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Abstract: Huge generation of oil palm biomass has stimulated the development of biorefineries for
synthesis of bioproducts. By targeting the palm oil industry and the biorefineries as the consumers of
these products, a sustainable circular economy can be created by recycling the biomass wastes to
the said consumers. To evaluate the techno-economic feasibility of the sustainable circular economy,
a mathematical model demonstrating the biomass network with consideration of recycling is
developed in this work. Besides, Process Graph (P-graph) is incorporated to perform the combinatorial
optimization of the biomass network, which targets three common resources: fertilizer, steam,
and electricity for regeneration and recycling. Although the result shows that the linear economy
model is preferred in terms of profitability, the circular economy model shows potential in reducing
39.292% of the imported steam and 13.469% of the imported electricity, while being 0.642% lower
in terms of the gross profit. Three scenarios are then proposed to identify the potential bottleneck
that can hinder the implementation of the sustainable circular economy approach, with the aid of
sensitivity analysis. This work is expected to benefit the biomass-based industry sectors and the
policymakers on future development and transition to the sustainable circular economy.

Keywords: palm oil biomass; integrated biorefinery; circular economy; sustainability; techno-
economic analysis; P-graph

1. Introduction

Palm oil has shown versatile applications in both edible and non-edible use. While it is commonly
found in food and oleochemical industries, the rising application of palm oil in recent years is the
synthesis of biodiesel. Given its unique fatty acid profile, palm oil-derived biodiesel has been shown
to have better flow properties and lower emission of nitrogen oxides during combustion compared
with those derived from vegetable oils [1]. Being a renewable fuel that is derived from biomass,
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the application of palm oil biodiesel notably in transportation was popular especially in European
countries around year 2008 to 2018. In the year 2018, over 50% of the palm oil consumption in European
countries came from the production of biodiesel, and that was just under 20% a decade ago [2]. On top
of that, oil palm is also highly efficient in terms of the oil yield per land used that is measured in ton per
hectare (t/ha). A typical oil palm generates about 3.84 t/ha, which is about 6 to 9 times more efficient
than other oil crops, such as soybean (0.45 t/ha), sunflower (0.50 t/ha), and rapeseed (0.66 t/ha) [3].
With the widespread applications and extraordinary efficiency, this has led to the substantial growth
in the palm oil industry especially in Borneo countries like Indonesia and Malaysia. Furthermore,
the labor-intensive nature of the said industry also helps tackle the poverty in these countries due to the
enormous demand [4]. In the case of Malaysia, the production of crude palm oil (CPO) has increased
from roughly 10 million tons (Mt) to 19.9 Mt, whereas the plantation area has expanded from 3.3 million
hectares (Mha) to 5.9 Mha in a span of two decades from 2000 to 2019 [5,6].

Conversely, the palm oil industry has raised some environmental issues, such as deforestation
and waste generation. The first issue has particularly caused the backlash by the European countries,
which started refusing the palm oil products despite being one of the largest consumers of CPO.
Concurrently, the effort of phasing out the palm oil can be disadvantageous given its benefits as stated
above. Thus, to minimize the impact of deforestation, Roundtable on Sustainable Palm Oil (RSPO)
emerged as a global organization that encourages the sustainable source of palm oil by certifying
the supply chain model. Similar certification bodies, such as Indonesian Sustainable Palm Oil (ISPO)
and Malaysian Sustainable Palm Oil (MSPO), were also made mandatory to the local palm oil industries
to ensure sustainable practices on a national scale [7,8]. Besides, the Malaysian government also
announced a policy to limit the plantation area at 6.5 Mha by 2023 as an effort to halt deforestation [9].
On the other hand, the palm oil industry may also cause environmental pollutions if not treated
properly. In particular, every ton of CPO can be associated with 9 tons of biomass, which translates
to roughly 179 Mt of biomass in Malaysia as of 2019 [10]. Additionally, the palm oil industry has
contributed up to 77% of the total agricultural wastes in Peninsular Malaysia [11]. This includes oil
palm frond (OPF) and oil palm trunk (OPF) from the oil palm plantation, and subsequently empty
fruit bunches (EFB), mesocarp fiber (MF), palm kernel shell (PKS), and palm oil mill effluent (POME)
from the palm oil mill. The composition of the oil palm biomass is illustrated in Figure 1.
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Figure 1. Typical composition of oil palm biomass (%) in the Malaysian palm oil industry [11,12].
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Nonetheless, the waste generation issue can be viewed as an opportunity rather than as a threat
to the palm oil industry, unlike the deforestation issue. In reality, numerous conversion technologies
have been gradually developed and commercialized to better utilize the wastes, such as the synthesis
of biofuel and biochemical. On the other hand, the palm oil industry itself can act as a point of
demand to increase the consumption of its wastes [13]. In general, the palm oil industry requires input
resources, such as fertilizer, steam, fuel, and electricity [14]. These resources can be generated from the
biomass using appropriate biomass conversion technologies or biorefineries in short. Thus, by using
the right biorefineries, a circular economy or circularity approach can be developed around the palm oil
industry by connecting its output wastes to the input resources [15] or closing the loop in short [16,17].
From the physical point of view, the concept of sustainable circular economies can be seen as an
attempt to reduce the outflow of material from the system; in this case, the biomass is the material,
while the palm oil industry is the system. Meanwhile, the current palm oil industry in Malaysia mainly
adopts the linear economy that uses the ‘make-use-dispose’ model. For instance, the solid wastes,
such as OPF and OPT, have commonly been disposed to the plantation for natural decomposition [14],
whereas the liquid wastes or POME have been mainly treated using an open pond system without
biogas capturing [18]. These conventional means of handling can be deemed inefficient as it does
not harness the potential economic profits, which signifies the loss of resources as an outcome of this
make-use-dispose model [19]. Therefore, there is a need to effectively utilize these biomasses, whereby
the concept of circularity can be introduced to the palm oil industry for creating a self-regenerative
system and, thus, better sustainability.

By integrating these biorefineries into the palm oil industry, a biomass network can be created
around the industry, which describes the conversion and recycling pathways of the biomass. For that,
combinatorial optimization is needed to determine the optimal configuration of the biomass network
based on the given objectives. Mixed Integer Linear Programming (MILP) is one of the mathematical
programming techniques that has been used to perform the optimization. For instance, MILP was
used to optimize the wastes allocation and determine the optimum conversion technologies in the
waste-to-energy supply network [20]. Besides, MILP was implemented to minimize the logistic costs
and carbon emission in the bioenergy supply chain based on the regional palm oil industry [21].
Moreover, MILP was applied to maximize the economic performances of the integrated palm oil
processing complex owned by a single owner [22], as well as multiple owners to achieve industrial
symbiosis [23]. On the other hand, another graph-theoretic approach—Process Graph (or P-graph
in abbreviation)—has shown numerous applications in combinatorial optimization particularly in
process integration [24]. While the graphical user interface eases the modeling process, another benefit
is the ability to generate multiple sub-optimal solutions for further analysis. For example, P-graph was
utilized to optimize the economic performance of the integrated biorefinery network in the design
of multiple biomass corridors [25]. In Reference [26], a biomass supply chain was also optimized
using sustainability indicators as the objective function, whereas the suboptimal solutions were further
utilized to demonstrate the debottlenecking strategy. Lam et al. [27] modeled a biomass supply chain
network using P-graph to maximize the production of bioenergy and bioproducts in the Central
European setting. From their work, the result of optimization by P-graph is compared with that of
MILP, whereby high similarity was observed on both results, while the minimal differences can be
attributed to rounding [27]. Meanwhile, research on combinatorial optimization with recycling stream
is still considered lacking particularly in the case of biomass network. A thorough search of the relevant
literature yielded only one related study using MILP, which has considered the reverse flow of EFB for
mulching and combustion [28]. However, the application of the chosen biomass in recycling is quite
limited in the context of circularity, while most studies related to biomass or integrated biorefinery
network synthesis using P-graph are generally lacking the element of circularity. In this paper, P-graph
is proposed to synthesize a palm oil-based biomass network, while incorporating the recycling flow of
material and energy. Other physical concepts or simulators are also used as a supplementary tool to
compute some parameters if such data is unavailable.
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The paper is organized as follows: Section 2 outlines the problem statement of the model, whereas
Section 3 describes the method used in this paper. The description of the case study is given in Section 4.
Then, the results and discussions are highlighted in Section 5, followed by a concluding remark in
Section 6.

