81 0.81 0.99 0.9 0.9 0.81 0.72 0.72
Mixed forest 0.66 0.66 0.76 0.76 0.85 0.85 1.04 0.95 0.95 0.85 0.76 0.76

4. Other parameters

The channel characteristic of the reaches of the Lushi basin was customized as triangular type
river section, and the Manning coefficient was 0.042 s/m1/3. The riverbed side angle was fixed at 4.5 for
mainstem and 3.7 for tributaries.

In the snow component of the TOPKAPI model, air temperature for accumulating or melting
snow was fixed at 2 ◦C.

3.1.2. Model Test

Figure 4 shows the comparison of calculated and measured hourly discharges at the Lushi station
for the calibration period 1996–2005. It was found that the observed discharge data were available
only during the flood season (June–October) and, in general, they were not continuous, with many
missing data. Besides, the hydrological behavior seemed to change a lot among these flood seasons.
For example, there was a greater percentage of rainfall-runoff loss in the period 2001–2005 than in the
period 1996–2000. This leads to the difficulties of parameter calibration. Table 4 shows the statistics
of model performance indices. Overall, the model performance in the validation period 2006–2008
was better than in the calibration period 1996–2005 in terms of all four evaluation indices. From the
perspective of a single flood season, some flood seasons, such as the years of 1997 and 2001, had the
worst model accuracy with an NSCE statistic less than zero. In general, the model was applicable to
capture changes in the flow process during the flood season in the Lushi basin. Considering the lack of
some hydrometeorological data and underlying surface data, there should be a large uncertainty in
model input. Therefore, the model accuracy in this case was basically acceptable.

Overall, the model performance in the validation period (2006–2008) was better than in the
calibration period (1996–2005) in terms of all four evaluation indices (Figure 5). Although the overall
accuracy of the validation period was high, the model had a serious overestimation with a negative
NSCE value during the flood season of 2008. Due to the missing (or low-quality) of detailed input data
needed by the TOPKAPI model, the parameter calibration has been very difficult in the Lushi basin.
For example, soil type characteristics were derived from only eight FAO soil types and this number of
soil types was probably not enough to describe the variability of soil characteristics in the catchment.
Such low-quality input data inevitably cause uncertainty in the model output results.



Sustainability 2020, 12, 8268 10 of 16
Sustainability 2020, 12, x FOR PEER REVIEW 10 of 16 

 

Figure 4. Calculated and measured hourly discharge time series at the Lushi station for the calibration 
period: (a) 1996–2000, and (b) 2001–2005. 

Figure 5. Same as Figure 4 but for the validation period 2006–2008. 

Table 4. Statistics of performance indices of the TOPKAPI model for different flood seasons. 

Period 
Sample 

Size Correlation 
Coefficient 

Mean Absolute 
Error (m3/s) 

Nash–Sutcliffe 
Coefficient 
Efficiency 

Index of 
Agreement 

1996 1204 0.89 39.93 0.65 0.86 
1997 150 0.43 28.44 –0.81 0.55 
1998 1170 0.75 72.75 0.44 0.86 
1999 672 0.81 19.61 0.51 0.81 
2000 1450 0.85 32.34 0.52 0.75 
2001 980 0.66 32.01 –1.58 0.63 
2002 678 0.89 44.11 0.12 0.87 
2003 1342 0.92 94.03 0.82 0.95 
2004 1424 0.85 28.42 0.60 0.90 
2005 948 0.94 51.19 0.86 0.96 
2006 3314 0.82 13.11 0.53 0.76 
2007 3674 0.97 13.35 0.95 0.99 
2008 2154 0.85 19.84 –5.60 0.63 
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Table 4. Statistics of performance indices of the TOPKAPI model for different flood seasons.

