
sustainability

Article

An Assessment of Environmental Impacts on the
Ecosystem Services: Study on the Bagmati Basin
of Nepal

Shiksha Bastola 1, Sanghyup Lee 1, Yongchul Shin 2 and Younghun Jung 1,*
1 Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559,

Gyeongsangdaero, Sangju 37224, Korea; shikshyabastola@knu.ac.kr (S.B.); niy1219@knu.ac.kr (S.L.)
2 School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University, 80 Daehak-ro,

Buk-gu, Daegu 41566, Korea; ycshin@knu.ac.kr
* Correspondence: y.jung@knu.ac.kr; Tel.: +82-54-530-1253; Fax: +82-54-530-1258

Received: 10 August 2020; Accepted: 28 September 2020; Published: 4 October 2020
����������
�������

Abstract: The upsurges in population, internal migration, and various development works have
caused significant land use and land cover (LULC) changes in the Bagmati Basin of Nepal. The effects
of climate change such as increased precipitation and temperature are affecting the provision of
ecosystem services (ES). In this regard, this study particularly treated water yield (WY), soil loss,
nitrogen export, and carbon fluctuation in the basin. Integrated Valuation of Ecosystem Services
and Tradeoffs (InVEST) tools were used to carry out a comparative analysis of ES based on LULC
data for 2000 and 2010 and corresponding climate data. To analyze the future period (2010–2099),
we have used climate data from the multi-model ensemble (MME) of statistically downscaled and
bias-corrected 12 best global climate models (GCMs). A raw GCM analysis (based on historical
observational data) from 29 GCMs was done first. The results shows with a subsequent degradation
of ES providers like forests and an increment in agricultural and urban areas, ES are on a verge of
degradation. Furthermore, a projection of future climate patterns depicts increased precipitation and
temperature. Thus, urgent measures are required for the sustainable provision of ES. Outcomes of the
study are expected to help in the incorporation of ES in development policies promoting low-impact
development along with maintaining ecological and economic goals. The study closes by presenting
a recommendation for model application and future study needs.
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1. Introduction

Ecosystem services (ES) are defined as services provided by nature that directly and indirectly
benefit the well-being of humans. The concept of ES has been developed in the scientific literature since
the end of the 1970s [1], and the Millennium Ecosystem Assessment (MEA) report 2005 [2] is considered
the milestone in the field of mapping ES. The MEA report evaluated the impacts on human beings
as the consequences of changes in the ecosystem. The core finding of the MEA report is that human
activities are depleting the Earth’s natural resources, which is inducing stress on the self-sustaining
capability of the natural environment. This phenomenon urges immediate measures for checking and
prevention in order to enhance the sustainability of ecosystems for future generations.

To meet the requirements of a globally increasing population for food, shelter, timber, etc., land use
changes are occurring but at the expense of a degraded environment and ecosystems. Land use
and land cover (LULC) change is considered the major factor for the degradation of ES and loss in
biodiversity [3,4]. Climate change is another factor impacting natural systems, and ultimately affects
the flow of ES [5]. With the increasingly evident effects of climate change, which is especially impacting
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developing countries [6–8], the challenge to attain sustainable economic development goals while
preserving the natural resources and ES is getting more difficult [9]. ES have significance in both
developed and developing nations. However, as the livelihood of people in developing nations is
highly dependent on them, the risk of ES losses is high in developing nations. In addition, developing
nations are more prone to the impacts of climate change. In this scenario, identifying where ES originate
and to whom the benefits flow under current and future climate conditions is critical information [9].

Land cover refers to the biophysical attributes of Earth’s surface such as water, soil, vegetation,
etc. It refers to human purposes or intents applied to these attributes such as building construction,
forestry, etc. [10]. Changes in LULC is a substantial phenomenon and is occurring globally since time
immemorial [11]. Urbanization is necessary for regional economic growth [12] and is one of the most
important drivers of change worldwide [13]. The recent decade has seen a major increase in the rate of
worldwide urbanization. As per the 2011 census of the Central Bureau of Statistics of Nepal, the urban
population has increased to 17% in 2011 from 2.9% in 1952/1954 [14]. Recorded among the fastest
urbanizing countries of the world [15], Nepal has faced notable LULC changes especially in urban
and semi-urban areas. The Bagmati Basin, incorporating the capital city Kathmandu, has significant
socio-economic importance because of centralized job opportunities, education, health facilities, etc.
Issues such as decreased availability of freshwater resources, urban floods, degraded water quality,
solid waste management, etc. are major problems in the basin especially in urban and semi-urban areas
in the upper part of the basin [16]. The basin has been facing many flood events in its lower belt [16]
and urban floods have become a re-occurring phenomenon every monsoon season in major city cores
like in Kathmandu and Bhaktapur. Water availability and accessibility are also issues and due to the
lack of effective plans for waste management by households, industries, and agricultural areas, water
quality is on the constant verge of degradation [17]. Likewise, unchecked LULC changes for activities
such as agriculture and road expansion are increasing soil loss rates. Industrialization and urbanization
mainly in the upper part of the basin are impacting the overall ES of the basin. The optimum provision
of ES under changing LULC and climatic conditions would be questionable if proper mitigation and
preservation plans are not formulated in time.