2. Problem Statement

The oil palm biomass can be thought of as a reservoir of bioproducts, such as material, chemical,
and energy. Various biorefineries in the forms of physical, biochemical, and thermochemical processes
can be used to derive these bioproducts depending on the type of input biomass and the end-use
purpose. Physical processes usually involve size reduction and moisture removal during the extraction
of the material. Besides, biochemical and thermochemical processes utilize different driving forces
for reactions and extractions. For instance, the former uses biological treatment for degradation,
whereas the latter uses heat for decomposition. Table 1 summarizes the potential and commercialized
biorefineries for oil palm biomass in Malaysia. The degree of freedom in terms of choosing the
biorefineries increases by considering all of them highlighted in Table 1, as well as the recycle flow of
the bioproducts. Graphically, this resembles a many-to-many relationship as some biorefineries are
connected to multiple inputs and outputs. Moreover, some technologies are considered as competitors
to the implementation of circularity as the products are often exported to the external markets
rather than being recycled and consumed in the industry (i.e., fiber, bioethanol, activated carbon).
Thus, the biomass network model needs to be optimized to determine the optimal combination of the
biorefineries in realizing the concept of circularity.

Table 1. Summary of potential and commercialized biorefineries [18,29,30].

Type Biorefinery/Technology =~ Product or Application
Fiber making Fiber
Physical Pelletizing Pellet
Briquetting Briquette
Fertilizer making Fertilizer
Biochemical Fermentation Bioethanol
Anaerobic digestion Biogas
Boiler Heat generation
Pyrolysis Biochar, bio-oil, syngas
Thermochemical
Activated carbon making Activated carbon
Gasification Syngas

The formal description of the model is given as follows. A set of waste w is generated in sites
a and collected by biorefinery b. These wastes w are then processed using a series of technologies
t and t’ to generate the final products p with the involvement of intermediates i. Next, there are
two possible outcomes of the final products p. It can be either exported to customers d to generate
income for the industry. Or, it can be transferred to recycle ¢ for further processing via a series
of technologies r and #’ with the involvement of intermediates j. The outcome of the recycle c is
the regenerated resources s, which are then consumed in sites 4, technologies t and t’ to sustain
the operation. Alternatively, the resources s can also be imported from external suppliers. To note,
the regenerated resources s is assumed to be compatible and replaceable with the corresponding
imported resources. A superstructure of the model is illustrated in Figure 2.
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Figure 2. Generic superstructure for sustainable circular economy. (a) site (b) biorefinery (c) recycle
(d) customer.

In this case, both linear and circular economy model can be generated from the superstructure
based on the flow of materials. For instance, the model is regarded as circular if the recycling pathways
are selected in c to regenerate and recycle the resources, i.e.,, a = b — ¢ — a,b; and the cycle continues
as a loop. Otherwise, the model is considered as linear if all the materials end at d for export,
i.e., a = b — d. Meanwhile, the demand for imported resources s can be reduced by increasing the
regenerated resources s. This resembles the concept of the sustainable circular economy that serves to
minimize the input resources. With that, biorefinery b and recycle c are the main focus of combinatorial
optimization, whereby the goal is to maximize the economic performances of the model.

3. Method

The procedure of the work is described as follows. First, it is initiated by collecting the data and
parameters regarding the palm oil industry and biorefineries. Next, the model formulation representing
the generic superstructure in Figure 2 is created to describe the palm oil industry’s combinatorial
optimization. Then, a biomass network is modeled and optimized using the P-graph Studio [31].
After the optimized result is obtained, a series of sensitivity analysis is performed to generate further
implications. The detailed description of the procedure is provided as follows.

3.1. Data Collection

The first step is to identify the available conversion technologies with local settings in Malaysia.
This includes conventional methods, such as direct combustion of MF and PKS for heat generation,
as well as other commercialized and potential technologies. The life cycle of the palm industry, as well
as the biorefineries, are then assessed to obtain two types of parameters: (i) The conversion ratio of
inputs to outputs, and (ii) the expenses, such as capital (CAPEX) and operating (OPEX) expenses.

The scope of the palm oil industry includes the oil palm plantation and palm oil mill, both of
which act as the source of biomass. The economic performance of these two sectors will not be assessed
as their operations occur before the biomass conversion in the biorefineries. In other words, the profit
and expenses are considered as constant regardless of which combination of biorefineries are chosen,
i.e., they do not affect the result of optimization. However, the input resources of these sectors, such as
steam, electricity, and fertilizer, are assessed to allow the integration of recycle flow of these materials.
In the case of biorefineries, the CAPEX and OPEX must be assessed as they are a few of the major
factors in combinatorial optimization. Furthermore, the usage of steam and electricity is separated
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from their OPEX and listed as input parameters if such data were available. Similarly, this is to allow
the integration of the recycle flows of steam and electricity for modeling and optimization.

These parameters are mostly obtained from research works related to the circular economy or
the palm oil industry. Some recent processes and supply chain configurations are supplemented
by the government and business reports. On the other hand, several assumptions and simulations
are used to approximate the parameters, such as conversion ratio, if unavailable. This includes the
manipulation of certain information, such as the properties of the material and the operating conditions
of the technology.

3.2. Model Formulation

The optimization of the superstructure in Figure 2 is carried out by P-graph Studio based on a
series of formulations as follows:

Constraint (1) is used to ensure the total flowrate of waste w sending to all biorefineries b (Zb F w,u,b)
are capped at availability limit at each site (Fy):

Z Fyap < Fua Ywe W,VaeA. (1)
b

The amount of waste w collected in each biorefinery b (Fw,b) is then computed using Equation (2),
while Equation (3) describes the mass balance of the collected waste w at technology t:

Fup = Z Fuap VweW,VbeB, @)
a

Y Fupi=Fup YweW,VbeB, 3)
t

where F,;, ; denotes the flowrate of waste w to be consumed by technology ¢ at biorefinery b.
The production rates of intermediate i (P i,b) and productp (Fp,b) atbiorefinery b are then determined
using Equations (4) and (5), respectively:

Fip = Z Z(Pw,b,t X Xuy,) Vi€l VbeB, )
w t

Fop =YY (Fipy X Xipp) Vp € P,Vb € B, )
i v

where Xy,;; and X; y , refer to the conversion ratios of waste w to intermediate i and intermediate i
to product p at respective technology t and #'. It is worth noting that not all pathways are involved
with an intermediate material. In that case, X; , can be setas 1so F,, = Y.; . Fij . Meanwhile,
Fiy,v denotes the consumption rate of intermediate i by technology ¢’ that is expressed in Equation (6):

Y Fipw =Fyy VieLVbeB. ©)
t/

Next, the collected product p is either sent to recycle ¢ for further utilization or sold to customer d
for profit. For that, Equation (7) denotes the distribution of product p to both sectors:

Fpp = Z Fppe+ Z Fypa VpeP,VbeB, @)
c d

where F,;,  and F j, 4 are the flowrates of product p distributed to sectors ¢ and d, respectively.
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From there, Equations (8) and (9) describes the amount of product p received at recycle c (Fp,c)

and customer (Fp,d), respectively:

