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Abstract: Superheated steam temperature (SST) is one of the most critical parameters for the process
safety, overall efficiency and pollution reduction of coal-fired power plants. However, SST control is
challenging due to various disturbances and model uncertainties, especially in the face of the growing
penetration of intermittent renewable energy into the power grid. To this end, a cascaded Disturbance
Observer-PI (DOB-PI) control strategy is proposed to enhance control performance. The observer
design and parameter tuning are carried out through mechanism analysis on the proposed structure.
Furthermore, a robust loop shaping method is introduced as a hard constraint to balance the control
performance and robustness. The controller parameters are optimized based on the multi-objective
artificial bee colony optimization (MOABC) algorithm. Simulation results show that the proposed
cascaded DOB-PI control strategy can significantly improve the disturbance rejection performance of
both the inner- and outer-loops of the SST control system. This paper indicates promising prospects
for the proposed method in future applications.

Keywords: superheated steam temperature; cascaded DOB-PI control; pareto optimization;
disturbance rejection; coal-fired power plant

1. Introduction

As a key parameter in the operation of power plant boilers, superheated steam temperature (SST)
is of great significance to the economic and safe operation of the unit. On the one hand, a superheated
steam temperature that is beyond safe range will have an adverse impact on the unit. On the other,
steam with a lower superheated steam temperature will reduce the efficiency of the whole plant and
bring about safety problems such as carrying water in the last stage of the turbine, which may damage
the last stage blades. A superheated steam temperature higher than the set-point level will cause
unrecoverable damage to the steam tube, regardless of whether the overtemperature was long-term or
short-term [1,2], even causing the unit to shut down. Therefore, the superheated temperature needs to
be adjusted within a limited operating range. It is generally recommended that the fluctuation range
of superheated steam temperature is ±5 ◦C from its set-point [3,4]. On the other hand, even if the
above conditions are met, frequent temperature variation will still produce thermal stress, resulting in
metal failure.

With the continuous development and large-scale grid connection of renewable energy, such as
solar and wind power generation, new challenges to the control of superheated steam temperature in
power plants emerge [5,6]. It is estimated that renewable energy will increase by 2.8% per year and
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account for 1/4 of global electricity generation around 2040 [7]. The randomness and intermittency
of renewable energy result in great challenges to the stability and reliability of the power grid [8].
One of the mature feasible measures is to improve the tracking ability of thermal power units to the
instructions of automatic generation control (AGC), so as to stabilize the load deviation in real time [9].
Generally speaking, a wide range of power regulation corresponds to a large deviation of the SST
from its set-point [10]. In other words, the load flexibility that can be achieved by the power plant
depends to a large extent on the control performance of the superheated steam temperature loop [11].
A strong SST control loop will enable the power plant to participate in a wider-range of load regulation,
allowing more renewable energy to be connected to the grid.

Since SST is a typical thermal process with large inertia and is affected by various disturbances,
the cascaded control structure is usually adopted. Compared with the single loop control structure,
the secondary controller can observe in advance and quickly attenuate the disturbance of the inner-loop,
thus significantly improving the performance of the system. However, when working conditions
change greatly, the conventional cascaded PI control of SST is limited by the PI controller and cannot
achieve satisfactory control performance [12]. Due to the large lag characteristic of the outer-loop
object, the disturbance rejection ability of the outer-loop needs to be strengthened. For these reasons,
many improved and advanced control strategies have been proposed to improve the control effect
of SST, such as fractional order PID control [13], fuzzy control [14], internal mode control (IMC) [15],
fuzzy model predictive controller (MPC) [16], neuro-fuzzy generalized predictive control (GPC) [17].
However, these control strategies are seldom applied in actual process control for the following reasons:

(1). Some control strategies require the accurate mathematical model of SST to design the
controller, while the model uncertainty of the actual object exists objectively and varies with time and
working conditions.

(2). Due to the complexities in computation, most of the advanced control strategies are hard to
implement on the traditional distributed control system (DCS), while the external computer has some
security problems such as communication interruption.

DOB was proposed by Ohnishi et al. [18] in the early 1980s and is considered to be an effective
method of disturbance rejection [19]. Its fundamental idea is to bring together external disturbance
and model uncertainty as a lumped disturbance, and then estimate and eliminate the disturbance
through a reasonably designed disturbance observer [20]. The core of the disturbance observer
based control (DOBC) is the design of the low-pass filter, which suppresses disturbance in low- and
medium-frequency ranges and removes the influence of high-frequency measurement noise. With the
advancing of research, the DOB has been extended to time-delay, non-minimum phase and nonlinear
systems [19,21,22]. The DOB has been utilized in many practical controls [23–26], due to its powerful
aptitude for disturbance rejection and uncertainty compensation. As well as this, the traditional
frequency-domain DOB only needs output and input information to observe disturbances, which
is engineering-friendly.