Several studies on ES have been carried out in Nepal to inform biodiversity conservation and
to promote local and national decision making [18,19]. Some examples are LULC dynamics and ES
valuation in the Gandaki Basin of Nepal [20] and effects of LULC change on ES in the Koshi Basin,
which focused on food production, carbon storage, habitat quality, etc. [21]. Several international
organizations such as the International Union for Conservation of Nature (IUCN), the International
Centre for Integrated Mountain Development (ICIMOD), the World Bank, and the Asian Development
Bank are currently working toward the assessment of ES and the implementation of Payments for
Ecosystem Services (PES) in Nepal [19,22]. The implementation of PES schemes in sectors such as
drinking water, irrigation, and tourism already exists in Nepal, but these payments are being made
only for mandatory requirements, not for the sustained supply of services [19]. Many studies have
independently assessed freshwater availability [23], water pollution issues [24], and soil loss cases [25]
in the Bagmati Basin of Nepal. However, to the extent of our knowledge, a collective effort to access
in terms of ES, LULC impacts on them, and projections based on climate data are not yet available.
Thus, to overcome this gap, the concept of this study was devised. Climate change and LULC are
major drivers of changes in ES and ES are itself interrelated [26]. This study aims to analyze the
impacts on ES owing to changes in LULC and to provide an overview of the provision of ES in the
context of a changing climate. This study thus treats four regulating ES, namely, water yield (WY) for a
freshwater provision and flood control, soil loss indicating soil degradation and impacts on interrelated
services, nitrogen export for surface water quality, and carbon storage for climate regulation. Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) [27] ES tools and the Revised Universal Soil
Loss Equation (RUSLE) [28] method along with ArcGIS were used to map ES of the basin, and APCC
Integrated Modelling Solution (AIMS) software developed by the Asia Pacific Economic Cooperation
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Climate Centre (APCC) was used for statistical downscaling of bias-corrected global climate model
(GCM) data.

2. Materials and Methods

2.1. Study Area

The Bagmati Basin lies in the middle mountain region of Nepal (Figure 1) at latitude 26◦42′ to
27◦50′ N and longitude 85◦2′ to 85◦58′ E. The Bagmati River is the principal river of the basin and it
originates from the north of the capital city, Kathmandu, at Shivpuri (Bagdwar) at an altitude of 2690 m.
The river flows through Kathmandu and provides most of the city’s drinking water in the upper part
of the basin, supports hydropower generation in the middle basin and in the lower part of the basin,
and supports large-scale irrigation for agriculture [29]. The climate of the basin varies with elevation;
higher mountains have a cold temperate climate, mid-elevation levels have a warm temperate climate,
and the southern lowlands have a subtropical climate [30]. The basin has a mean annual temperature
of 20–30 ◦C and the mean annual precipitation is about 1800 mm [30]. The Bagmati River is a spring
and monsoon rain-fed river and consists of many tributaries such as the Hanumante, Manohara, Dhobi
Khola, etc. The total area of the basin is 375,000 ha and, owing to the good data availability for this
study, a 276,897 ha area was selected. This represents the area above the Pandredhovan gauge station
(Figure 2). We chose the Bagmati Basin as our study area as it is facing huge anthropogenic pressures
associated mostly with centralized facilities, urban expansion, and increased agricultural activity.
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2.2. Model Description and Data

For the assessment of ES provision in the basin, four ES, namely, WY, soil loss, nitrogen export,
and carbon storage, were evaluated on the sub-basin scale in the Bagmati Basin of Nepal. We have
done a comparative study of ES for the years 2000 and 2010 based on the LULCs of 2000 and 2010 and
corresponding climate data and for a future period, ES were mapped based on the LULC map of 2010
and projected climate data. The LULC map was obtained from the ICIMOD Nepal Geospatial Portal
(http://rds.icimod.org/) which is prepared using public domain Landsat Thematic mapper(TM) data.
Uddin et al. [31] have discussed the detailed description of the data including LULC classification,
accuracy assessment, and limitations, hence we have used the LULC data from the ICIMOD portal
referring to the findings from Uddin et al. [31]. Likewise, the rainfall and temperature data for the
period of 1987–2016 from 25 stations from all over Nepal (Table S1, Supplementary Materials) have been
used to downscale GCM data for Nepal. The missing data were extracted from MERRA2 grid data [32]
after doing quality control (checking daily correlation coefficient) using R package. GCM data from 10
stations (stations in bold in Table S1, Supplementary Materials) have been used for a future period
(2010–2099) ES evaluation of the Bagmati Basin. As well, for the analysis of the Bagmati Basin for the
period 2000 and 2010, a precipitation raster is prepared using data from 23 rain stations (Figure 3) and,
for preparation of an evapotranspiration raster, precipitation and temperature data from 9 stations
(stations in bold in Table S1, Supplementary Materials) have been used. The data period for the
comparative study of 2000 and 2010 is 1996–2015 which is divided into two time periods of 1996–2005
and 2006–2015 to coincide with available LULC data of 2000 and 2010 periods, respectively. All the
rainfall and temperature data were acquired from the Department of Hydrology and Meteorology
(DHM) Nepal.
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For the downscaling of GCMs for future climate data, we have used APCC’s AIMS software.
We have used the multi-model ensemble (MME) of 12 best GCMs of Coupled Model Intercomparison
Project 5 (CMIP5) under two Representative Concentration Pathways (RCP) scenarios namely RCP 4.5
and RCP 8.5 to study the projection of ES in the future. The descriptions of RCP 4.5 and RCP 8.5 are
given in Figure 4. InVEST tools were used to map WY, nitrogen export, and carbon storage, and a
RUSLE method was used to map soil loss. As carbon storage computation by the InVEST carbon
model is independent of the climate data, carbon storage was evaluated with only LULC change and
the corresponding climate scenario whereas WY, soil loss, and nitrogen export were evaluated for
both scenarios of LULC change and future climate change scenarios. We choose the InVEST model
in our study due to its capability to give a quick overview of ES, especially in regions with low

http://rds.icimod.org/
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data availability [33] in developing nations like Nepal. InVEST is a suite of a free and open source
software models. Its modular design provides an effective tool for evaluating the possible outcomes
of alternative management and climate scenarios and it helps in the selection of the best decision
scenarios [27].
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2.2.1. Water Yield Estimation

The InVEST water yield model was used for the WY estimation and this model is based on the
water balance principle and Budyko curve. It determines the amount of water running off each pixel
as the precipitation minus the fraction of the water that undergoes evapotranspiration. The input data
included precipitation, evapotranspiration, LULC, soil properties, basin boundary, and biophysical
attributes (Table 1). The spatial resolution of LULC, soil depth, and plant-available water content used
in the study was 30 m.

Table 1. Data description for InVEST Water Yield Model.