Period Sample
Size

Correlation
Coefficient

Mean Absolute
Error (m3/s)

Nash–Sutcliffe
Coefficient Efficiency

Index of
Agreement

1996 1204 0.89 39.93 0.65 0.86
1997 150 0.43 28.44 −0.81 0.55
1998 1170 0.75 72.75 0.44 0.86
1999 672 0.81 19.61 0.51 0.81
2000 1450 0.85 32.34 0.52 0.75
2001 980 0.66 32.01 −1.58 0.63
2002 678 0.89 44.11 0.12 0.87
2003 1342 0.92 94.03 0.82 0.95
2004 1424 0.85 28.42 0.60 0.90
2005 948 0.94 51.19 0.86 0.96
2006 3314 0.82 13.11 0.53 0.76
2007 3674 0.97 13.35 0.95 0.99
2008 2154 0.85 19.84 −5.60 0.63

1996–2005 10,018 0.88 47.31 0.78 0.93
2006–2008 9142 0.92 14.79 0.82 0.95
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3.2. Flood Event Simulations

We also presented the model performance of eight flood events in Figure 6. The deterministic
results of these flood events were produced by the TOPKAPI model as shown in Figures 4 and 5.
The HUP model was used to analyze the total forecast uncertainty of the deterministic results using
the leading time of one hour. In the deterministic forecast results, the relative bias of flood peak (RBP)
in five flood events satisfied the requirement of |RBP| ≤ 20% , and the average absolute value of RBP in
all eight floods was 25.4%. In terms of relative bias of flood volume (RBV), the simulation results of
three floods satisfied the accuracy requirements (|RBV| ≤ 20% ), while the NSCE values of the selected
flood events were greater than 0.75, except for the 2006 flood season.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 16 
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simulations) and probabilistic results (with HUP model at the leading time of one hour).

The HUP provided the 90% PU bounds and 50% percentiles in the flood simulations, and the latter
can be used as the deterministic results. The 50% percentiles simulations had very high accuracies in
terms of the RBP and RBV indices. The absolute value of RBP was less than 6% for all floods, while the
|RBV| value was even less than 2%. Besides, the 50% percentiles of all flood events matched very well
with observations with the NSCE values greater than 0.9. It was obvious that compared with the
TOPKAPI model, the deterministic forecast result provided by the 50% percentiles had a significant
improvement in accuracy. This was because the observations were also used in the calculation of the
HUP model. The 90% PU bounds could also provide useful information for operational flood forecast
practices. With the leading time of one hour, more than 95% of observations were contained within
the 90% PU bounds for all flood events. The DI statistic ranged from 0.54 to 0.65 with an average
of 0.61 among these floods. Overall, the HUP model could provide rich information of probabilistic
forecasts at a given CI and even better deterministic results than distributed models in terms of the 50%
percentiles. However, this does not mean that the HUP model could run independently, because its
input includes the deterministic model’s results. The main characteristic of the HUP model is that it
can further improve the resulted generated by the deterministic models.
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3.3. Model Accuracy Changes with Leading Time Increasing

The above comparison between TOPKAPI and HUP showed that the HUP model could provide
very good agreement of hydrograph. Such a highly accurate result of the HUP model is essentially
a real-time correction of flood forecasts using observed data. The leading time used by the HUP
model was one hour. In operational practices, a one-hour leading time may not be sufficient for flood
forecasts. Meanwhile, the observed discharge data may not be updated in time for use in the HUP
model. Thus, large leading hours should be used. In this work, we conducted an analysis of HUP
model accuracy changes with the increase in leading time (from one hour to six hours and to 12 h).
Figure 7 shows the changes of the CP and DI statistics with the increase in leading time (1, 6 and 12 h).
When the forecast leading time increased, the 90% PU bounds became wider than that of leading
time = 1 h. That is to say, the DI value increased with the leading time. Although the 90% PU bounds
had become wider, the number of observations enveloped by the bounds had decreased, manifested as
a decrease in the CP value. The very low CP values (62% and 51%) could be found for the seventh
flood event (June 2006) with the leading times of 6 and 12 h, respectively.
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As the HUP model could also provide deterministic forecasts in terms of 50% percentiles of PU,
the forecast accuracy of 50% percentiles of selected flood events was also analyzed at different leading
times (Figure 8). All three performance indices showed a consistent decrease in accuracy as the forecast
leading time increased. When the leading time increased from one hour to 6 h (or 12 h), the overall
absolute values of the relative bias increased. Accordingly, the NSCE statistic decreased largely with
the leading time increasing. Therefore, the accuracy of probabilistic flood forecasts provided by the
HUP model decayed with the leading time increasing. This suggests that rolling forecasts with short
leading times are very important not only in deterministic forecasts, but also in probabilistic forecasts.
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4. Conclusions