However, most of the current DOBC applications are single-loop structures. This paper will develop
a cascaded DOB-PI control scheme based on analysis of a cascaded DOB system. The disturbance
of the inner- and outer-loop will be estimated and mainly suppressed by the cascaded DOB system,
thus significantly improving the control performance of the system. There is a tradeoff problem in the
outer-loop filter design of the cascaded DOB system, which is different from that of the single-loop
DOB and will be solved through a robust loop shaping design method. In order to obtain better control
performance and system robustness at the same time, the inner- and outer-loop PI controllers are
optimized by the Pareto-based multi-objective artificial bee colony algorithm (MOABC), which has
been widely used in different fields [27–30]. Compared with other intelligent algorithms, it has the
advantages of less preset parameters, a concise and clear structure and is convenient for implementation
and application. The combination of a stability region and an intelligent optimization algorithm can
optimize the controller parameters and ensure system stability simultaneously [11,31].

The main innovations of this study are summarized as follows:
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(a) A cascaded DOB-PI control strategy based on traditional control system is proposed to improve
the performance of the control system.

(b) A multi-objective optimization model of the inner- and outer-loop PI controller is established to
deal with conflicting objectives and reduce the conservatism of the control, based on the design
of a cascaded DOB system.

(c) The optimized Pareto front and simulation show the overwhelming advantages of the proposed
cascaded DOB-PI control strategy, which significantly improves the disturbance rejection
performance of the inner and outer-loop.

The rest of the paper is arranged as follows. Section 2 briefly introduces the SST model and control
objectives. The proposed cascaded DOB-PI control system and its parameter design are introduced in
Section 3, based on analysis of the cascaded DOB system. In Section 4, the parameters of the observer
and controller of the cascaded DOB-PI system are optimized, and the significant improvement in
control performance is illustrated by simulations. Section 5 shows the comparison with cascaded
PI control strategy and the simulation of model mismatch, in order to verify the superiority and
robustness of the control strategy. Conclusions are drawn in the last section.

2. System Description

2.1. The Model Description of SST

In this paper, the power plant superheater in [11] is taken into account. Figure 1 shows the
flowchart of the power plant superheater. In this control structure, the flow of cooling water is regulated
by controlling the valve position, so as to control the steam temperature at the outlet of the 1st stage
superheater. The cooling water comes from an intermediate stage of the boiler feed water pump.
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Figure 1. The schematic diagram of a cascaded superheater control system.

Figure 2 shows the structure diagram of a simplified cascaded SST control system, in which the
distributed parameter superheating system is approximated to two linear transfer function models
G1(s) and G2(s).
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Figure 2. The schematic diagram of a cascaded superheated steam temperature (SST) control system.

In this control system, the control variable is the opening of the spray valve, denoted as u1. y1 is
the inner-loop output, which represents steam temperature downstream of the desuperheater. It can
quickly reflect the influence of the change in spray water on the steam temperature and is beneficial to
the disturbance suppression of the inner-loop. The set-point u2 of the inner-loop controller GC1(s) is
given by the output of the main controller GC2(s). The output of the outer-loop y2 is the primary steam
temperature. r is the primary steam temperature set-point, which is generally a constant. In practical
application, a PI controller is selected for both inner and outer-loop controllers.

The most common disturbances in the inner-loop are changes in feed water temperature and
pressure, which can lead to temperature fluctuations at a certain valve opening. They are approximately
modelled as a step-type disturbance d1.

The outer-loop disturbances, such as load regulation, combustion instability and coal quality
change, influence the primary steam temperature mainly through the 2nd stage superheater, which are
modelled as a step-type disturbance d2.

Based on the open-loop experimental data, the following inner- and outer-loop object models are
obtained [11],

G1(s) =
y1
u1

= − 1
(1+9s)4

G2(s) =
y2
y1

= 1.5
(1+60s)2

(1)

The comparison between experimental measurements and model outputs are shown in Figure 3.
It can be considered that the identification model can well reflect the dynamic characteristics of SST.
By comparison, it can also be seen that the inner-loop dynamic is significantly faster than the outer-loop.

It should be noted that the following control difficulties were faced in the actual operation:

1. The influence of multiple disturbances makes the control parameters of the inner- and outer-loop
deviate from target value.

2. High order and large lag dynamics of the superheater lead to slow responses to the disturbances.
3. Due to the high complexity and nonlinearity of the SST system, it is difficult to obtain an accurate

mathematical model. The transfer function varies with time and operating conditions, so the
control system is required to be robust enough withstand modelling uncertainties.