SN Data Format Data Source

1 Annual mean precipitation Raster map DHM *
2 Annual reference evapotranspiration Raster map Temperature data from DHM
3 Land use and land cover (LULC) Raster map ICIMOD ** Nepal
4 Soil depth Raster map SOTER *** database
5 Plant-available water content (PAWC) Raster map SOTER database
6 Basin and sub-basin Shapefiles ArcGIS
7 Biophysical table Excel CSV table Published literature

SN—Serial Number. * DHM, Department of Hydrology and Meteorology. ** ICIMOD, International Centre for
Integrated Mountain Development. *** SOTER, Soil and Terrain Database.

The annual WY Y(x) on each pixel of the landscape (x) is determined as follows:

Y(x) =
(
1−

AET(x)
P(x)

)
× P(x) (1)

AET(x) = Annual actual evapotranspiration for pixel x
P(x) = Annual precipitation on pixel x.
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AET(x)
P(x) is the evapotranspiration portion of the water balance for vegetated LULC types. This is

computed based on an expression of the Budyko curve proposed by Fu [34] and Zhang et al. [35]:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

(
PET(x)

P(x)

)ω]1/ω

(2)

where PET(x) = potential evapotranspiration calculated using Equation (3); ω(x) = non-physical
parameter (characterizes the natural climatic-soil properties). Calculation of PET is as follows:

PET(x) = Kc(lx) ∗ ETo(x) (3)

where ETo(x) = reference evapotranspiration from pixel x.
Kc(lx) = plant evapotranspiration coefficient, which is associated with the LULC lx on pixel x.
ω(x) is an empirical parameter. It is determined as the expression given by Donohue et al. [36]:

ω(x) = Z
AWC(x)

P(x)
+ 1.25 (4)

where ω(x) is based on plant-available water content (PAWC), precipitation, and the Z constant.
The Z constant defines the local precipitation pattern and additional hydrogeological characteristic

of the basin [27].
The temperature-based Hargreaves equation was used for the computation of reference

evapotranspiration, given that this method generates superior results to the Pennman–Montieth
method in the case when long-term data is limited [37]. An average soil depth and PAWC raster map
was prepared using the Soil and Terrain (SOTER) database of Nepal and ArcGIS. The biophysical
information on the LULC code and its descriptive names, the maximum root depth for vegetated
land use classes in mm, and the plant evapotranspiration coefficient for each LULC class was
required (Table 2). In this study, the root depth of main vegetation types was obtained following
Chen et al. [38] and the evapotranspiration coefficient of each LULC type used on the model was based
on Allen et al. [39] and the InVEST user manual [27].

Table 2. Biophysical attributes used for InVEST model.

LULC

Biophysical Attribute Forest Shrubland Grassland Agriculture Land Barren Area Water Body Built-Up Area Related Model

Land use code 1 2 3 4 5 6 8

Water Yield
Kc 1 0.398 0.65 0.65 0.5 1 0.3

Root_depth 7000 2000 2000 1500 500 0 0
LULC_veg 1 1 1 1 0.001 0.001 0.001

Aboveground biomass 90 8 6 3 0 0 0

Carbon Storage
Belowground biomass 60 8 6 2 0 0 0

Soil organic matter 95 25 20 8 0 0 0

Dead organic matter 29 3 2 1 0 0 0

Load_n 1.8 2 4 11 4 0.001 7.25 Nutrient
DeliveryEff_n 0.8 0.4 0.5 0.25 0.05 0.05 0.05

Kc = plant evapotranspiration coefficient. Root_depth = maximum root depth measured for vegetated LULC (mm).
Load_n = nutrient loading for each land use measured in kg/ha/year. Eff_n = nutrient retention efficiency for each
LULC class (floating point value, 0–1).

2.2.2. Soil Loss Estimation

The RUSLE model coupled with ArcGIS was used for the computation of soil loss in the basin.
Due to data simplicity and the provision of scenario analysis and taking measures against erosion,
RUSLE is widely used at large scales for soil loss assessment [40]. It computes soil erosion as the
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product of six factors representing rainfall erosivity, soil erodibility, slope length, slope steepness, cover
and management practices, and supporting conservation practices:

A = R×K × L× S×C× P (5)

where

A = average annual soil loss amount in (t/ha/yr)
R = rainfall–runoff erosivity factor (MJ mm/h/ha/yr)
K = soil erodibility factor
L = slope length factor
S = slope steepness factor
C = land cover management factor
P = support practice factor

Among several equations available for the rainfall–runoff erosivity factor (R), we have used the
equation by Singh et al. [41] as it is the one recommended for the Himalayan region:

R = 79 + 0.363P (6)

where

R = rainfall erosivity factor (MJ mm ha−1 h−1 yr−1)
P = mean annual precipitation (mm).

The K factor is determined as per the Food and Agriculture Organization (FAO) database adapted
to Nepal by World Soil Information (ISRIC). The soil unit map was extracted from the SOTER database
of Nepal and the K factor was computed based on different published literature on mountainous
areas [42,43] and other countries [44]. The K factor of the study area varied from 0.19 to 0.49.

The slope formula based on slope length was used for computation of slope length factor (L)
based on references [45,46] which is given as:

L =
(

λ

22.13

)m
(7)

where λ indicates a field slope length and 22.13 is the slope length of a unit runoff plot (m).
m = slope length exponent.
The slope steepness factor (S) represents the effect of slope steepness on the intensity of soil

erosion. The factor is calculated using Equation (8) as described by Wischmeier and Smith [45]:

S =
0.43 + 0.30× s + 0.043× s2

6.613
(8)

where s = slope in percent, which is determined from a digital elevation model (DEM).
Likewise, the cover management factor (C) and the support practice factor (P) were obtained from

various published reports [25,47] in a similar area. Separate raster layers for each factor were prepared
in GIS and the average annual soil erosion rate was determined by multiplying the respective factors
in the ArcGIS environment.