FP,C = ZFp’b’C vp S P, Yce C, (8)
b

Fod =) Fypha VpePVdeD. )
b

At recycle c, Equation (10) describes the mass balance of product p collected by technology r
(Fp,c,r)/ followed by Equations (11) and (12), which determine the production rates of intermediate j

(F ]'/C) and resource s (F;), respectively:

Y Foer=Fpe VpePNceC, (10)
-
Fie=Y.Y (FperxXpsj) Vi€l VeeC, (11)
p r
Foe = Z Z(F,-,C,,, X Xjps) Vs€S,VeeC, (12)
G

where X, , ; refers to the conversion ratios of product p to intermediate j by technology r, and X/ s
refers to intermediate j to regenerated resource s by technology ’. Likewise, the conversion ratios
can be set as 1 if no intermediates are involved. Meanwhile, F;,» denotes the consumption rate of
intermediate j by technology 7/, which is shown in Equation (13):

ZP]‘,c,r/ = Fj,c V] (S ],VC eC. (13)
r/

On the other hand, the demand of the resource needed in a given biomass network is defined as
the sum of the imported and regenerated resources. Let this resource demand be FP*"#4  the flowrate
of imported resources s required by the biomass network (Fémp Ort) will be conveniently expressed in
Equation (14) as follows:

Fimlﬂort _ Féﬁ)emand _ Z Fsc Vse S. (14)
c

In this biomass network, F?em””d can be determined using Equation (15). The first term shows the
consumption rate of resource s, which is determined by multiplying the processing rate of fresh fruit
bunches (FFB) (F,ZF FB ) with a scale factor kEEB. As for technology t and #/, the respective consumption
rates are determined by multiplying the processing rate of waste w (Fw,b,t) and intermediate i (Fi,h,t/)
with scale factors ks, s and ks ; 7, respectively. The total consumption rate of resource s then represents
the resource demand of the biomass network, which is expressed in Equation (15):

pemand Z(FII;FB X kfﬁB) + Z Z Z(Pw,b,t X ks,w,t) + Z Z Z(Pi,b,t’ X ks,i,t’) VseSs. (15)
w o p ot i bt

a

Next, the gross profit (CGP ) of the biomass network is calculated by subtracting the costs of

imported resources (CIR) and technology expenses (CAPEX: CEX- fotal; QPEX: COX. total) from the sales

CEP

of exported products (CEP ) Equations (16) and (17) represent the calculations of C'R and CE?, which are

obtained by multiplying the unit cost (C,, Cs) with the respective flowrates (F,, 4, Fs):

CEP — Z Z(Fp,d X Cp), (16)
p d
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CIR = Z(Ps x Cs). 17)

s
As for CEX total and COX. fofal both are assumed to be proportional to the processing rate of input
materials at each technology. Thus, CEX ! is calculated by multiplying the processing rate of input
materials with scale factors (CtCX, CtC,X, CTCX, CSX) at respective technology ¢, t/, r, and r’, which is

expressed in Equation (18):

cCX total — y ¥, Zt(Fw,b,t % CtCX) +Yi Y Zt/(Fi,b,tr X CtC,X)

(18)
+ Zp Zc Zr(Fp,c,r X CEX) + Z] Zc Zr’ (Fj,c,r' X CSX)
Similarly, Equation (19) calculates the C“X /! using the scale factors COX, COX, COX, COX:
COXtotal — 3 ¥ Tos(Fur X COX) + X Ly Lo (Fi e x COX) 1)

+ Zp Zc Zr(Fp,C,r X CQX) + Z] Zc Zr’ (Fj,c,r/ X C,?X)

CGP

Lastly, is maximized by the P-graph optimization using Equation (20), which forms the basis

in the ranking of each solution structure as follows:
maxCGP _ CEP _ CIR _ CCX,tOtﬂl _ COP,tOtal. (20)

To focus on the economic performance of the conversion and recycling pathways, factors of
site location, such as cost of transportation, land, construction, etc., will be omitted from this work.
Once the configuration of biomass network is identified, these factors can be incorporated into the
model later to obtain a more practical gross profit.

On the other hand, the supplementary formulation of steam and electricity generation is given in
Equations (21)—(23) as described here. The energy consumption in steam generation E;,. and electricity
generation from steam E, is approximated by taking the difference of enthalpies H. Additional
considerations for operational units, such as the efficiency of the boiler and turbine, are accounted for
the steam and electricity generation. Based on Reference [32], the efficiencies are taken at 80% for the
boiler and 100% for the turbine (rounded from 99.625%). In this case, E;, and E. are simulated using
Aspen HYSYS V10 [33].

Hyps — Huater

Einmps = 03 , (21)
H —H

Einmps = W, (22)

Ee = Hyps — Hyips- (23)

In addition, the operating conditions of the water and steam are taken from the recommendation
by Reference [32] as follows: (i) ambient water: 1 bar and 30 °C, (ii) medium pressure steam (MPS):
10 bar and 200 °C, and (iii) high pressure steam (HPS): 48 bar and 350 °C. Note that this MPS can
be used for other purposes, such as heating, drying, sterilization, etc., to fulfill the steam demand of
the technologies.

3.3. P-graph Modeling of Biomass Network

P-graph is a type of bipartite graph that consists of two types of vertices: material vertex M
(including raw material, intermediate, and final product) denoted as a dot and operating unit vertex O
denoted as a rectangular bar. The general rule in P-graph modeling is to only connect M to O or O to M
by arcs, whereas the arc represents the direction of the material flowrate. In particular, five axioms [34]
must be satisfied to generate a viable mathematical model as follows:

e  The final product must be displayed in the model.
e M vertex must be a raw material if it has no input arcs.



Sustainability 2020, 12, 8081 9 of 29

e Every O vertex must be well-defined by the input and output arcs.
e Every O vertex must be connected in such a way that it leads to the final product vertex.
e  Every M vertex must be an input or output of the O vertex.

In the P-graph framework, all the operating units are treated as a black box, whereby the inputs
and outputs are related by the conversion ratio of output to input. Besides, additional attributes, such as
flowrate constraint and costs, can be embedded into every M and O vertex if necessary, which are
then evaluated alongside with the conversion ratios during the optimization. On the other hand,
three algorithms are developed to manage the axioms [35]. Firstly, Maximal Structure Generation
(MSG) algorithm provides a graphical overview of the process network that is rigorously defined in
mathematics. Secondly, the Solution Structure Generation (SSG) algorithm generates all the possible
solutions that link all the raw materials and the final products. Thirdly, Accelerated Branch and Bound
(ABB) algorithm, is applied, which is an enhanced version of the branch and bound algorithm to
perform combinatorial optimization. Each solution structure is then ranked accordingly based on the
objective function.

Note that the algorithms and calculations are executed in the backend processes, whereas the user
only needs to generate the model by connecting the vertices. Given its graphical user interface and
self-explanatory axioms, this makes P-graph a friendly approach in process network synthesis that is
suitable for the actors in industries and policymakers where advanced programming knowledge is
not required. With that, Figure 3 illustrates a generic biomass network that is modeled in the P-graph
framework. For better visualization, this biomass network is divided vertically into six sections at the
intermediate material vertices as shown in Figure 3.

Industry Biorefinery Recycle Resource
I 1 1 |

ernilizerfpurchased

1 —
Blomassgl Tecl

,)MPS?coal

Electricity_purchased

Electricity_sell

F

Legend:
\/ Raw Material . Intermediate Material @ Final Product I Operating Unit

Figure 3. Generic biomass value chain modeled in the Process Graph (P-graph) framework (note: A-
generation of biomass; B- biomass conversion technology; C- decision-making on biomass-derived
product; D- generation of medium pressure steam (MPS) and high pressure steam (HPS) for recycling;
E- generation of electricity for recycling; F- management of resource).