In this paper, DOB is regarded as a control system patch, that is, the controller and the observer can
be designed separately. Further, the parameters of the inner- and outer-loop controllers are optimized
separately for the following two considerations:

(a) The inner-loop dynamics are significantly faster than the outer-loop. The main and auxiliary
loop controllers can be designed separately;

(b) The main disturbance channels of the inner- and outer-loop are different. The inner-loop
disturbance mainly acts on the pressure-flow channel, while the outer-loop disturbance is in the
enthalpy-temperature channel.
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2.2. Control Objectives

This section describes the control objectives of the SST cascaded control system and some index
functions to evaluate control performance or robustness.

For the inner-loop, both disturbance rejection and set-point tracking capabilities need to
be considered. At the same time, the control system needs to be robust enough to deal with
model uncertainties.

For the outer-loop, the primary task is to restrain the influence of disturbance and ensure the
robustness of the control system against model uncertainties. The ability to track reference is weakened
because the SST set-point is generally constant.

The integrated absolute error (IAE) index reflects the integral error between the control output
and the reference. It is used as an evaluation index of control performance.

IAE =

∫
∞

0

∣∣∣r(t) − y(t)
∣∣∣dt (2)

where r(t) is the reference, and y(t) is the controlled output in response to the set-point tracking or
disturbance rejection. In practical application, the integration time is set large enough to make the
output track the set-point completely.

The robustness index used in this paper is the maximum sensitivity function, defined as:

MS = max
ω

∣∣∣∣∣∣ 1
1 + L( jω)

∣∣∣∣∣∣ (3)

where L(s) is the open-loop transfer function of the control system. The robustness index MS physically
represents how significantly the closed-loop control system will vary in the presence of open-loop
modelling perturbation [32]. Considering traditional frequency domain analysis, the MS index
represents the reciprocal of the distance between the frequency response curve of the open-loop transfer
function and the point (−1, j0). The smaller the MS index is, the farther the distance from the critical
point, and the better the robustness.



Sustainability 2020, 12, 8235 6 of 24

In this paper, the disturbance rejection performance and the robustness to model uncertainty of the
inner- and outer-loops will be improved by the cascaded DOB system. The above tradeoff problems for
disturbance rejection, set-point tracking and robustness will be solved via multi-objective optimization.

3. Analysis of Cascaded DOB-PI System

The cascaded DOB-PI control strategy is proposed in this section, based on analysis of the cascaded
DOB control structure.

3.1. Cascaded Disturbance Observer

As shown in Figure 4, the cascaded DOB control structure is mentioned firstly in [33], and it is a
natural extension of the traditional single-loop DOB.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 26 

where ( )r t  is the reference, and ( )y t  is the controlled output in response to the set-point tracking 175 

or disturbance rejection. In practical application, the integration time is set large enough to make the 176 
output track the set-point completely. 177 

The robustness index used in this paper is the maximum sensitivity function, defined as: 178 

1
max

1 ( )
SM

L j 



 

 
(3) 

where ( )L s  is the open-loop transfer function of the control system. The robustness index SM  179 

physically represents how significantly the closed-loop control system will vary in the presence of 180 
open-loop modelling perturbation [32]. Considering traditional frequency domain analysis, the SM  181 

index represents the reciprocal of the distance between the frequency response curve of the open-182 
loop transfer function and the point (- 1，j0). The smaller the SM  index is, the farther the distance 183 

from the critical point, and the better the robustness. 184 
In this paper, the disturbance rejection performance and the robustness to model uncertainty of 185 

the inner- and outer-loops will be improved by the cascaded DOB system. The above tradeoff 186 
problems for disturbance rejection, set-point tracking and robustness will be solved via multi-187 
objective optimization. 188 

3. Analysis of Cascaded DOB-PI System 189 

The cascaded DOB-PI control strategy is proposed in this section, based on analysis of the 190 
cascaded DOB control structure. 191 

3.1. Cascaded Disturbance Observer 192 

As shown in Figure 4, the cascaded DOB control structure is mentioned firstly in [33], and it is a 193 
natural extension of the traditional single-loop DOB. 194 

2 ( )G s
1( )G s

-

- -

-

1( )Q s 1

1 1( ) ( )nQ s G s 1

2 2( ) ( )nQ s G s

1

3 1( ) ( )nQ s G s

1u 1y 2y

2 ( )Q s

+ +

1d
2d

c

 195 

Figure 4. The cascaded DOB control structure. 196 

The inner-loop of the cascaded DOB structure is the traditional single-loop DOB, which is the 197 
basis of the cascaded DOB. 198 