2.2.3. Nitrogen Export Estimation

The nutrient delivery ratio (NDR) model was used to map nitrogen export in the basin. The model
uses a simple mass balance approach and describes the movement of nutrient mass through space and
aims to quantify nutrient (nitrogen and phosphorous) export. The model maps the flow of nutrients
from various sources to the stream network. Sources of nutrients are determined based on a LULC map
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and associated loading rates. The nutrient loads are divided into sediment-bound and dissolved parts,
which will be carried by surface and subsurface flow respectively and stops when they reach a stream.
Next, the delivery factors were computed for each pixel, based on the properties of pixels belonging
to the same flow path (their slope and retention efficiency of each land use) [27]. All pixel-level
contributions were summed at the basin/sub-basin outlet to compute the nutrient export:

Xexpton =
∑

i

Xexpi (9)

Xexpi = LoadSur f , i ×NDRSur f , i + LoadSubs, i ×NDRSubs, i (10)

where

Xexpton = total export amount of nutrients in the basin (kg. yr−1)
Xexpi = export amount of nutrients from each grid
LoadSur f , i = surface nutrient load (kg. ha−1. yr−1)

LoadSubs, i = subsurface nutrient load (kg. ha−1. yr−1)
NDRSur f , i = surface nutrient transfer rate.

NDRSubs, i = subsurface nutrient transfer rate.

The raster layers required as an input for running the model are raster maps of the DEM, LULC,
and precipitation. The model requires the biophysical table having a coefficient for nitrogen loading for
each LULC category (Table 2). These values were obtained following Sharp et al. [27] and Line et al. [48].

2.2.4. Carbon Storage Estimation

The InVEST carbon model used in this study maps carbon storage densities to the LULC raster by
aggregating the amount of carbon stored on four major carbon pools. The carbon pools considered
were aboveground biomass, belowground biomass, soil, and dead organic matter to produce the total
amount of carbon storage.

The carbon storage Cm,i, j for a given grid cell (i, j) with land use type m can be calculated as:

Cm,i, j = A×
(
Cam,i, j + Cbm,i, j + Csm,i, j + Cdm,i, j

)
(11)

where A = actual area of each grid cell (ha); Cam,I,j, Cbm,I,j, Csm,I,j, Cdm,I,j are the aboveground,
belowground, soil organic, and dead organic matter carbon density in MgC/ha for grid cell (i, j) with
land use type m (Table 2). The carbon pool data were obtained from published literature [49,50] and
InVEST user guidelines.

2.3. GCM Downscaling and Future Climate Scenarios

For this study, 29 GCMs of CMIP5 were statistically downscaled and bias-corrected using the
simple quantile mapping (SQM) [51] method. We adopted RCP 4.5 and RCP 8.5 concentration pathways
(Table 3, adapted from reference [52]) for this study. The future projections of daily precipitation and
temperature were performed at 25 meteorological stations of Nepal. Statistical downscaling makes it
possible to perform a quantitative comparison with observational data through bias correction using
the observations and it is easy to convert them into high-resolution data. The multi-model ensemble
was prepared for the study basin using 12 best GCMs after doing raw GCM analysis of the downscaled
GCMs. For the downscaling, we used the AIMS developed by the APCC. The AIMS module is a free
and open source module available online from www.aims.apcc21.org [53].

www.aims.apcc21.org
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Table 3. Overview of representative concentration pathways in IPCC AR5.

Name Radiative Forcing CO2 Concentration (ppm) Pathways

RCP 2.6 Peak in radiative forcing at ~3
W/m2 before 2100 and decline Peak at 490 before 2100 and then decline Peak and decline

RCP 4.5 4.5 W/m2 at stabilization after 2100 ~650 (at stabilization after 2100) Stabilization without overshoot

RCP 6 6 W/m2 at stabilization after 2100 ~850 (at stabilization after 2100) Stabilization without overshoot

RCP 8.5 >8.5 W/m2 in 2100 >1370 CO2 equivalent in 2100 Rising

Source: Van Vuuren et al. [52].

3. Results

3.1. Evaluation of Land Use and Land Cover Change (LULC)

A total of 37,487.32 ha (13.54% of the study area) of land cover has faced conversion from one
land use type to another in the period between 2000 and 2010. Among all the conversions from one
type to another, conversion to agriculture and built-up areas is highest on the basin (Tables 4 and 5).
The highest overall increment is in the agricultural area (increased by 9232 ha), followed by the built-up
area (increased by 4087.28 ha). Similarly, the highest reduction is on grassland which decreased by
6012.12 ha. The built-up area in 2010 had increased by 4087.28 ha compared to 2000 and in this
conversion, 82.71% (3380.96 ha) came from the agricultural area only. This decrement in agricultural
area is mostly concentrated around major cities of the Kathmandu valley, changing the major traditional
agricultural pattern in the valley. Likewise, 9362.92 ha of forest land and 7555.8 ha of grassland were
converted to agricultural areas from 2000 to 2010. However, as the conversion from agricultural to
other land use types like built-up and forest areas is notable, the net gain on agricultural areas was
9232.00 ha in 2010. The grassland land use faced the highest decrement contributing to other land use
types mostly for the agriculture land use (7555.8 ha) and barren land has also faced similar conversion
with the highest (3194.24 ha) conversion to agricultural land use types. The upper part of the basin has
faced significant expansion on urban and agricultural areas and this transition has resulted due to
several factors like internal migration of people from other parts of the country, increased agricultural
practices, ongoing infrastructural activities, and economic movements in the basin.

Table 4. Change in LULC between 2000 and 2010.

LULC CLASS LULC 2000 (ha) LULC 2010 (ha) Change Percent Change (%)

Forest 181,246.64 177,803.92 −3442.72 −1.90
Shrubland 2025.96 662.92 −1363.04 −67.28
Grassland 11,414.60 5402.48 −6012.12 −52.67

Agriculture area 60,545.56 69,777.56 9232.00 15.25
Barren area 7655.64 5003.60 −2652.04 −34.64
Water body 884.20 1034.84 150.64 17.04

Built-up area 13,124.52 17,211.80 4087.28 31.14

Total 276,897.12 276,897.12

Table 5. Conversion of LULC in 2000 and 2010 (in ha).