Starting from the left, section A represents the generation of biomass, which resembles the site a in
the superstructure. The life cycle of the industry is assessed to identify the distribution of the biomass.
Next, sections B and C are involved with the conversion of wastes to products, which resembles
biorefinery b in the superstructure. More precisely, section B represents the decision-making on
choosing the right technologies, whereas section C represents the decision-making on the outcome of
the product that is to sell or recycle.

Moving on, sections D and E represent the recycle ¢, which is involved in the handling processes of
products into useful resources. Three resources: fertilizer, MPS, and electricity are taken as an example
in the illustration of these sections. In this example, D can be described as the decision-making on
generating MPS or HPS, whereas section E represents the outcome of the decision made in the previous
section. If the product is used as a biofuel and the HPS route is chosen (shown in red), both electricity
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and MPS are generated using turbine and then collected at the end of section E. Otherwise, only MPS
is collected if the MPS route is selected (shown in blue), which requires lesser fuel compared to the
formal route. On the other hand, if the product is used as a fertilizer, it will be collected at the end of E
without needing further conversions. In short, the design of sections D and E may or may not require
the operating units depending on the end-use of the products.

Lastly, section F represents the management of resources. Considering the same example,
these resources would be fertilizer, MPS, and electricity. In this case, fertilizer and MPS can only be
imported, whereby the MPS is ‘imported’ through the combustion of imported fuel. Besides, electricity
can be either imported at a set price or exported if any excess were found and is profitable. In other
words, electricity can be seen as a product for export or a resource for recycling. All the imported and
regenerated resources are ‘collected” at the checkpoint between section E and section F, which are then
distributed to the operating units in sections A and B.

Similar to the generic superstructure, both linear and circular economic model can be obtained
from the biomass network model by observing the material flow. For example, the model is
considered as linear if the material flows from F—A—B—C where all products are exported without
recycling. On the other hand, circularity is observed if a loop is formed. Using the above example,
loop F>A—B—C—D—E—F will be observed if the steam and electricity are regenerated, whereas
loop F»A—B—C—F will be observed in the case of fertilizer production and recycling.

3.4. Sensitivity Analysis

After the maximal structure of the biomass network is modeled and optimized using P-graph,
sensitivity analysis is performed to observe the changes in decision-making under sections B, C, and D.
The analysis is initiated by creating a scenario, whereby an expected solution is predetermined based
on the theme of the scenario. Often these expected solutions can be found in the list of suboptimal
solutions generated by the SSG algorithm. Next, a range of numerical values is given to one (or multiple)
targeted parameter that is relevant to the theme. After that, the targeted parameter(s) are adjusted at a
set increment or decrement depending on the starting value, followed by the P-graph optimization to
obtain the updated result. The process is then repeated to observe the change in the ranking of the
expected solution.

If the theme of a scenario represents a decisive goal (e.g., to introduce or debottleneck a given
pathway), the goal is considered to succeed if the expected solution becomes optimal (Rank 1) within the
range of testing. The testing can be repeated by targeting another parameter relevant to the theme
until the goal is achieved. Otherwise, the goal is considered failed if the expected solution was only
optimal outside the range of all tested parameters. Alternatively, the result can be unbiased if the
theme represents a neutral investigation created from the observation on the suboptimal solutions.
In that case, the testing can be conducted using an unlimited range of parameter values until the
expected solution becomes optimal and fulfills the theme of the investigation. Figure 4 illustrates the
sensitivity analysis in the form of a flow chart.
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Figure 4. Flow chart of the sensitivity analysis.

4. Case Study Description

A conceptual area owned by a single owner or corporation is considered with a local setting in
Malaysia. This area includes an oil palm plantation field, a palm oil mill, and a few biorefineries to
be integrated with the upstream activities. The processing rate of FFB in a palm oil mill determines
the generation of biomass, while indirectly decides the size of the plantation. For that, it is set at a
moderate capacity of 60 t/h. The properties of the biomass, such as dry mass content and calorific value,
are summarized in Table 2, which will be used in calculating certain parameters, such as the conversion
ratios. A list of technologies is proposed in Table 3, which identifies the input wastes based on the type
of processes. Next, the outputs of each technology are identified and embedded in the conversion
ratios, which are summarized in Table 4. With that, the overall flow of materials is determined, and the
biomass superstructure is created as shown in Figure 5.
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Table 2. Properties of solid biomass.

Solid Waste  Dry Mass Content, %  Calorific Value of Dry Mass, kWh/t Ref.

OPF 29.4 4367
OPT 244 4853
EFB 33.0 5244 [36]
MF 62.9 5294
PKS 88.0 5581

Table 3. The input wastes (column) of technologies (row).

Waste Technology OPF OPT EFB MF PKS POME
Fiber Making 4
Pelletizing v v v v v
Briquetting 4 (4 4 4 4
Fertilizer Making 4
Fermentation v v 4
Anaerobic Digestion v v v v
Boiler (combustion) v v
Fast Pyrolysis v v v v v
Slow Pyrolysis 4 v 4 v v
Activated Carbon Making v
Gasification v v 4

Table 4. Conversion ratio of the sites and technology.

Site/Technology Input Output Ratio (Output/Input) Ref.
FFB 10.556 t/t [8]
Oil palm plantation Fertilizer OPF 7.295 t/t [11]
OPT 1.054 t [11]
EFB 0.230 t/t
Palm oil mill FFB MF 01201 [zl
PKS 0.069 t/t
POME 0.599 t/t
Fiber making EFB EFB fiber 0.375 t/t [20]
OPF 1155 kWh/t
OPT 1066 kWh/t
Pelletizing/briquetting @ EFB Pellet/briquette 1558 kWh/t -
MF 2997 kWh/t
PKS 4420 kWh/t
Fertilizer making b EFB Biofertilizer 0.33 t/t -
EFB 0.32 t/t [26]
Fermentation OPT Bioethanol 0.223 t/t [37]

OPF 0.131 t/t [38]
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Table 4. Cont.

Site/Technology Input Output Ratio (Output/Input) Ref.
OPF 423 m3t [39]
Anaerobic digestion 7OPT Biogas 347 m'/t [9]
EFB 55.0 m3/t [40]
POME 23.9 m3/t [41]
OPF 0.036 t/t; 0.225 t/t; 0.039 t/t
OPT 0.029 t/t; 0.180 t/t; 0.031 t/t
Fast pyrolysis © EFB Biochar; bio-oil; syngas 0.040 t/t; 0.248 t/t; 0.043 t/t [42]
MF 0.076 t/t; 0.473 t/t; 0.082 t/t
PKS 0.106 t/t; 0.660 t/t; 0.114 t/t
OPF 0.099 t/t; 0.090 t/t; 0.105 t/t
OPT 0.079 t/t; 0.072 t/t; 0.084 t/t
Slow pyrolysis4 ~ gpp  Biochar; bio-oil;syngas  0.109 t/t; 0.099 t/t; 0.116 tt  [42]
MF 0.208 t/t; 0.189 t/t; 0.116 t/t
PKS 0.290 t/t; 0.264 t/t; 0.308 t/t
Activated carbon making PKS Activated carbon 0.09 t/t [43]
OPF 2223 m3/t
Gasification -~ oPT Syngas 2105 m3/t [26]
EFB 2178 m3/t
MPS 1/952.6 kWh
Boiler © Fuel f -
HPS 1t/1035.6 kWh
Electricity 66.4 kWh/t
Turbine € HPS -
MPS 1t/t

2 The conversion ratios of pelletizing and briquetting are approximated by taking the calorific values of the input dry
OPFpeljet kwh _ 0.294 t OPF gy, (4367x0.9) kwh __