Although many application cases of physically based distributed hydrological models have
been reported in the literature, conceptual or lumped hydrological models are still the main ones
in operational flood forecasting practices, especially in data-sparse regions. The main reason is that
the quality of hydrometeorological or underlying data in many areas is low or even missing. In the
localization of distributed models, therefore, large uncertainties are inevitably introduced to the final
model forecasting results. In this study, we presented a case study of a distributed hydrological
model (TOPKAPI) in flood forecasting with low-quality input data, and the forecast uncertainty
was evaluated with a general uncertainty analysis framework (HUP model). In the study area
(Lushi basin), the existing rainfall gauges cannot catch the spatial distribution of precipitation well.
Rainfall estimates are easily overestimated or underestimated. Soil type data may also introduce
uncertainties to the application of TOPKAPI as only eight FAO soil types are available. This number of
soil types is not enough to describe the variability of soil characteristics in the study basin. In addition,
observed discharge data are only available in the flood season. In operational flood forecasting
practices, such uncertainties in TOPKAPI forecast results are very detrimental to flood control decisions.
Therefore, probabilistic forecasting of the HUP model can provide new auxiliary information for flood
prevention decisions.

The TOPKAPI model was calibrated using hourly hydrometeorological data (e.g., precipitation,
air temperature and discharge) and underlying surface data (soil type and land use maps) for the
period of 1996 to 2005, then the model was validated using date for the period 2006–2008. The average
NSCE values for the calibration and validation were 0.78 and 0.82, respectively, and the average
IOA values were 0.93 and 0.95, respectively. It was suggested that the overall model accuracy could
be acceptable and the model generally reproduced the hydrological behaviors of the study basin.
However, one can also see the low accuracy in some flood seasons, such as in the years 1997, 2001
and 2008. The HUP model was then used to output probabilistic forecasts for several flood events at
different leading hours. At the leading time of one hour, the performance of deterministic forecasts
provided by the 50% percentiles were largely improved with NSCE values greater than 0.9 for all
flood events. Besides, more than 95% of observations were enveloped by the 90% PU bounds, and the
average DI statistic was as small as 0.61 for all floods. This suggested that the HUP model could provide
much information (both deterministic and probabilistic) for operational flood forecasting practices.
In terms of both probabilistic (CP and DI) and deterministic (RBP, RBV and NSCE) performance indices,
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the accuracy of the HUP model at a leading time of 6 h or 12 h obviously decreased compared to that
of leading time = one hour. This proved that the performance of HUP would decay with the leading
time increasing. This study could provide a useful reference for operational flood forecasting practices
when only low-quality data are available for physically based distributed hydrological models.

Author Contributions: Conceptualization, B.L. and Z.L.; methodology, B.L. and Z.L.; validation, Q.C., W.Z.
and J.W.; formal analysis, B.L. and H.W.; resources, Z.L.; writing—original draft preparation, B.L.; writing—review
and editing, Z.L., Q.C., W.Z., J.W. and Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2016YFC0402706), the General
Program of National Natural Science Foundation of China (41877147), Fundamental Research Funds for the
Central Universities of China (2018B43314), the Key Program of National Natural Science Foundation of China
(41730750), the China Postdoctoral Science Foundation (2017T100388), and was sponsored by the Qing Lan Project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McKinnon, S. Remembering and forgetting 1974: The 2011 Brisbane floods and memories of an earlier
disaster. Geogr. Res. 2019, 57, 204–214. [CrossRef]

2. Aerts, J.C.J.H.; Botzen, W.J.; Clarke, K.C.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.;
Surminski, S.; Kunreuther, H. Integrating human behaviour dynamics into flood disaster risk assessment.
Nat. Clim. Chang. 2018, 8, 193–199. [CrossRef]

3. Jongman, B.; Hochrainer-Stigler, S.; Feyen, L.; Aerts, J.C.J.H.; Mechler, R.; Botzen, W.J.W.; Bouwer, L.M.;
Pflug, G.; Rojas, R.; Ward, P.J. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Chang.
2014, 4, 264–268. [CrossRef]