2000 LULC

2010
LULC

LULC Forest Shrubland Grassland Agriculture Barren Water Built-up Total
Forest 171,000.16 106.48 283.76 9362.92 95.24 89.2 308.88 181,246.64

Shrubland 551 473.92 241.2 674.52 42.16 34.56 8.6 2025.96
Grassland 886.04 47.84 1963.28 7555.8 543.72 156.12 261.8 11,414.6

Agriculture 5202.24 14.88 2653.44 48,755.88 391.12 147.04 3380.96 60,545.56
Barren 133 12.08 213.08 3194.24 3737.16 253.04 113.04 7655.64
Water 31.48 7.72 47.72 234.2 194.2 354.88 14 884.2

Built-up 0 0 0 0 0 0 13,124.52 13,124.52

276,897.12
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3.2. Climate Data Analysis

Twelve GCMs (Table 6) were selected for the study basin after raw GCM analysis (Figure 5)
compared to the historical observation data (data period 1987–2016). With reference to the findings from
several studies, multi-model ensemble (MME) accounted for the uncertainty of the single model [51,54],
MME was prepared with an ensemble average of 12 best GCMs for the study area. The data were
analyzed based on six scenarios, three each for RCP 4.5 and RCP 8.5 (Table 7).

Table 6. Twelve GCMs of CMIP5 used in the study.

SN GCM Name Resolution Institution

1 HadGEM2-AO 1.875 × 1.250 Met Office Hadley Centre
2 HadGEM2-CC 1.875 × 1.250 Met Office Hadley Centre
3 CNRM-CM5 1.406 × 1.401 Centre National de Recherches Meteorologiques
4 IPSL-CM5A-MR 1.875 × 1.865 Institut Pierre-Simon Laplace
5 CESM1-CAM5 1.250 × 0.942 National Centre for Atmospheric Research
6 FGOALS-s2 2.813 × 1.659 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
7 GFDL-CM3 2.500 × 2.00 Geophysical Fluid Dynamics Laboratory, NOAA
8 HadGEM2-ES 1.875 × 1.250 Met Office Hadley Centre
9 CESM1-BGC 1.250 × 0.942 National Centre for Atmospheric Research

10 MPI-ESM-MR 1.875 × 1.865 Max Planck Institute for Meteorology (MPI-M)
11 BCC-CSM1-1-M 1.125 × 1.122 Beijing Climate Centre, China Meteorological Administration

12 CMCC-CMS 1.875 × 1.865 Centro Euro-Mediterraneo sui Cambiamenti Climatici
(Euro-Mediterranean Centre on Climate Change)Sustainability 2020, 12, x FOR PEER REVIEW 10 of 22 
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Table 7. Precipitation and temperature in various climate scenarios.

Climate Scenario RCP Period Precipitation (mm) Tmax (◦C) Tmin (◦C)

Observed Period 1987–2016 1609.57 25.92 13.92
S1Rcp4.5 RCP 4.5 2010–2039 1704.27 27.239 15.833
S2Rcp4.5 RCP 4.5 2040–2069 1855.30 28.123 16.767
S3Rcp4.5 RCP 4.5 2070–2099 1965.76 28.764 17.064
S1Rcp8.5 RCP 8.5 2010–2039 1731.04 27.228 15.92
S2Rcp8.5 RCP 8.5 2040–2069 1903.74 28.65 17.593
S3Rcp8.5 RCP 8.5 2070–2099 2172.03 30.298 19.284

The patterns of two climate parameters (temperature and precipitation) were observed for the
period 2010–2099 compared with the baseline historical period of 1987–2016 (Table 7). The average
annual precipitation for the historical period was 1609.57 mm. It was observed that the average
annual precipitation is expected to increase by 94.70 mm, 245.73 mm, and 356.20 mm in RCP 4.5 and
121.47 mm, 294.17 mm, and 562.47 mm under RCP 8.5 by the ends of 2030, 2060, and 2090, respectively
(Figure 6). Likewise, the annual average maximum and minimum temperature for the baseline period
(1987–2016) was 25.92 ◦C and 13.92 ◦C, respectively. Compared to the baseline period, the average
maximum temperature (Tmax) is projected to increase by 1.32 ◦C, 2.20 ◦C, and 2.84 ◦C under RCP 4.5 and
1.31 ◦C, 2.73 ◦C, and 4.38 ◦C under RCP 8.5 by the ends of 2030, 2060, and 2090, respectively (Figure 7).
The increment in the average minimum temperature (Tmin) is high for all scenarios compared to the
maximum temperature. The average minimum temperature is projected to increase by 1.91 ◦C, 2.85 ◦C,
and 3.14 ◦C under RCP 4.5 and 2.00 ◦C, 3.67 ◦C, and 5.36 ◦C under RCP 8.5 by the ends of 2030, 2060,
and 2090, respectively, compared to the baseline period.
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3.3. Impacts on Ecosystem Services (ES)

3.3.1. Water Yield

The average annual precipitation was 1879.53 mm and 1766.59 mm for the periods of 2000 and
2010, respectively. Comparing the two periods, the WY is observed to decrease by 106.592 MCM
(million cubic meters) from 2000 to 2010. Figure 8 shows a raster map for the difference of WY between
2000 and 2010. In 2000, the total average annual WY was observed to be 3278.609 MCM and in
2010, WY was 3172.017 MCM. Performing a sub-basin-scale evaluation, WY was observed to have
decreased in 2010 in all sub-basins except in sub-basin 2 (Table 8). As the computation of WY is a
factor of evapotranspiration along with precipitation and LULC change, increment in the water yield
in sub-basin 2 is attributable to an increase in the built-up area, which comes up with several other
consequences like increased nitrogen load and reduced carbon storage.
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Table 8. Water yield comparison for 2000 and 2010.