OPFuet, 11 OPFyy TEOPFyy,
11555 (;{IzJUFhW . ® The mass content of biofertilizer is assumed to be equivalent to the input dry mass of empty fruit
bunches (EFB). ¢ The conversion ratios of fast pyrolysis are inferred from the distribution of products generated
from the input dry mass, which is 12% for biochar, 75% for bio-oil, and 13% for syngas [42]. d Gimilar to that of fast
pyrolysis, where the distributions are 33% for biochar, 30% for bio-o0il, and 35% for syngas [42]. A 2% loss of dry
mass is implied based on the literature. ¢ The conversion ratio of steam and electricity is obtained via Aspen HYSYS
V10 [33]. f The fuel refers to the imported fossil fuels and biofuels (derived from the biomass), mesocarp fiber (MF),
and palm kernel shell (PKS). Both MF and PKS are chosen as the direct feedstock to resemble the actual practice in
the palm oil industry.

mass (see Table 2) with a consideration of 10% energy loss. For example,

. -
g

@ ~o Recycle, ¢
N

Site, a

Oil Palm
Plantation

Fertilizer
Making

G

L
Palm Oil Mill
B
N
B

Anaerobic
Digestion

Figure 5. Biomass superstructure of the case study. The same labeling of site (a), biorefinery (b),
and recycle (c) is used as in the generic superstructure.
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For each technology, the scale factors, such as economic parameters (CAPEX, OPEX) and the
resources demand (steam, electricity), are summarized in Tables 5 and 6, respectively. As for fertilizer,
itis embedded in the conversion ratio in Table 4. Besides, the calorific values of the biofuels are recorded
in Table 7, which will be used in the computation of steam and electricity generation. Next, the unit
cost of the imported resources and generated products are tabulated in Table 8. As for steam, the cost
is calculated based on the consumption of fossil fuel. In this case, coal is chosen due to its high
import and widespread use in Malaysia [44]. Lastly, a maximal structure of the biomass network
with recycling is modeled using P-graph by incorporating all the data above as shown in Figure 6.
This maximal structure represents the base case scenario, which is then adjusted or modified in the
sensitivity analysis later.

Table 5. Scale factors of capital expense (CAPEX) and operating expense (OPEX).

Technology CAPEX, RM/t Input OPEX, RM/t Input  Ref.
Fiber Making 37.62 77.33 [20]
Pelletizing 20.90 91.96 [20]
Briquetting 18.81 71.06 [20]
Fertilizer Making 540.00 494.00 [45]
Fermentation 159.00 260.00 [46]
Anaerobic Digestion 202.00 173.00 [47]
Fast Pyrolysis 141.00 171.00 [47]
Slow Pyrolysis 173.00 108.00 [47]
Activated Carbon Making 557.53 4.31 [26]
Gasification 150.00 180.00 [47]
Boiler -2 - -
Turbine 0.12 - [20]

2 The CAPEX of boiler is omitted as it is considered to be preinstalled in other biorefineries.

Table 6. Scale factors of steam and electricity demand.

Site/Technology  Steam, t MPS/t Input  Electricity, kWh/t Input Ref.

Palm oil mill 0.523 20.079 [12]
Fiber making 2.8 220 [20]
Pelletizing 3.0 180 [20]
Briquetting 2.8 140 [20]
Fermentation - 62.46 [46]
Fast pyrolysis - 180 [47]
Slow pyrolysis - 150 [47]
Gasification 045 a 280 [47,48]

a The value is obtained at the optimum gasification efficiency of 66% [48].
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Table 7. Calorific value of biofuels.

Biofuel Calorific Value Ref.

OPF: 3930 kWh/t

OPT: 4368 kWh/t
Pellet/briquette ? EFB: 4720 kWh/t -

MEF: 4765 kWh/t

PKS: 5023 kWh/t

Biochar 8056 kWh/t [49]
Bio-oil 5000 kWh/t [49]
Syngas P 1.375 kWh/m?3 [50]
Biogas 5.56 kWh/m?3 [11]
a The mass content and calorific value of the biomass pellets is approximated to be equivalent to that of the input dry
mass (see Table 2) with a consideration of 10% of energy loss. For example, Ogl;f;:;’,;:b:h = 11 ftgPPFl;i;zi - X (4?1632%921:;% =
3930~ b The density of syngas is taken as 0.95 kg/m3 [51].

t OPFpulld

Table 8. Unit cost of imported resources and output products.

Material Price, RM  Unit of Measurement Ref.

Imported Resources

Fertilizer (import) 1630 t [8]
Steam 39.948 2 t [52]
Electricity (import) 0.59 kWh [20]

Output Products

EFB Fiber 670 t [20]
Pellet 0.124 kWh [20]
Briquette 0.0836 kWh [53]

Biofertilizer 1045 t [8]
Bioethanol 2662 t [26]
Biogas 1.13 m3 [26]
Biochar 1260 t [26]
Bio-oil 917 t [47]
Syngas 0.6 m3 [47]
Activated carbon 7770 t [26]
Electricity (export) 0.46 kWh [20]

a The cost of steam generation is approximated by taking the product of the required energy of medium pressure steam
(MPS) and the cost of coal, which is taken at MYR 0.0419/kWh [52]. For example, Csteam = % X % =
RM 39.948 /t MPS (note: MYR = Malaysia Ringgit).

In the P-graph framework, the flowrate of materials and the economic performances of the biomass
network are measured on an annual basis of 8000 hr/y. Besides, the payout period for each biorefinery
is set at 10 years. This allows the CAPEX to be annualized during the optimization that is to be divided
by 10. Moreover, the optimization is initiated by defining the production scale of the palm oil mill,
which is adjusted using an additional M-vertex node named ‘ScalingFFB’ (see Figure 6). Thereafter,
the generation of biomass is computed based on this production scale, i.e., through the conversion
ratio of fertilizer to FFB, followed by FFB to EFB, MF, PKS, and POME.
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Figure 6. Maximal structure of the base case study in P-graph framework. The technologies
in section B are abbreviated as follows: Pel—Pelletizing; Bri—Briquetting; Ferm—Fermentation;
AD—Anaerobic Digestion; FP—Fast Pyrolysis; SP—Slow Pyrolysis; Gas—Gasification; Fib—Fiber
Making; Fert—Fertilizer Making; AC—Activated Carbon Making. The scaling node ‘Scaling_FFB’ is
circled in (a) (note: A- generation of biomass; B- biomass conversion technology; C- decision-making
on biomass-derived product; D- generation of medium pressure steam (MPS) and high pressure steam
(HPS) for recycling; E- generation of electricity for recycling; F- management of resource).

5. Result and Discussion

5.1. Base Case Study

The base case optimization is initiated by setting the flowrate of the vertex ‘Scaling via FFB” at
480,000 t/y, whereas the illustration of the Rank 1 solution structure is shown in Figure 7. In the
current settings, a linear economy model (F—-A—B—C) is observed from the optimal solution as
all the generated products: biogas, biochar, bio-o0il, syngas, and activated carbon are exported
for profit. The gross profit is calculated at MYR 362,461,000/y, whereas the demand of imported
resources is 45,472 t/y (MYR 74,119,000/y) for fertilizer, 471,560 t/y (MYR 18,837,900/y) for steam,
and 155,490,000 kWh/y (MYR 91,739,200/y) for electricity. In addition, the chosen conversion pathways
are gasification for OPF, OPT, and EFB; slow pyrolysis for MF; and activated carbon making for PKS.

With the aid of SSG algorithm, three additional suboptimal solutions with recycling are generated
to perform comparisons on the gross profit and the demand for import resources. The values from the
Rank 1 solution (Figure 7) will be set as the benchmark, whereas the compared values are presented

Suboptimal X 100%. Table 9 summarizes the result of the

, .
as a percentage of the benchmark’s value, i.e., =

optimization of the sub-optimal solutions.
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Figure 7. Rank 1 solution structure of the base case model (note: A- generation of biomass; B- biomass
conversion technology; C- decision-making on biomass-derived product; D- generation of medium
pressure steam (MPS) and high pressure steam (HPS) for recycling; E- generation of electricity for
recycling; F- management of resource).