 199 

Figure 5 shows the general structure of a disturbance observer for a Single-input and single-200 
output (SISO) plant. There are three inputs to the system, namely, command input, disturbance and 201 
sensor noise, denoted as 1c , 1d  and 1 , respectively. 1u  is the control input, which will act on the 202 

physical plant and be sent to DOB for disturbance observation. 1( )G s  represents the actual controlled 203 

plant, while 1 ( )nG s  is the nominal plant model. DOB observes the lumped disturbance of external 204 

disturbance and model mismatch, and feeds back the disturbance estimation 1d̂  to eliminate 205 

disturbance. 1( )Q s  is a low-pass filter with unity gain that needs to be designed. 206 

Figure 4. The cascaded DOB control structure.

The inner-loop of the cascaded DOB structure is the traditional single-loop DOB, which is the
basis of the cascaded DOB.

Figure 5 shows the general structure of a disturbance observer for a Single-input and single-output
(SISO) plant. There are three inputs to the system, namely, command input, disturbance and sensor
noise, denoted as c1, d1 and ζ1, respectively. u1 is the control input, which will act on the physical plant
and be sent to DOB for disturbance observation. G1(s) represents the actual controlled plant, while
G1n(s) is the nominal plant model. DOB observes the lumped disturbance of external disturbance and
model mismatch, and feeds back the disturbance estimation d̂1 to eliminate disturbance. Q1(s) is a
low-pass filter with unity gain that needs to be designed.
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For the single loop DOB, the transfer function from each input to output y1 is

y1 = Gyc(s) · c1 + Gyd(s) · d1 + Gyξ(s) · ξ1, (4)

where (for simplicity, the ‘s’ in the right formula is omitted):

Gyc(s) =
G1 ·G1n

G1n −Q1G1n + Q1G1
, (5)

Gyd(s) =
G1 ·G1n(1−Q1)

G1n −Q1G1n + Q1G1
, (6)

Gyξ(s) =
G1 ·Q1

G1n −Q1G1n + Q1G1
. (7)

If the filter Q1(s) is selected as a low-pass form, that is, lim
s→0

Q1(s) = 1, then (4) becomes

y1 = G1n(s) · c1 + ξ1. This indicates that DOB rejects the lumped disturbance and restores the plant to
the nominal state in the low-frequency domain.

Based on Mayson’s rule, the following closed-loop transfer functions can be obtained:

D1(s) =
d̂1

d1
=

G1Q1G−1
1n

1−Q1 + Q1G1G−1
1n

=
G1Q1

G1n −Q1G1n + Q1G1
. (8)

Since Q1(s) is of unity gain, the DOB can provide an accurate estimation of the real disturbance.
On the other hand, the sensor noise is generally considered to be high frequency, at this time Q1(s) ≈ 0,
so (4) becomes y1 = G1(s) · c1 + G1(s) · d1. The disturbance observer loop is basically inactive, and the
output is not affected by high frequency sensor noise.

The abilities of the inner-loop DOB are introduced above, then the outer-loop DOB is analyzed.
As can be seen from Figure 4, the working principle of the outer-loop DOB is basically the same as

that of the inner-loop. When the inner-loop plant is recovered as the nominal model, it is the equivalent
of adding a unit gain low-pass filter Q3(s) to the feedback channel.

It should be noted that the design of the outer-loop filter Q2(s), Q3(s) needs to consider not only the
performance of the disturbance observation but also the effect on the inner-loop. Since the cancellation
signal of the outer-loop is fed back into the front of the inner-loop, the set-point of the inner-loop will
be changed, thus affecting the inner-loop output. In the SST control system, the allowable fluctuation
ranges of the 1st stage superheated steam temperature and valve opening are limited, so the outer-loop
cannot blindly pursue the performance of disturbance rejection. This problem will be considered in
the filter design.

3.2. Cascaded DOB-PI Control System

By applying the above cascaded DOB to the traditional cascaded SST control system, the following
control system can be obtained (Figure 6).

It is a natural combination of these two systems, and will not change the original cascaded control
system structure, where Ge1(s) is the equivalent transfer function of the inner-loop.