4. Vercruysse, K.; Dawson, D.A.; Glenis, V.; Bertsch, R.; Wright, N.; Kilsby, C. Developing spatial prioritization
criteria for integrated urban flood management based on a source-to-impact flood analysis. J. Hydrol. 2019,
578, 124038. [CrossRef]

5. Li, B.; Yu, Z.; Liang, Z.; Acharya, K. Hydrologic response of a high altitude glacierized basin in the central
Tibetan Plateau. Glob. Planet. Chang. 2014, 118, 69–84. [CrossRef]

6. Yu, M.; Li, Q.; Liu, X.; Zhang, J. Quantifying the effect on flood regime of land use pattern changes via
hydrological simulation in the upper Huaihe River Basin, China. Nat. Hazards 2016, 84, 2279–2297. [CrossRef]

7. Liang, Z.; Tang, T.; Li, B.; Liu, T.; Wang, J.; Hu, Y. Long-term streamflow forecasting using SWAT through the
integration of the random forests precipitation generator: Case study of Danjiangkou Reservoir. Hydrol. Res.
2018, 49, 1513–1527. [CrossRef]

8. Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [CrossRef]
9. Xiao, Z.; Liang, Z.; Li, B.; Hou, B.; Hu, Y.; Wang, J. New flood early warning and forecasting method based

on similarity theory. J. Hydrol. Eng. 2019, 24, 04019023. [CrossRef]
10. Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least square support vector

machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using
hydro-meteorological data as inputs. J. Hydrol. 2020, 124371. [CrossRef]

11. Liang, Z.; Xiao, Z.; Wang, J.; Sun, L.; Li, B.; Hu, Y.; Wu, Y. An improved chaos similarity model for hydrological
forecasting. J. Hydrol. 2019, 577, 123953. [CrossRef]

12. Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-real-time flood forecasting based on satellite
precipitation products. Remote Sens. 2019, 11, 252. [CrossRef]

13. Jiang, X.; Gupta, H.V.; Liang, Z.; Li, B. Toward improved probabilistic predictions for flood forecasts generated
using deterministic models. Water Resour. Res. 2019, 55, 9519–9543. [CrossRef]

14. Todini, E. Hydrological catchment modelling: Past, present and future. Hydrol. Earth Syst. Sci. 2007,
11, 468–482. [CrossRef]

15. Bloschl, G.; Reszler, C.; Komma, J. A spatially distributed flash flood forecasting model. Environ. Model. Softw.
2008, 23, 464–478. [CrossRef]

16. Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using
combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag.
2018, 217, 1–11. [CrossRef]

http://dx.doi.org/10.1111/1745-5871.12335
http://dx.doi.org/10.1038/s41558-018-0085-1
http://dx.doi.org/10.1038/nclimate2124
http://dx.doi.org/10.1016/j.jhydrol.2019.124038
http://dx.doi.org/10.1016/j.gloplacha.2014.04.006
http://dx.doi.org/10.1007/s11069-016-2552-1
http://dx.doi.org/10.2166/nh.2017.085
http://dx.doi.org/10.1016/j.jhydrol.2009.06.005
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001811
http://dx.doi.org/10.1016/j.jhydrol.2019.124371
http://dx.doi.org/10.1016/j.jhydrol.2019.123953
http://dx.doi.org/10.3390/rs11030252
http://dx.doi.org/10.1029/2019WR025477
http://dx.doi.org/10.5194/hess-11-468-2007
http://dx.doi.org/10.1016/j.envsoft.2007.06.010
http://dx.doi.org/10.1016/j.jenvman.2018.03.089


Sustainability 2020, 12, 8268 15 of 16

17. Ritter, A.; Munoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for
reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [CrossRef]

18. Li, B.; Liang, Z.; He, Y.; Hu, L.; Zhao, W.; Acharya, K. Comparison of parameter uncertainty analysis
techniques for a TOPMODEL application. Stoch. Environ. Res. Risk Assess. 2017, 31, 1045–1059. [CrossRef]

19. Li, B.; He, Y.; Ren, L. Multisource hydrologic modeling uncertainty analysis using the IBUNE framework in a
humid catchment. Stoch. Environ. Res. Risk Assess. 2018, 32, 37–50. [CrossRef]