Table 9. Results of suboptimal solutions with recycling.

Rank 5 6 8
Gross profit, % 99.358 99.144 98.892
Imported fertilizer, % 100 100 100
Imported steam, % 60.708 92.776 60.708
Imported electricity, % 86.531 99.657 89.726
Updated conversion pathway # MF—Boiler (HPS) MF—Fast pyrolysis ngjsﬁgie;}(}iiiis

Biochar—Boiler— Turbine—MPS

Recycling pathway HPS—Turbine—MPS + Electricity + Electricity

HPS—Turbine—MPS + Electricity

Biogas, biochar, bio-oil, syngas,

E ted duct Bi tivated carb .
xported produc 10gas, syngas, activated carbon activated carbon

Biogas, biochar, bio-oil, syngas

2 The conversion pathway of other biomass remains the same as the benchmark in Figure 7.

With the inclusion of the recycling pathway, the demand for imported steam and electricity
are generally reduced with a slight decrease in gross profit of around 0.642-1.108%. Among them,
direct application of MF as the boiler feedstock has yielded a significant reduction in the imported
steam and electricity demand in the Rank 5 and 8 solutions. An illustration of the Rank 5 solution
structure is shown in Figure 8.

However, such a reduction is rather minimal by recycling the biochar in the Rank 6 solution.
One way to interpret this would be the high dry mass content of MF (62.9%), making it a viable
feedstock without requiring further processing that consumes additional resources.
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Figure 8. Rank 5 solution structure, featuring a recycle flow of MF as the feedstock of the boiler (note: A-
generation of biomass; B- biomass conversion technology; C- decision-making on biomass-derived
product; D- generation of medium pressure steam (MPS) and high pressure steam (HPS) for recycling;
E- generation of electricity for recycling; F- management of resource).

PKS, on the other hand, did not undergo direct combustion like MF despite having the highest
dry mass content (88.0%). Throughout the solutions from Rank 2 to 8, the thermochemical processes,
such as activated carbon making, fast and slow pyrolysis, are constantly selected as the processing
method for PKS. This may imply a higher economic value of PKS, making it more suitable for processing
and export instead of recycling. Apart from that, gasification remains the preferred technology in
processing OPF, OPT, and EFB throughout the solutions from Rank 2 to 8, implying the others are not
as economically advantageous. Due to that, the fertilizer production pathway with EFB is not selected,
as well, resulting in a constant imported fertilizer demand across the solutions.

Overall, it appears that the circular economy model is not yet optimal in the base case settings.
One of the reasons can be due to the costs of imported resources: fertilizer, steam (coal), and electricity,
which are at a lower level that yet to stimulate the need for regeneration and recycling. Or, it can be due
to the poor efficiency of the conversion and recycling pathway in terms of conversion and expenses.
In particular, the fertilizer production pathway was not observed up to the top 20 solutions. Still, it is
worth noticing that the reduction in gross profit is rather minor even if the suboptimal solution with
recycling, such as Rank 5, is chosen.

5.2. Special Case Study—Restriction on the Exports of Useful Resources

The recycling pathways are found to be quite limited from the base case study. Most sub-optimal
solutions (up to Rank 8) have only chosen either HPS or MPS routes from single biofuels, such as MF,
biochar, biogas, or bio-oil. Thus, a special case is created in which all the useful resources (biofuels and
biofertilizer) are not allowed to be exported to encourage the recycling flow. The aim is to identify the
optimal combination of conversion and recycling pathways solely in the context of recycling, as well as
to observe the changes in gross profit and imported resources demand from the benchmark solution
(Figure 7). In P-graph, this is done by setting the price of the generated biofuels and biofertilizer to
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0 so the export routes are avoided. An illustration of the new Rank 1 solution structure is shown in
Figure 9. Meanwhile, the gross profit and imported resource demand are compared and presented as a

Special Case , 10)%, which is tabulated in Table 10.
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Figure 9. Rank 1 solution structure of the special case study (note: A- generation of biomass; B- biomass
conversion technology; C- decision-making on biomass-derived product; D- generation of medium
pressure steam (MPS) and high pressure steam (HPS) for recycling; E- generation of electricity for
recycling; F- management of resource).

Table 10. Results of Rank 1 solution under special case settings.

Item Result
Gross profit, % 25.079
Imported fertilizer, % 100
Imported steam, % 6.118
Imported electricity, % 16.395
OPF—Fermentation,
Updated conversion pathway @ gﬁg:ﬁ::?g::j&g:
MF—Boiler (HPS)
Recycling pathway 5 HPS—>'Turbine—>.MPS + Electricity, N
iogas— Boiler—Turbine—MPS + Electricity
Exported product Bioethanol, activated carbon

2 The conversion pathway of other biomass remains the same as the benchmark in Figure 7.

As the biofuels are restricted from exporting, biogas is now recycled along with MF in the HPS
route for steam and electricity generation. However, the source of profit becomes more limited in
which the bioethanol production pathway is chosen for export. As a result, both gross profit and
imported resources demand have decreased by a huge margin, except for fertilizer given the absence of
fertilizer production pathway. Aside from recycling, this reduction is also due to the chosen technology.
For instance, fermentation uses lower electricity (62.46 kWh/t biomass) than gasification (280 kWh/t
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biomass) and no steam as recorded in Table 6, thus explaining the huge decline in the consumption of
imported steam and electricity.

From there, it is observed that the proposed model is geared towards a profit-driven setting,
which relies on exports to generate incomes for sustaining the biomass network. This corresponds
to the concept of the sustainable circular economy that is to prioritize the economic benefits through
the better utilization of the wastes as products [54]. However, the export of products should not be
overly restricted solely for the implementation of circularity. Thus, to better understand the interaction
within the network for promoting the sustainable circular economy, a series of sensitivity analysis is
performed as described in the following section:

5.3. Sensitivity Analysis

In this section, sensitivity analysis is conducted on the base case model to observe the changes
in decision-making by P-graph optimization. Three scenarios are proposed with a different focus to
promote or improve the circularity of the biomass network, whereas the description is given in Table 11.

Table 11. Proposed scenarios and descriptions.

Scenario Description
I A demonstration of price inflation is conducted on the imported resources to observe the trend of recycling in the model.
II An extension of the model is demonstrated by introducing new technologies to improve the utilization of POME.
1II A debottlenecking example is performed on the fertilizer production pathway to reduce the imported fertilizer demand.

5.3.1. Scenario I—Price Inflation in Imported Resources

This scenario aims to investigate the impact of the prices of imported resources to the
implementation of the sustainable circular economy. It is assumed that the industry is more inclined
to reduce the reliance on imported resources (fertilizer, steam, and electricity) via regeneration and
recycling if their prices are inflated. Due to that, three separate cases are created as in varying the price
of imported fertilizer (Case 1), steam (Case 2), and electricity (Case 3) to stimulate the recycle flows of
each material. For each parameter, the base value is increased by 10% at each time until the recycle
flow is observed in the Rank 1 solution structure. After that, the imported resources are compared and
presented as a percentage of the benchmark’s value, i.e., % % 100%. Note that the gross profit is
not compared with the benchmark due to having different prices of imported resources. With that, the
parameter settings and the results of P-graph optimization are summarized in Table 12.