Ge1(s) =
GC1G1

1 + GC1G1
(9)
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Therefore, the outer-loop DOB is here consistent with that in 3.1. It should be especially pointed
out that, compared with the outer-loop, the dynamic of the inner-loop is very fast, so it has less influence
on the outer-loop. In contrast to the traditional cascaded control system, the set-point of the inner-loop
is given by the output of the main controller and the outer-loop DOB. During the action of disturbance
d2, the outer-loop DOB can quickly estimate and feedback disturbance (change the set-point of the
inner-loop). So, the SST fluctuation caused by this disturbance can be quickly stabilized by adjusting
the opening of the spray valve. As for inner-loop disturbance d1, the disturbance is estimated and fed
back directly through the inner-loop DOB, and then suppressed by adjusting the opening of the spray
valve. This is the key advantage of the cascaded DOB-PI control system compared with traditional
cascaded control systems. This point of view will be verified by subsequent simulations. In the
cascaded DOB-PI control system, the Q filters and inner- and outer-loop controller parameters need to
be further designed.

The stability of the control system needs special consideration. In this paper, the controller
parameter stability region drawing method in [11] is adopted and used as the initialization region for
multi-objective optimization.

Based on the Nyquist stability criterion, for an open-loop stable plant G(s), the control system is
stable if and only if the Nyquist plot of GC(s)G(s) does not encircle the critical point (−1, j0). Then,
equations including kp, ki and ω can be obtained by

GC( jω)G( jω) = −1, (10)

where GC( jω) and G( jω) are the transfer functions of the controller and the controlled object,
respectively. That is, let the real and imaginary part of GC( jω)G( jω) + 1 are equal to 0 respectively.
By gradually increasing the value of ω from 0, the corresponding stable region of the controller
parameters can be obtained by numerical method. The stable region will be used as the search area for
controller optimization.

4. Design and Simulation

In this section, firstly, the low-pass filters for the cascaded DOB system are designed. Then,
the parameters of the inner and outer-loop PI controllers are introduced in Section 3.2 and optimized
using the multi-objective optimization algorithm. In the cascaded DOB simulation in Section 4.2,
no feedback controller is introduced (the control structure is detailed in Figure 4). The controller
simulations in Sections 4.3 and 4.4 are based on the designed cascaded DOB system (i.e., the control
structure in Figure 6). In this section simulation, the actual model is taken as the nominal model.

4.1. Multi-Objective Artificial Bee Colony Optimization

In this section, the principles of MOABC are briefly introduced.
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Artificial Bee Colony algorithm (ABC) is a bionic intelligent algorithm that simulates the honey
collection process of honeybees. The basic models of the algorithm include food sources and three
different bee species, namely, employed bee, onlooker bee and scout bee. At the same time, the model
defines two behaviors, namely recruiting bees for food sources and abandoning food sources. The three
kinds of bees perform their own functions and work together to complete the task of searching for and
collecting food sources, accurately and quickly.

The equation for a general multi-objective optimization problem is shown below:

min
x

J = [J1(x), J2(x), . . . JN(x)]

s.t : Xmin ≤ x ≤ Xmax, i = 1, . . . , m
(11)

where x is an m-dimensional decision variable; Xmin and Xmax are lower and upper bounds, respectively;
J is the objective function vector. When N ≥ 2, it is a multi-objective optimization problem. According
to whether the constraint is satisfied or not, the solutions can be divided into feasible solution and
infeasible solutions, and the constraint problem can be dealt with conveniently.

The core principle of the ABC algorithm is the role of transformation and division of labor
and cooperation between different bee species. In the ABC algorithm, there are three ways to
evolve solutions.

4.1.1. Solutions Evolve In Employed Bee

The initial solution is evolved through employed bees, as shown in the following formula:

xnew
i,d

= xi,d + φi,d · (xi,d − xk,d), (12)

where xk,d represents the d dimensional variable of the adjacent food source of xi,d, and φi,d represents
the speed of the solution change.

This kind of evolution method is adjacent to local evolution. After obtaining a new solution, it is
necessary to evaluate the objective function so as to judge whether or not to replace the old solution.

4.1.2. Solutions Evolve in Onlooker Bee

At this stage, the onlooker bee chooses the employed bee to follow by roulette, that is, the more
nectar the corresponding food source of the employment bee is, the higher the quality of the feasible
solution is, and the greater the probability that it will be selected. The onlooker bees use the following
formula to conduct local searches and evolutions around the food source, producing new individuals
of higher quality:

xnew
i,d

= xi,d + φi,d · (xi,d − xq,d), (13)

where xq represents a food source that is different from xk.

4.1.3. Solutions Evolve in Scout Bee

The scout bee is used to detect updates of the solutions. If a food source is not updated after many
evolutions, it abandons the current food source when it reaches the set number of times, denoted as
Limit, and randomly generates new food sources to avoid falling into local optimization prematurely.