2000 2010

Sub-Basin Area (ha) Precipitation (mm) WY_per ha (m3/ha) Precipitation (mm) WY_per ha (m3/ha)

1 21,393.24 1775.44 11,037.84 1672.57 10,651.14
2 66,396.00 1695.71 10,659.63 1671.58 11,013.60
3 43,520.56 1945.75 12,539.44 1850.32 12,231.78
4 35,195.92 1837.08 11,594.40 1758.57 11,425.20
5 36,103.44 2223.06 15,275.12 2045.25 14,087.72
6 52,777.16 1738.20 10,711.38 1612.74 10,085.51
7 21,510.80 1941.49 12,278.39 1755.11 11,042.91

Average 1879.53 12,013.74 1766.59 11,505.41

The assessment of WY on climate scenarios based on the baseline land use of 2010 and the
corresponding climate data obtained from MME of GCMs shows increased WY with an increased
projection of precipitation in future scenarios (Table 9). Compared to 2010, the total WY of the basin
is observed to decrease in S1Rcp4.5 and S1Rcp8.5. However, even with the baseline LULC of 2010,
the total WY was observed to increase from period S1 to S2 to S3 under both RCP 4.5 and RCP 8.5
scenarios. The WY per ha is highest on sub-basin 5 and lowest on sub-basin 1 in 2010 but, in future
scenarios, sub-basin 6 will have the highest WY and sub-basin 2 will have the lowest water yield
per ha of land (Table 9). This provides a general estimate and trend of WY but as WY is a function of
evapotranspiration, highly affected by LULC, projections based on future LULC scenarios can give a
better estimate.
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Table 9. Water yield per ha computation for period S1-S3 under RCP 4.5 and RCP8.5 (m3/ha).

Sub-Basin 2010 S1_Rcp4.5 S2_Rcp4.5 S3_Rcp4.5 S1_Rcp8.5 S2_Rcp8.5 S3_Rcp8.5

1 10,651.14 10,006.49 11,396.52 12,368.50 10,302.09 11,854.92 14,171.04
2 11,013.60 9949.46 11,106.20 12,040.53 10,225.30 11,420.34 13,454.66
3 12,231.78 10,990.14 12,347.25 13,368.02 11,278.17 12,779.34 15,100.02
4 11,425.20 11,420.95 12,782.41 13,792.02 11,689.52 13,202.42 15,614.55
5 14,087.72 11,694.02 13,173.62 14,185.08 11,966.76 13,668.95 16,210.80
6 10,085.51 11,869.07 13,279.60 14,299.19 12,109.70 13,725.27 16,340.63
7 11,042.91 11,526.35 12,989.38 13,993.72 11,772.17 13,475.75 16,133.65

3.3.2. Soil Loss

The annual average soil loss is reduced in 2010 (20.46 Mt/yr) compared to 2000 (21.38 Mt/yr) and is
attributable to decreased annual average precipitation. Figure 9 shows a raster map for the difference of
soil loss between 2000 and 2010. In 2000, agriculture accounted for the highest average rate of soil loss
(198.40 t/yr/ha) whereas, in 2010, barren land was responsible for the highest soil loss (225.62 t/yr/ha)
(Table 10). In both periods, the highest average rate of soil loss was as a result of agricultural land use
causing 56.07% and 56.06% of total soil loss in 2000 and 2010, respectively.
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Table 10. Soil loss comparison for various land use types.

2010 2000

Land Use Average Rate
(t/yr/ha)

Soil Loss
(Mt/yr)

Average Rate
(t/yr/ha)

Soil Loss
(Mt/yr)

Shrubland 199.93 0.14 110.65 0.23
Water 65.83 0.07 51.36 0.05
Barren 225.62 1.12 121.23 0.92
Grass 108.05 0.59 75.09 0.86
Built 9.98 0.17 9.22 0.12

Forest 35.66 6.30 40.13 7.22
Agriculture 173.58 12.09 198.40 11.99

Total 20.46 21.38

The assessment of soil loss on future periods under RCP 4.5 and RCP 8.5 was computed with
the baseline LULC map of 2010 and projected MME of climate data. The increment in precipitation
will result in increased rainfall erosivity and, hence, soil loss is projected to increase in all consequent
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future scenarios. Soil loss increased by 1.53, 1.74, and 3.1 Mt/yr in S1, S2, and S3 periods, respectively,
under the RCP 4.5 scenario. Likewise, under RCP 8.5, soil loss was projected to increase by 3.63, 4.23,
and 6.59 Mt/yr in S1, S2, and S3 periods, respectively (Table 11).

Table 11. Soil loss computation for period S1-S3 under RCP 4.5 and RCP 8.5 (Mt/yr).

Sub-basin Sl_2010 S1_Rcp4.5 S2_Rcp4.5 S3_Rcp4.5 S1_Rcp8.5 S2_Rcp8.5 S3_Rcp8.5

1 2.20 2.21 2.34 2.49 2.20 2.40 2.70
2 4.09 4.23 4.56 4.77 4.32 4.65 5.19
3 6.61 7.21 7.74 8.13 7.30 7.92 8.87
4 4.00 4.40 4.67 4.95 4.40 4.78 5.37
5 1.03 1.12 1.22 1.25 1.14 1.25 1.41
6 2.22 2.47 2.67 2.73 2.50 2.73 3.09
7 0.31 0.35 0.37 0.39 0.35 0.38 0.43

Sum 20.47 22.00 22.21 23.57 24.10 24.70 27.06

3.3.3. Nitrogen Export

Nitrogen export from the various LULC types directly affects the watershed health, humans, and
aquatic life processes. The comparative study (Table 12) of nitrogen export between LULC of 2000
and 2010 (Figure 10) showed that the total nitrogen export of the basin increased by 34,490.90 kg in
2010 compared to 2000. The sub-basin-scale evaluation shows that nitrogen export was the highest
from sub-basin 2 in both periods. The assessment of nitrogen export on future scenarios with projected
MME of climate data and the baseline LULC of 2010 did not show a precise pattern like other ES.
The nitrogen export was determined based on LULC and associated loading rates. As the study was
conducted on baseline land use of 2010, the comparative value of nitrogen export on climate scenarios
was observed to be less than that of the 2010 case. The estimation with future land use scenarios can
enhance the accuracy of estimation. However, in all cases (Table 13), nitrogen export was highest in
sub-basin 2 and lowest in sub-basin 7 like in the baseline period of 2010.

Table 12. Nitrogen export comparison for 2000 and 2010.

2000 2010

Sub-Basin Area (ha) Nitrogen Export per ha (kg/ha) Nitrogen Export per ha (kg/ha)

1 21,393.24 0.817 0.915
2 66,396 1.352 1.402
3 43,520.56 0.676 0.755
4 35,195.92 0.545 0.640
5 36,103.44 0.680 0.987
6 52,777.16 0.581 0.717
7 21,510.8 0.251 0.442

Table 13. Nitrogen export for period S1-S3 under RCP 4.5 and RCP 8.5.