From the results, both Cases 2 and 3 share the same optimal solution, which was initially ranked at
5thin the base case setting (Figure 8). In addition, it is noticed that the biomass network model is more
sensitive towards electricity than steam by comparing the percentage increase in the price. This can be
due to the widespread use of electricity than steam in the biomass network, thus reflecting a higher
influence in the electricity price than the steam in encouraging the regeneration and recycling pathways.
In contrast, the biomass network model is far less sensitive to the price of fertilizer. For instance,
the fertilizer production pathway becomes optimal only when the fertilizer price is increased by 180%,
as shown in Case 1. While this hints towards a more fundamental problem on the pathway itself,
such as not being efficient, the reduction in the imported resources demand is quite noticeable as it
is supposed to consume less electricity and steam than gasification. Another reason can be due to
the narrow use of fertilizer, which is solely consumed by the oil palm plantation. In other words,
the influence of fertilizer is relatively lower than steam and electricity in the biomass network.

In short, this scenario reveals the impact of the pricing of imported resources to the implementation
of circularity. Throughout a series of sensitivity testing, the recycle flow tends to be implemented on
resources, like steam and electricity, rather than fertilizer due to the prevalence in consumption by
the operating units. From there, it is suggested to refurnish the local energy policy to promote the
biomass-to-energy pathway. For example, the carbon tax can be increased to discourage the usage
of fossil fuels in steam and electricity generation. In Malaysia, the sources of electricity are majorly



Sustainability 2020, 12, 8081 21 of 29

composed of coal and natural gas, whereas the share of renewable energy is rather minimal at 3% [55].
On the other hand, the revenue generated from the taxes can be used as financial support for the mill
owners to promote biomass conversion technologies. While this helps increase the share of biomass
energy in electricity generation, additional incomes and job opportunities can also be created to further
improve the sustainability of the biomass network.

Table 12. Parameter settings of Scenario I and the results of P-graph optimization.

Case 1 2 3

Parameter Setting

Parameter Fertilizer price Steam price Electricity price
Base value MYR 1630/t MYR 39.948/t MYR 0.590/kWh
Final adjusted value MYR 4564/t MYR 55.927/t MYR 0.708/kWh
Increment, % +180 +40 +20
Optimized Result
Imported fertilizer, % 19.880 100 100
Imported steam, % 89.495 60.708 60.708
Imported electricity, % 80.120 86.531 86.531
Updated conversion pathway @ EFB—Fertilizer MF—Boiler (HPS) MEF—Boiler (HPS)
Recycling pathway Fertilizer HPS—>Turbir'1e‘—>MPS HPS—>Turbir.1e.—>MPS
+ Electricity + Electricity
Exported product ey, acivated cabon actested caon acthoted tarbon
Original rank in base case setting Outside of top 20 5th 5th

2 The conversion pathway of other biomass remains the same as the benchmark in Figure 7. b The generated
fertilizer is directly applied on-field without further conversion.

5.3.2. Scenario II—Extension of POME Utilization in P-graph Model

The utilization of POME is only limited to anaerobic digestion based on the current situation
in Malaysia. In recent years, other fermentative approaches, such as dark and photo fermentation,
begin to arise as a potential conversion pathway for POME. The final product, which is hydrogen,
can be utilized in many ways to benefit the palm oil industry. This includes being a chemical feedstock
in the palm oil refinery process, synthetic fuel making, fertilizer making, or as an energy carrier.
Suppose a scenario is proposed by using the hydrogen from POME to generate electricity for recycling;
this can be realized in a two-step process: (i) the hydrogen fermentative process is introduced to convert
POME to hydrogen, and (ii) a stationary fuel cell is set up using the Polymer Electrolyte Membrane
(PEM) technology to generate electricity from hydrogen. Once the resultant conversion of POME to
electricity is determined, sensitivity testing can be conducted to project a viable production cost of the
two-step process. In other words, the focus parameters will be CAPEX and OPEX.

In P-graph modeling, the biomass network is extended by introducing an additional pathway for
POME. A new operating unit—pome_h2_elec is created to represent the two-step process, whereby
the input and output are POME and electricity, respectively. In addition, the sequential dark and
photo fermentation is chosen as the conversion pathway for hydrogen production [56]. With that,
the conversion ratio of POME to electricity is approximated to be 4.110 kWh/t POME based on the
collected data in Table 13.
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Table 13. Data used in approximating the conversion ratio of palm oil mill effluent (POME) to electricity.

Data Value Ref.

Conversion ratio of POME to hydrogen 298 x 107* t Hp/t POME  [56]
Hydrogen calorific value 39,400 kWh/t Hy [57]

Electrical efficiency of stationary PEM fuel cell 35% [58]

On the other hand, the concept of lump investment is introduced to reduce the number of cost
parameters. This is performed by annualizing the CAPEX with a payout period of 10 years and adding
it to the OPEX before the optimization. For example, a CAPEX of MYR 300/t and OPEX of MYR 300/t
POME will be equivalent to a lumped investment of MYR 330/t POME (i.e., 300/10 + 300). This way,
the focus parameter is reduced to only OPEX, while the CAPEX is kept at 0. As an example, at a very
low OPEX (MYR 100/t POME), the new pathway is selected instead of anaerobic digestion in the new
Rank 1 solution structure (Figure 10).
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Figure 10. The expected solution structure that favors the new pathway for POME. The pathway
for other biomass remains the same as in the benchmark solution (note: A- generation of biomass;
B- biomass conversion technology; C- decision-making on biomass-derived product; D- generation of
medium pressure steam (MPS) and high pressure steam (HPS) for recycling; E- generation of electricity
for recycling; F- management of resource).

This OPEX is then increased by 10% of its base value at each time until the expected solution
structure is no longer optimal (below Rank 1). The last OPEX setting when the solution was ranked first
is regarded as the maximum allowable production cost. Table 14 summarizes the results of the P-graph
optimization, whereas the gross profit and imported resources are compared with the benchmark and

. ’ : Scenario 11 0
presented in percentages of the benchmark’s values, i.e., 377722 X 100%.
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Table 14. Results of P-graph optimization featuring the new pathway with ‘pome_h2_elec’.

Item Result
Maximum allowable OPEX MYR 160/t POME
Gross profit, % 100.684%

Imported fertilizer, % 100
Imported steam, % 100

Imported electricity, % 99.240%

Updated conversion pathway ? POME—pome_h2_elec—electricity

Recycling pathway Electricity P
Exported product Biochar, bio-oil, syngas, activated carbon

2 The conversion pathway of other biomass remains the same as the benchmark in Figure 7. ® The generated

electricity is directly distributed to the biomass network without further conversion.

Although it shows a slight increase in gross profit and reduction in the imported electricity
demand, this new pathway seems yet to be economically feasible at the moment. For comparison,
the lumped investment of anaerobic digestion is about MYR 193.2/t POME based on the CAPEX and
OPEX in Table 5. In other words, the application of sequential dark and photo fermentation, as well as
the stationary fuel cell, must be cheaper than that to be ‘optimal’. Otherwise, the conversion ratio needs
to be improved if a higher OPEX is implied. Thus, a further investigation is carried out to determine
the desired conversion ratio at a higher OPEX setting, and the results are summarized in Table 15.

Table 15. Target conversion ratio at different OPEX setting, while the solution remains optimal.

Maximum Allowable OPEX, RM/t POME 170 180 190 200
Target conversion ratio, kWh/t POME 6.576 23.428 40.692 57.544
Percentage increase in conversion ratio, % +60 +470 +890 +1300
Gross profit, % 100.006 ~ 100.001  100.016  100.011
Electricity demand, % 98.784 95.668 92.475 89.359

As a result, an exponential relationship is inferred between the OPEX and target conversion ratio
of the new pathway. For instance, every slight increase in OPEX requires an improvement in conversion
ratio in an increasing manner for the solution to be optimal. This means the implementation is not
feasible when the production cost is slightly increased, which seems even impossible at a lumped
investment of MYR 180/t POME and above.