For multi-objective optimization problems, the Pareto domination mechanism is usually used
for ranking. In a problem solution set, one feasible solution x1 dominates another feasible solution
provided that the objective function J(x1) is better than or equal to the corresponding element in J(x2),
and there exists at least one objective function strictly superior to J(x2). If two feasible solutions do not
dominate each other, then they are two non-dominant solutions. xn is a pareto optimal solution if and
only if there is no other feasible solution to dominate it. All pareto optimal solutions form the pareto
front [34].
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In the MOABC algorithm, first, the population size, maximum number of cycles, and upper and
lower limits of the optimization variable need to be set, denoted as Np, maxcycle, Ub and Lb respectively.
Then, the initial solution is randomly generated in the initial solution space. Iterative optimization and
Pareto dominated sorting occur according to the above evolution method. Through density evaluation,
non-dominated solutions are uniformly distributed along the Pareto front to avoid the algorithm
converging to a local area [35].

The flow chart of the artificial bee colony algorithm is shown in Figure 7. For more details and
demos of MOABC, please refer to [29,30].
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4.2. Q-Filter Design

This section mainly designs the Q filter for the cascaded DOB system.
For the inner-loop DOB, the following filter Q1(s) is designed,

Q1(s) =
1

(1 + T1s)4
. (14)

The design principle of parameter T1 could be found in [36–39] to achieve an appropriate system
bandwidth. T1 is set to 2 here.

In order to handle model uncertainty, we need to pay special attention to the robustness of the
system. Based on Figure 5, in the nominal state, the open-loop transfer function of the inner-loop
DOB is:

GL1(s) =
Q1(s)

1−Q1(s)
. (15)

The closed-loop robustness can be evaluated for GL1(s) in two popular robustness indices,
sensitivity index MS and complementary sensitivity index Mt, defined as follows:

MS = max

∣∣∣∣∣∣ 1
1 + GL1( jw)

∣∣∣∣∣∣ f or any w, (16)

Mt = max

∣∣∣∣∣∣ GL1( jw)

1 + GL1( jw)

∣∣∣∣∣∣ f or any w. (17)

The robustness constraints on the inner-loop DOB are chosen as: MS ≤ 1.4 and Mt ≤ 1.4, which
are relatively strong robustness requirements. They can be satisfied by shaping the Nyquist plot of
GL1(s) outside the curve of each robustness index (Figure 8).
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It can be seen from the figure that the designed filter Q1(s) satisfies the above robustness constraints.
For the outer-loop DOB, the following low-pass filters need to be designed,

Q2(s) =
1

(1 + T2s)2 , (18)

Q3(s) =
1

(1 + T3s)4
. (19)

Similar to the design of Q1, the disturbance rejection performance and robustness of the system
should be taken into account when designing Q2. Increasing the time constant T2 will produce worse
disturbance rejection performance and better robustness. The design of Q3 mainly needs to consider
the following two limitations: (1) the outer-loop robustness of cascaded DOB system and (2) the
influence of the outer-loop feedback value on the inner-loop, which should not lead to the obvious
oscillation of y1 or the drastic change to the valve opening.

When T2 = 10 is selected, the largest T3 = 2.6 can be obtained by drawing the open-loop frequency
response curve of the outer-loop, as shown in Figure 9. Through the following simulation, we can also
know that the T3 obtained here is reasonable. The robustness constraints on the outer-loop DOB are
chosen as: MS ≤ 1.4 and Mt ≤ 1.4. The equivalent open-loop transfer function of the outer-loop DOB is:

GL2(s) =
Q3(s)Q2(s)

1−Q3(s)Q2(s)
. (20)
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Figure 9. The open-loop Nyquist plot of the outer-loop DOB.

We selected three Q3 parameters to compare, and they were 1.5, 2.6 and 3.5, namely, candidate
‘A’, ’B’ and ’C’, respectively. Then, we made the following disturbance simulation for cascaded DOB
system, adding unit step disturbance d1 and d2 at 1000 s and 2000 s, respectively. The simulation results
are shown in Figure 10. The corresponding disturbances estimation for T3 = 2.6 is shown in Figure 11.
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It is shown that the parameters of the outer-loop filters do not affect the inner-loop disturbance
rejection performance. Among the three parameters, candidate ‘A’ has a more radical disturbance
suppression effect, which also leads to a drastic change in the valve opening, while ‘C’ is conservative.
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In summary, candidate ‘B’ is chosen as the final solution because it balances the disturbance rejection
and the influence on the inner-loop. Figure 10 shows the good disturbance estimation ability of the
cascaded DOB system.

4.3. Inner-Loop Controller Optimization

As mentioned earlier, for the inner-loop PI controller, both set-point tracking performance and
disturbance rejection ability need to be considered. At the same time, the robustness index is considered
as a constraint to reduce computational complexity.