20. Huang, H.; Liang, Z.; Li, B.; Wang, D.; Hu, Y.; Li, Y. Combination of multiple data-driven models for the
long-term monthly runoff predictions based on Bayesian Model Averaging. Water Resour. Manag. 2019,
33, 3321–3338. [CrossRef]

21. Liu, Z.; Martina, M.L.V.; Todini, E. Flood forecasting using a fully distributed model: Application of the
TOPKAPI model to the Upper Xixian Catchment. Hydrol. Earth Syst. Sci. 2005, 9, 347–364. [CrossRef]

22. Li, D.; Liang, Z.; Li, B.; Lei, X.; Zhou, Y. Multi-objective calibration of MIKE SHE with SMAP soil moisture
datasets. Hydrol. Res. 2019, 50, 644–654. [CrossRef]

23. Sun, W.; Wang, Y.; Wang, G.; Cui, X.; Yu, J.; Zuo, D.; Xu, Z. Physically based distributed hydrological model
calibration based on a short period of streamflow data: Case studies in four Chinese basins. Hydrol. Earth
Syst. Sci. 2017, 21, 251–265. [CrossRef]

24. Zhang, L.; Jin, X.; He, C.; Zhang, B.; Zhang, X.; Li, J.; Zhao, C.; Tian, J.; DeMarchi, C. Comparison of SWAT
and DLBRM for hydrological modeling of a mountainous watershed in arid northwest China. J. Hydrol. Eng.
2016, 21, 04016007. [CrossRef]

25. Xu, H.; Xu, C.Y.; Chen, S.; Chen, H. Similarity and difference of global reanalysis datasets (WFD and
APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. J. Hydrol.
2016, 542, 343–356. [CrossRef]

26. Xu, B.; Boyce, S.E.; Zhang, Y.; Liu, Q.; Guo, L.; Zhong, P.-A. Stochastic programming with a joint chance
constraint model for reservoir refill operation considering flood risk. J. Water Resour. Plan. Manag. 2017,
143, 04016067. [CrossRef]

27. Xu, B.; Zhu, F.; Zhong, P.-A.; Chen, J.; Liu, W.; Ma, Y.; Guo, L.; Deng, X. Identifying long-term effects of using
hydropower to complement wind power uncertainty through stochastic programming. Appl. Energy 2019,
253, 113535. [CrossRef]

28. Chen, T.; Ren, L.; Yuan, F.; Yang, X.; Jiang, S.; Tang, T.; Liu, Y.; Zhao, C.; Zhang, L. Comparison of spatial
interpolation schemes for rainfall data and application in hydrological modeling. Water 2017, 9, 342.
[CrossRef]

29. Xu, W.; Zou, Y.; Zhang, G.; Linderman, M. A comparison among spatial interpolation techniques for daily
rainfall data in Sichuan Province, China. Int. J. Climatol. 2015, 35, 898–2907. [CrossRef]

30. Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation
schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464, 388–400. [CrossRef]

31. Huang, H.; Liang, Z.; Li, B.; Wang, D. A new spatial precipitation interpolation method based on the
information diffusion principle. Stoch. Environ. Res. Risk Assess. 2019, 33, 765–777. [CrossRef]

32. De Amorim Borges, P.; Franke, J.; da Anunciação, Y.M.T.; Weiss, H.; Bernhofer, C. Comparison of
spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil.
Theor. Appl. Climatol. 2016, 123, 335–348. [CrossRef]

33. Li, B.; Liang, Z.; Bao, Z.; Wang, J.; Hu, Y. Changes in streamflow and sediment for a planned large reservoir
in the middle Yellow River. Land Degrad. Dev. 2019, 30, 878–893. [CrossRef]

34. Ciarrapica, L. Topkapi: A New Approach to Rainfall-Runoff Modelling. Ph.D. Thesis, University of Bologna,
Bologna, Italy, 1995.

35. Liu, Z. Toward a Comprehensive Distributed/Lumped Rainfall-Runoff Model: Analysis of Available
Physically-Based Models and Proposal of a New TOPKAPI Model. Ph.D. Thesis, University of Bologna,
Bologna, Italy, 2002.

36. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the
European hydrological system—Systeme hydrologique Europeen, “SHE”, 1: History and philosophy
of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [CrossRef]

37. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European
hydrological system—Systeme hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed
modelling system. J. Hydrol. 1986, 87, 61–77. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2012.12.004
http://dx.doi.org/10.1007/s00477-016-1319-2
http://dx.doi.org/10.1007/s00477-017-1424-x
http://dx.doi.org/10.1007/s11269-019-02305-9
http://dx.doi.org/10.5194/hess-9-347-2005
http://dx.doi.org/10.2166/nh.2018.110
http://dx.doi.org/10.5194/hess-21-251-2017
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001313
http://dx.doi.org/10.1016/j.jhydrol.2016.09.011
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000715
http://dx.doi.org/10.1016/j.apenergy.2019.113535
http://dx.doi.org/10.3390/w9050342
http://dx.doi.org/10.1002/joc.4180
http://dx.doi.org/10.1016/j.jhydrol.2012.07.026
http://dx.doi.org/10.1007/s00477-019-01658-2
http://dx.doi.org/10.1007/s00704-014-1359-9
http://dx.doi.org/10.1002/ldr.3274
http://dx.doi.org/10.1016/0022-1694(86)90114-9
http://dx.doi.org/10.1016/0022-1694(86)90115-0


Sustainability 2020, 12, 8268 16 of 16

38. Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94.
[CrossRef]

39. Krzysztofowicz, R. Bayesian theory of probabilistic forecasting via deterministic hydrological model.
Water Resour. Res. 1999, 35, 2739–2750. [CrossRef]

40. Biondi, D.; De Luca, D.L. Performance assessment of a Bayesian forecasting system (BFS) for real-time flood
forecasting. J. Hydrol. 2013, 479, 51–63. [CrossRef]

41. Li, B.; Liang, Z.; Zhang, J.; Chen, X.; Jiang, X.; Wang, J.; Hu, Y. Risk analysis of reservoir flood routing
calculation based on inflow forecast uncertainty. Water 2016, 8, 486. [CrossRef]

42. Liu, Z.; Guo, S.; Xiong, L.; Xu, C.Y. Hydrologic uncertainty processor based on a copula function. Hydrol. Sci. J.
2017, 63, 74–86. [CrossRef]

43. Han, S.; Coulibaly, P. Probabilistic flood forecasting using hydrologic uncertainty processor with ensemble
weather forecasts. J. Hydrometeorol. 2019, 20, 1379–1398. [CrossRef]

44. Yao, Y.; Liang, Z.; Zhao, W.; Jiang, X.; Li, B. Performance assessment of hydrologic uncertainty processor
through the integration of the principal components analysis. J. Water Clim. Chang. 2019, 10, 379–390.
[CrossRef]

45. Feng, K.; Zhou, J.; Liu, Y.; Lu, C.; He, Z. Hydrologic uncertainty processor (HUP) with estimation of the
marginal distribution by a Gaussian mixture model. Water Resour. Manag. 2019, 33, 2975–2990. [CrossRef]

46. Krzysztofowicz, R.; Kelly, K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting.
Water Resour. Res. 2000, 36, 3265–3277. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/210739
http://dx.doi.org/10.1029/1999WR900099
http://dx.doi.org/10.1016/j.jhydrol.2012.11.019
http://dx.doi.org/10.3390/w8110486
http://dx.doi.org/10.1080/02626667.2017.1410278
http://dx.doi.org/10.1175/JHM-D-18-0251.1
http://dx.doi.org/10.2166/wcc.2017.137
http://dx.doi.org/10.1007/s11269-019-02260-5
http://dx.doi.org/10.1029/2000WR900108
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Basin 
	Data 
	Thematic Maps 
	Hydrometeorological Data 

	The Distributed Hydrological Model 
	Hydrologic Uncertainty Processor 
	Model Coupling 
	Model Combination of TOPKAPI and HUP 
	Performance Metrics 


	Results and Discussion 
	Model Calibration and Validation 
	Parameters of the TOPKAPI Model 
	Model Test 

	Flood Event Simulations 
	Model Accuracy Changes with Leading Time Increasing 

	Conclusions 
	References