In short, the application of hydrogen from POME as an energy carrier may not be viable in
promoting the circularity in the oil palm biomass network. This, however, does not consider other
advantageous factors, such as future ground-breaking technical improvement or potential financial
support from the government and private sectors. A different result can also be yielded by considering
other applications of hydrogen, such as the synthesis of biochemical. On the other hand, this scenario
demonstrates the extensibility of the biomass network model, which allows the integration of new
conversion and recycling pathways with graphical optimization and visualization. Furthermore,
sensitivity analysis can be performed to determine the feasibility of a certain pathway, as well as to
project a viable investment cost, if the economic parameters were unknown.

5.3.3. Scenario IlI—Debottlenecking the Pathway of Fertilizer Production

The pathway of fertilizer production might be economically inefficient as implied in the base
case study and Scenario I. Thus, most solutions are fully relying on imported fertilizer. With that,
the debottlenecking of the fertilizer production pathway is demonstrated to reduce the demand for
imported fertilizer. The first attempt focuses on the economic parameters CAPEX and OPEX, which are
MYR 540/t EFB and MYR 494/t EFB, respectively, in the base case. The same concept of lumped
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investment can be used to reduce the amount of testing; in this case, the original CAPEX and OPEX
are equivalent to an OPEX of MYR 548/t EFB. This OPEX is then decreased gradually by 10% of its
base value until the recycle flow of fertilizer is observed in the Rank 1 solution structure. Throughout
a series of testing, however, such a solution structure is not observed even at a zero cost within the
top 20 solutions. Instead, among these solutions the recycle flow of steam and electricity is constantly
found between HPS and MPS route using a variety of biofuels, such as MF, biochar, bio-oil, and biogas.

On the other hand, the inefficiency of the fertilizer production could be due to its low conversion
ratio, which is 0.33 t fertilizer/t EFB in the base case setting. Note that this conversion ratio is taken by
assuming the content of generated fertilizer is equivalent to the dry mass of the EFB. If the fertilizer is
made of pure EFB, such a ratio is considered as the theoretical maximum since the dry mass is fully
conserved with the loss of mass being only the moisture. In other words, the low dry mass content of
EFB could be the bottleneck of the fertilizer production pathway, which cannot be resolved by simply
lowering the production cost. Thus, instead of manipulating the conversion ratio, the debottlenecking
is approached by changing the raw material of higher dry mass content. For that, MF is chosen as an
example for this demonstration, which has a dry mass content of 62.9%.

In P-graph modeling, an additional pathway between MF to fertilizer is created in the maximal
structure, whereby the procedure is similar to that of Scenario II. The same settings of CAPEX and OPEX
are used in this pathway, i.e., MYR 540/t MF and MYR 494/t MF, respectively. Besides, the conversion
ratio is set to 0.629 t fertilizer/t MF, which is assumed to be equivalent to the dry mass content.
For comparison, another trial is also performed at a reduced conversion ratio of 0.566 t fertilizer/t MF by
considering a 10% loss of dry mass during the process. Throughout the optimization, it turns out both
conversion ratio settings are economically viable as the fertilizer production pathway is immediately
observed in the Rank 1 solution structure (Figure 11).
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Figure 11. Rank 1 solution structure featuring MF in fertilizer production and recycling (note: A-
generation of biomass; B- biomass conversion technology; C- decision-making on biomass-derived
product; D- generation of medium pressure steam (MPS) and high pressure steam (HPS) for recycling;
E- generation of electricity for recycling; F- management of resource).
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The results of optimization are summarized in Table 16, in which the gross profit and imported
, % % 100%. In both settings,
the demand for imported fertilizer is greatly reduced, while the gross profit is slightly improved.
On the other hand, the demand for imported steam remains unchanged, which is otherwise slightly
decreased in the case of electricity due to having a different conversion pathway. With that, the fertilizer
production pathway is considered to be debottlenecked by changing the raw material to ME. In a
real-life scenario, such implementation could be feasible if the nutrient content of the MF fertilizer has

met the requirement and can be used to replace the imported fertilizer. The mixed-use of inorganic

resources are presented in percentages of the benchmark value, i.e.

and organic fertilizer is recommended as the crop yield is not generally affected [59].

Table 16. Results of P-graph optimization by sourcing MF in fertilizer production.

Trial 1 2
Parameter Setting
Conversion ratio, t fertilizer/t MF 0.629 0.566
CAPEX, RM/t MF 540 540
OPEX, RM/t MF 494 494
Optimized Result
Gross profit, % 102.899 101.269
Imported fertilizer, % 20.323 28.291
Imported steam, % 100 100
Imported electricity, % 94.443 94.443
Updated conversion pathway 2 MF—PFertilizer MF—Fertilizer
Recycling pathway Fertilizer Fertilizer
Exported product Biogas, syngas, activated carbon  Biogas, syngas, activated carbon

2 The conversion pathway of other biomass remains the same as the benchmark in Figure 7. P The generated
fertilizer is directly applied on-field without further conversion.

6. Conclusions

This paper presented a graph theoretic approach in utilizing the oil palm biomass using the
concept of the sustainable circular economy. In particular, a biomass network model is generated using
P-graph to determine the optimum combination of biorefineries for the regeneration and recycling of
the targeted resources needed by the industry (fertilizer, steam, and electricity). As of current settings,
the optimized result favors the linear economy structure over the circular one in terms of profitability.
However, the reduction in imported resources is quite considerable with the implementation of
circularity, particularly in steam (—39.292%) and electricity (—13.469%). It is worth to note that the
input parameters may need a constant update to reflect the current setting, as the model requires more
comprehensive data to better represent the real-life practice. For example, the leftover ashes from
certain conversion pathways may be recycled as fertilizer to fully utilize the solid biomass wastes,
if more information is available for the computation (e.g., conversion ratio of biomass to ash, efficiency
of ash as fertilizer, handling cost, etc.). Meanwhile, the model is evaluated solely based on economic
performances, which may not reflect the actual socio-economic or political consideration. For instance,
the pelletizing pathway was not observed from the optimized result, although it was highly encouraged
by the local biomass policy due to the huge export demand [18,60]. Therefore, future work will be
focusing on extending the model mainly in two ways: First, more recycling pathway can be integrated
within the network either by expanding the list of biorefineries or the targeted resources. Aside from
the example of ashes to fertilizer, the used palm-oil-derived biodiesel can also be potentially used
as an alternative energy source using appropriate re-refining technology [61]. Second, additional
indicators that represent the social, political, and environmental performances can be incorporated into
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the model to capture the full spectrum of sustainability. This way, it can help to reveal the unforeseen
weaknesses of the implementation of the sustainable circular economy, which offers greater variety in
designing the debottlenecking strategy [26,62]. In the formulation of these indicators, the perception
study of consumers and investors, technological advancement, and the rise of Industry 4.0 can also be
considered as they are parts of the motivations in the transition to circular economy [63].

Apart from that, a biomass supply chain case study can be investigated by considering the actual
location of the sites, while implementing the concept of the sustainable circular economy. This will
inevitably increase the scope of optimization, such as the number and location of biorefineries [64],
distribution route of the materials, and transportation costs, which shall provide a more practical result
to aid the decision-making [65]. Moreover, the palm oil industry can be integrated with other industry
sectors, such as energy, transportation, chemical, or different agriculture industry, to extend the value
and supply chain of the biomass. As more entities are involved in the network, wastes of greater
variety and amount can be collected for processing and recycling. At the same time, more consumers
can be identified to encourage the absorption of wastes as resources and the development of conversion
technologies. From there, a wider circularity can be formed between multiple industries by exchanging
the waste materials and regenerated resources, which leads to the industrial symbiosis and provides a
step forward in achieving the waste-to-wealth concept [66].
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