MS ≤ 1.6 (21)

We define the inner-loop PI controller in the following form:

GC1 = kp1 +
ki1
s

. (22)

IAE1 and IAE2 are recorded as the IAE index of set-point tracking and disturbance rejection,
respectively. As analyzed in Section 3.1, DOB has the ability to recover the nominal characteristics
of the plant. Therefore, for the inner-loop, the equivalent controlled model is the nominal model
of the inner-loop. So, its stable region is the same as that in [11]. It is used as the search space
of inner-loop parameter optimization. As shown in Figure 12, the initial solutions of MOABC are
randomly generated in the stable region.
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DOB-PI control strategy.

The final solutions and non-dominated solutions are shown in Figure 13. Among them, we select
three candidates, ‘A’, ‘B’ and ‘C’, from the Pareto front.
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The following figure shows the relevant simulation results, in which the unit step set-point
disturbance and d1 disturbance are added at 100 s and 400 s respectively (Figure 14). The controller
parameters and related indicators of the three non-dominated inner-loop controllers are shown in
Table 1.

Table 1. Comparison of indices for the three non-dominated inner-loop controller candidates of
cascaded DOB-PI.

Candidates kp1 ki1 T1 IAE1 IAE2

A −0.72 −0.027 2 36.98 9.81
B −0.79 −0.026 2 38.78 9.63
C −0.84 −0.025 2 40.75 9.54

It can be seen that, the parameters of the PI controller have almost no effect on inner-loop
disturbance suppression, which also proves that the disturbance suppression of the inner-loop is
mainly undertaken by DOB. The selected solution ‘B’ is a tradeoff between the set-point tracking
performance and the disturbance rejection.
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4.4. Outer-Loop Controller Optimization

For the outer-loop controller design, the main consideration is the disturbance rejection
performance because the set-point of SST is generally a constant. On the other hand, in order
to ensure the robustness of the control system, the robustness index is optimized as another objective.
Therefore, the objective functions of outer-loop multi-objective optimization are the IAE index in terms
of disturbance d2 and the MS index.

For the outer-loop, we considered the following PI controller:

GC2 = −

(
kp2 +

ki2
s

)
. (23)

Similar to the analysis in Section 4.3, the outer-loop DOB can also recover the nominal model of
the plant, so the stable region of the outer-loop PI controller is the same as that in [11]. It should be
noted that since the outer-loop disturbance suppression is mainly undertaken by DOB, the integral
value obtained by optimization is close to 0, so in order to ensure the steady-state of the closed-loop
system is error free, the minimum integral parameter is set to 0.003. At this point, the controlled model
of the outer-loop is as follows:

Ge2 =
GC1G1

1 + GC1G1
G2 = Ge1G2. (24)

As can be seen from Figure 15, the final solutions of the outer-loop controller parameter
optimization are all in the stable region.

Figure 16 shows the final solutions and non-dominated solutions of multi-objective optimization.
Among them, we select three candidates, ‘A’, ‘B’ and ‘C’, from the Pareto front.
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The following figure shows the relevant simulation results, in which a unit step disturbance d2 is
added at 100s (Figure 17). The controller parameters and related indicators of the three non-dominated
outer-loop controllers are shown in Table 2.
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Table 2. Comparison of indices for the three non-dominated outer-loop controller candidates of
cascaded DOB-PI.

Candidates kp2 ki2 T1 T2 T3 IAE MS

A 0.93 0.003 2 10 2.6 40.3 1.69
B 0.81 0.003 2 10 2.6 42.0 1.58
C 0.71 0.003 2 10 2.6 43.8 1.51

It can be seen that, there is little difference between the three PI controllers, due to the strong
disturbance rejection ability of cascaded DOB. The selected solution ‘B’ is the control parameter that
has the minimum IAE index under the certain robustness index (MS ≤ 1.6).

5. Comparison and Mismatch Test

This section verifies the superiority and robustness of the proposed control strategy through
comparison with conventional cascaded PI controllers and mismatch simulations.

In Section 5.1, the parameters of the conventional inner and outer-loop PI controller are taken
from multi-objective optimization solution in [11]. In Section 5.2, control performance in the case of
time constant and the gain mismatch of the inner and outer-loop are compared, respectively (based on
the control structure of Figure 6).
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5.1. Comparison with Cascaded PI Scheme

5.1.1. Inner-Loop Simulation

The same simulation is carried out using the optimized DOB-PI and PI controller parameters.
The results are shown in Figure 18, and the related indicators are shown in Table 3.
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Table 3. Indices comparison of inner-loop controller.