S1RCP4.5 S2RCP4.5 S3Rcp4.5 S1Rc8.5 S2Rcp8.5 S2Rcp8.5

Sub-Basin Area (ha) N/ha (kg/ha) N/ha (kg/ha) N/ha (kg/ha) N/ha (kg/ha) N/ha (kg/ha) N/ha (kg/ha)

1 21,393.24 0.941 0.947 0.947 0.943 0.949 0.949
2 66,396.00 1.344 1.336 1.337 1.346 1.331 1.322
3 43,520.56 0.72 0.719 0.72 0.721 0.72 0.716
4 35,195.92 0.658 0.657 0.657 0.658 0.657 0.656
5 36,103.44 0.875 0.879 0.879 0.875 0.882 0.885
6 52,777.16 0.806 0.807 0.807 0.804 0.807 0.813
7 21,510.80 0.455 0.457 0.457 0.454 0.458 0.462

247,744.57 247,536.45 247,605.62 247,844.51 247,393.51 247,095.67
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3.3.4. Carbon Storage

The total modeled carbon was reduced by 969,923.33 Mg from 2000 to 2010. The reduction in
forest cover, shrubland, and grassland caused the overall reduction of carbon storage on the basin.
Likewise, a sub-basin-scale evaluation of carbon storage shows that, in both periods, carbon storage
per ha was the highest in sub-basin 7 and lowest in sub-basin 2 (Table 14). Figure 11 shows a raster
file for the difference in carbon storage between 2000 and 2010. There were increased anthropogenic
activities in sub-basin 2 which is mostly comprised of residential/built-up areas and agricultural areas
of the basin. This represents the area with the lowest storage despite having the highest area. Likewise,
comparing total carbon storage in 2000 and 2010, sub-basin 2 marks the highest loss with a 315,381.00
Mg reduction and sub-basin 6 has increased storage by 168,886.91 Mg.

Table 14. Carbon storage comparison for 2000 and 2010 LULC map.

Sub-Basin Area (ha) Carbon Storage 2000 (Mg) Carbon Storage 2010 (Mg) Carbon Storage 2000 (Mg/ha) Carbon Storage 2010 (Mg/ha)

1 21,393.24 4,192,540.21 4,099,479.62 195.98 191.62
2 66,396.00 7,789,910.70 7,474,529.70 117.33 112.57
3 43,520.56 9,43,3081.38 9,151,285.75 216.75 210.27
4 35,195.92 8,087,142.52 7,809,974.65 229.78 221.90
5 36,103.44 7,134,039.74 7,051,904.42 197.60 195.32
6 52,777.16 10,687,374.90 10,856,261.81 202.50 205.70
7 21,510.80 5,060,953.47 4,971,683.65 235.28 231.12

Total 276,897.12 52,385,042.92 51,415,119.60
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4. Discussion

The global concern for the conservation and promotion of ES is rising along with an awareness
that projected extreme events as a result of climate change will hamper the provision of services.
Normally, ES are renewable if they can be managed sustainably but can be depleted or degraded if
mismanaged. The future climate will continue to deliver ES; in some cases, ES are increased and, in
some cases, decreased—mostly decreased compared to historical supply. Along with climate change,
another important factor is LULC transformation, which alters the provision of ES. Thus, mapping and
evaluation of ES are crucial for future land use plans and for strengthening the capability of various
services and facilities, directly or indirectly associated with ES.

Provisioning services are often readily appreciated by the public as they have direct market
values. However, other ES (regulating services, supporting services, and cultural services) are often not
prioritized in decision making as these services do not hold immediate monetary value. To emphasize
the significance of regulating services in the production and sustainability of other ES, we focused on
four major regulating ES, namely, WY, soil loss, nitrogen export, and carbon storage. The provision
of these services was compared on sub-basin scales and compared based on LULC data of two time
periods, namely, 2000 and 2010. We also computed the ES provision on future climate scenarios with
the baseline LULC data of 2010 and downscaled climate data for 2010–2099.

The LULC change analysis between the periods 2000 and 2010 shows that the conversion to
built-up and agriculture areas from other LULC is significantly high on the Bagmati Basin. This is
because of increased anthropogenic activities for food sustainability and economic upliftment. These
conversions come at the huge cost of increased WY, soil loss, loss of carbon sink, and increased
nitrogen export to water resources. Meantime, the concept of a Payments for Ecosystem Services (PES)
scheme is being promoted in the basin with the realization of the need for ecosystem conservation [55].
This scheme has increased protected areas and community forests in the basin and has a twin objective
of promoting ecosystem conservation and development earnings [55]. Likewise, climate projection
shows increased precipitation and temperatures for the future period. The mean annual average
precipitation in the case of 2010 was lower than that of 2000 and as WY and soil loss are highly affected
by precipitation amount, its magnitude was decreased in 2010 compared to 2000. Though the overall
WY was decreased in 2010 compared to 2000, the WY on sub-basin 2 increased. Sub-basin 2 faced
a higher increment of built-up areas and, consequently, evaporative loss and water retention were
reduced, causing an overall increase of WY. This phenomenon was also observed by another study [56]
when computing the impacts of LULC on WY provision. The prediction of WY on future climate
scenarios shows an overall increase in all sub-basins in consecutive periods S1 to S3 under both RCP
4.5 and RCP 8.5 scenarios (Table 9). Although precipitation determines the amount of water provided
by nature, LULC plays a significant role in determining the amount of water that flows as runoff or
is retained as storage [57]. Owing to this phenomenon, urbanization has induced frequent urban
floods in Nepal and the lack of sufficient water retention structures has increased flood peaks and
flood volumes.