Control Strategy kp1 ki1 IAE1 IAE2

DOB-PI −0.79 −0.026 38.78 9.63
PI −0.7 −0.03 36.6 35.6

It can be seen that the inner-loop has a significant improvement in disturbance rejection
performance. The setpoint tracking ability is slightly worse due to the relatively small integral effect.

5.1.2. Outer-Loop Simulation

A similar comparative simulation is carried out in the outer-loop, and the results are shown in
Figure 19. The related indices are summarized in Table 4.
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Table 4. Indices comparison of outer-loop controller.

Control Strategy kp2 ki2 IAE MS

Cascaded DOB-PI 0.81 0.003 42.0 1.58
Cascaded PI 0.53 0.0055 184 1.59

It can be seen that the cascaded DOB-PI control strategy has better disturbance rejection
performance under the same robustness index. A smaller SST fluctuation means that the power
plant can participate in a wider range of load dispatching, which is conducive to the consumption of
renewable energy.

5.2. Mismatch Simulations

This part carries out the control simulation under the condition of inner- and outer-loop model
mismatch, in order to verify the robustness of the control system against model uncertainties.

5.2.1. Inner-Loop Model Mismatch

Simulations are made under the nominal case and model mismatch cases. Two model mismatch
conditions for G1(s) are considered: process gain varies from 1 to 1.3 and time constant varies from
9 to 11. The simulation results are shown on Figure 20. A unit step command disturbance and d1

disturbance are added at 100 s and 400 s, respectively.



Sustainability 2020, 12, 8235 21 of 24
Sustainability 2020, 12, x FOR PEER REVIEW 23 of 26 

 464 

Figure 20. Simulation results of the inner-loop model mismatch. 465 

As can be seen from the figure, the inner-loop can still achieve a good control performance when 466 
the gain change is about 30%. When the time constant changes to about 20%, 1y  oscillates obviously 467 

but remain stable. In particular, there is no obvious change in disturbance rejection. This also shows 468 
the superiority of the DOB-PI control strategy in disturbance suppression. 469 

5.2.2. Outer-Loop Model Mismatch 470 

Similarly, simulations are made under the nominal case and model mismatch cases for the outer-471 
loop. Two model mismatch conditions for 2( )G s  are considered: process gain varies from 1.5 to 2 472 

and time constant varies from 60 to 80. The simulation results are shown in Figure 21. A unit step 473 
disturbance 2d  is added at 100 s. 474 

Figure 20. Simulation results of the inner-loop model mismatch.

As can be seen from the figure, the inner-loop can still achieve a good control performance when
the gain change is about 30%. When the time constant changes to about 20%, y1 oscillates obviously
but remain stable. In particular, there is no obvious change in disturbance rejection. This also shows
the superiority of the DOB-PI control strategy in disturbance suppression.

5.2.2. Outer-Loop Model Mismatch

Similarly, simulations are made under the nominal case and model mismatch cases for the
outer-loop. Two model mismatch conditions for G2(s) are considered: process gain varies from 1.5 to 2
and time constant varies from 60 to 80. The simulation results are shown in Figure 21. A unit step
disturbance d2 is added at 100 s.

It can be seen that, when the gain varies to 2, the control effect of y1 and y2 changes little, but the
valve opening u1 increases for a short time. When the time constant varies to 80, due to the slower
dynamic, y1 and y2 fluctuate obviously but still remain stable.

Through the above comparison and simulation, the superiority and robustness of the proposed
control strategy are verified.
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6. Conclusions

In this paper, the control difficulties of SST caused by unknown disturbances and model
uncertainties are introduced based on the description of an SST system. In order to improve the
control performance, a cascaded DOB-PI control strategy is proposed in this paper. The multi-objective
optimization models of inner- and outer-loop PI controllers are established to achieve the best control
performance on the premise of robustness.

The optimized Pareto front and simulation results show that the cascaded DOB-PI control
strategy can significantly improve the disturbance rejection performance of the SST control system
while maintaining its strong robustness and traditional cascaded control structure. Due to the wide
applicability of DOB, this control structure is suitable not only for the SST control system, but also
for other cascaded systems affected by disturbances. At the same time, from the comparison in
Section 5.1.1, we can see that the optimal solution in this paper sacrifices part of the inner-loop tracking
performance. Compared with the traditional cascaded PI control system, the control structure adopted
in this paper is more complex. The design method of the Q filter can be further improved with reference
to advanced design methods, such as H∞ optimization.

Compared with the traditional cascaded PI scheme, the proposed SST control strategy has good
disturbance suppression performance and promising prospects for practical application when it comes
to increasing demand for more renewables in the power grid.
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