In terms of ES, changes in WY caused by LULC changes have two major effects, namely,
contribution to the water available for consumption and/or increased flood risks during storms [58].
Infrastructural capability for water collection, delivery, and treatment may work temporarily to counter
increased WY. In the long term, however, management should consider human–nature interactions
to avoid unintended environmental and socio-economic consequences which are caused as a result
of rapid and large-scale development [58]. Several studies have recommended ecosystem-based
“green” infrastructures such as wetlands, well-structured soils, and forest patches to enhance water
storage and flood regulation [59]. The mapping of WY and its tendencies in future climate scenarios
can hence provide an outline for such sustainable land use plans to mitigate flood risks and water
scarcity problems.

Although soil loss due to erosion and sedimentation are natural processes in a healthy ecosystem,
excess loss mainly due to changes in LULC is a threat to the security of water, food, and energy [60].
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Soil loss is observed to be highest from agricultural land use in the study basin. Agriculture is the
major activity sustaining the economy of Nepal. Thus, the traditional agricultural system demands
improved methods to sustain topsoil-containing organic matter and essential plant nutrients that are
otherwise removed from the soil during erosion. Likewise, the predicted increment of soil loss in
the future climate scenarios also indicates the necessity for improved farm management practices
that incorporate the management of increased WY. In addition to the stress on food production, soil
erosion also reduces water and nutrient retention, biodiversity, and water resources/downstream
power generation [61]. Therefore, for sustainable management of soils and related services, spatial
mapping of soil erosion on different land use and future scenarios can provide guidelines and mark
areas for immediate actions to mitigate the loss.

The loss of carbon storage is another significant phenomenon observed in the study basin with
a reduction in forest areas and increases in agricultural and built-up areas. Terrestrial-based carbon
storage and sequestration are directly affected by LULC. The concentrated anthropogenic activities on
the upper part of the basin, especially in sub-basin 2, contribute to the lowest carbon storage and highest
nitrogen export per ha of land in this sub-basin. Most developing nations have serious problems
with the degradation of forests and soils which have crucial implications for changing the global C
pools [62]. The information on carbon storage and fluctuations can help land managers to choose
among sites for protection, harvest, or development. Furthermore, these maps can support multiple
decisions by governments, NGOs, and stakeholders to offer incentives to landowners in exchange
for forest conservation. Sub-classification of land use and consideration of altitudinal variation in
various carbon pools produces more accurate results. Poudel et al. [63] have found higher carbon
stocks at the higher altitudinal gradient in the study conducted in the Panchase Conservation Area in
Nepal. The study indicated that due to human disturbance, carbon stocks were low at low altitude.
Temperature and precipitation also have significant effects on the carbon pool of various biomass [64].
Thus, a detailed study with climate and elevation variation helps to produce an accurate estimate of
carbon value.

Similarly, with increased agricultural activities, and reduced vegetation covers, nutrient retention
diminishes and, hence, the amount of nitrogen entering the river network/water resources increases.
This severely increases water contamination, thereby affecting human and aquatic health. Additionally,
because of increased WY in future climate scenarios, nitrogen export is expected to increase in
all sub-basins. In this scenario, spatial information on nutrient export and areas with the highest
filtration can help land use planners to integrate the contribution of ecosystems in order to mitigate
water pollution.

To understand the temporal change of ecosystem services in 2000 and 2010, the minimum value
was set to 0 and the maximum value was set to 1 for each ecosystem service in two periods. This shows
a comparative provision of ES in all sub-basins in the 2000 and 2010 periods which depicted that
sub-basin 2 had the lowest combined ES provision in both 2000 and 2010 (Figure 12). Thus, this
indicates the need for urgent policies in order to restore the services and to promote its sustainability.
Likewise, the computation of ES with the projection of climate data in the 2010–2099 period shows
increased WY, soil loss, and nitrogen export from the study area. The case of sub-basin 2, especially of
the Kathmandu Valley area, can be referenced for the planning of other emerging cities. As Nepal
is prioritizing decentralization and focusing on the development of many other smart cities on the
outskirts of the Kathmandu Valley and other parts of the country, studies like this can present risk
analyses and help decision making that prioritizes the conservation of ES for the optimum utilization
and preservation of natural capital.
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5. Limitations of the Study

The InVEST tools used for the evaluation of ES have their own modeling limitations. The InVEST
WY Model is based on annual averages and neglects the extremes and the spatial distribution of LULC.
The InVEST Carbon Storage Model assumes that each LULC is at the fixed carbon storage level and the
fluctuation on carbon storage is only due to a change in LULC from one type to another. Due to data
unavailability in the study area, tabular values were obtained from the InVEST manual. The study
used reference data for various LULC types from InVEST user guidelines and the variation in the
amount of carbon storage in different carbon pools due to elevation have not been acknowledged
in the study at this stage. In addition, for climate data, uncertainties remain from climate change
data itself and from the selected methods of downscaling and bias correction. Nevertheless, careful
attention was given to the preparation of data and modeling. Despite the model and data limitations,
the results from the study provide an overview of a general tendency of the provision of ES, including
fluctuations with a change in climate and LULC. It is, thus, expected to help in decision making and
scenario analysis. The results of this study could be improved if ground observation data are available
for the accurate analysis of InVEST models.

6. Conclusions

This study attempted to evaluate ES and their fluctuations with LULC and climate change on
the Bagmati Basin of Nepal. The study first assessed ES based on the 2000 and 2010 LULC map and
then with the baseline LULC map of 2010 and projected climate data from the MME of 12 GCMs,
ES provision on the future period was estimated. The overall provision of combined ES on sub-basin
2 was lowest in 2000, 2010, and on all future climate scenarios. In addition, the provision of ES was
observed to be decreasing in all other sub-basins. Outcomes like increased WY, reduced carbon storage,
increased nitrogen export, and soil loss suggest that immediate actions are required from policy makers
for the sustainable management of natural capital. The ES are interrelated and the absence of adequate
designs to sustain one can hamper other provisions as well. The availability of spatially explicit
information on ecosystems and their interrelated services serves for the prioritization of ES into policy
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and decision making. The maps produced as an outcome of this study can help land use planners,
government organizations, and concerned stakeholders to recognize areas where the ecosystems are
produced and help in the decision making for low impact development maintaining ecological balance
and economic goals. Further studies on national scale future LULC scenarios could estimate accurate
ES provisions integrating national priorities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/19/8186/s1,
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