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Abstract: This paper focuses on solving a problem of green location-routing with cold chain logistics
(GLRPCCL). Considering the sustainable effects of the economy, environment, society, and cargos,
we try to establish a multi-objective model to minimize the total cost, the full set of greenhouse gas
(GHG) emissions, the average waiting time, and the total quality degradation. Several practical
demands were considered: heterogeneous fleet (HF), time windows (TW), simultaneous pickup
and delivery (SPD), and a feature of mixed transportation. To search the optimal Pareto front of
such a nondeterministic polynomial hard problem, we proposed an optimization framework that
combines three multi-objective evolutionary algorithms (MOEAs) and also developed two search
mechanisms for a large composite neighborhood described by 16 operators. Extensive analysis
was conducted to empirically assess the impacts of several problem parameters (i.e., distribution
strategy, fleet composition, and depots’ time windows and costs) on Pareto solutions in terms of the
performance indicators. Based on the experimental results, this provides several managerial insights
for the sustainale logistics companies.

Keywords: cold chain; location routing problem; green logistics; multi-objective optimization;
heterogeneous fleet

1. Introduction

With the development of urbanization and the change of client’s life style, the production and
consumption of refrigeration-dependent food have changed, which promote the rapid development
of the cold chain-based logistics [1]. Cold chain logistic(CCL), as a special type of transportation
logistics, is developed to maintain the freshness of temperature-sensitive products by the thermal
and refrigerated packaging methods and logistics plans [2,3]. Aiming at keeping supplies fresh and
cut waste, CCL consumers more fossil fuels than ordinary logistics to maintain low-temperatures
features during transportation, and greenhouse gas(GHG) emissions linearly related to freight fuel
consumption account for 5.5% of global GHG emissions [4]. Meanwhile, clients’ satisfaction is another
significant indicator not only concerning clients’ feelings about products and services received [5] but
also concerning the long-term development of logistics enterprises. Hence, how to simultaneously
consider economic, environmental, social, and cargos impacts is very important for the sustainable
development of the CCL, which is the motivation of this paper to model a multi-objective model for
the CCL aiming at considering the above four effects.
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One of the significnt differences between ordinary logistics and CCL is the low-temperature
feature that could maintain products’ freshness. The CCL has been successfully applied in frozen food
logistics [6], pharmaceutical logistics [7], etc. In supply chains and logistics systems, there are two
effective tools: vehicle-routing problem(VRP) and location-routing problem(LRP) [8], which construct
two kinds of logistics for the cold chain: VRP-based CCL (VRPCCL) and LRP-based CCL (LRPCCL).
The VRPCCL has been extensively researched by scholars, such as [4,9,10]. The VRPCCL didn’t
consider a strategic-level problem (i.e., facility allocation problem, FAP), but the LRPCCL merged
two decisions: FAP and VRPCCL, and has recently become one of the most investigated versions.
Zheng et al, Wang et al and Ghomi et al. [11–13] defined a logistic costs-based formulation for the
LRPCCL. Only the latter two considered lost sale costs. However, the above three only considered
single-objective models. Wang et al. [14] proposed a bi-objective model for LRPCCL to minimize the
total cost and distribution time. Leng et al. [3] developed a bi-objective model by defining the total
costs and the total waiting time as two objectives concerning multiple practical constraints. The above
two handled the carbon emissions and cargo quality decay as penalty functions in the total costs.
In Leng et al. [2], a novel bi-objective model for the LRPCCL was proposed, which handles the cargo
quality decay as the second objective. Leng et al. [15] developed several novel solution methods
(i.e., decomposition-based hyper-heuristic approaches) to solve the bi-objective model proposed by
Leng et al. [2].

To solve the limitation and fill gap of existing studies, this study will establish a novel
multi-objective model based on sustainable effects of environment, economic, social, and cargo, it is
named as GLRPCCL. Development concept of the model show as following: the first objective concerns
the total costs consisting of the fixed costs of opening depots and renting vehicles, and the unfixed
costs, including drivers’ salaries and the depreciation costs of vehicles (referred to as economic effects).
The second is the full set of GHG emissions including CO2, CH4, and N2O emissions (referred to as
environmental effects). The third aims to improve the clients’ and drivers’ satisfaction by minimizing
the average waiting time of vehicles and clients (referred to as social effects). The last is the total cargos’
quality decay (referred to as cargos’ effects). This paper considers three MOEAs with an effective
strategy differing from the above solution methods.

To enhance our model, this study will consider several practical constraints: SPD, hard TW,
HF, and a feature of mixed transportation. The mixed transportation is defined by the types
of shipments, including ordinary cargo (OC), refrigerated cargos (RC) at 3∼10 ◦C, and frozen
cargos (FC) at −4∼24 ◦C. We assume that OC and RC could be simultaneously delivered to the
clients, but FC must be separately delivered. As the solution methods, this paper proposed an
effective framework that combines three well-known MOEAs, that is, non-dominated sorting genetic
algorithm-II (NSGA-II) [16], strengthen Pareto evolutionary algorithm2 (SPEA2) [17], indicator-based
evolutionary algorithm(IBEA) [18]. We also provided 16 operators, performing first (FI) and
best-improvement (BI) search mechanisms, to form a large composite neighborhood for the proposed
model. Extensive experiments are conducted to empirically assess the effects of several problem
decisions, i.e., distribution strategy, fleet composition, and depots’ time windows and costs, on the
performance indicators of Pareto results, which could provide several managerial views for the
logistics enterprises.

As far as we know, no multi-objective model with more than two objectives for GLRPCCL has
been proposed. The rest of this paper is organized: Section 2 provides the recent literature on green
LRP (GLRP), green VRPCCL (GVRPCCL), and GLRPCCL. Section 3 gives out the proposed model
for the GLRPCCL; Section 4 designs the MOEAs algorithm for the proposed model, including the
solution chromosome, the MOEAs framework, and 16 neighborhood operators. Section 5 provides he
detailed computational experiments and result analysis. Finally, the conclusions made of contributions,
limitations, and the future study are outlined in Section 6.
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2. Literature Review

From the perspectives of sustainable views of economy, environment, society, and cargos,
this paper addressed a novel problem by defining multi-objective formulation, namely GLRPCCL,
which has several features: location-routing decision, environmental impacts, cold chain,
etc. Hence, the following sections provide reviews on GLRP, GVRPCCL, and GLRPCCL.

2.1. Review on GLRP

LRP is an extended version of VRP that takes into account FAP, which involves locating depots
and routing a fleet of vehicle to serve a given set of clients, the purpose of which is to minimize the
total cost of location and routing [19]. Among the LRP variants in the literature, the most studied are
LRP with SPD [8], LRP with HF [20],LRP with TW [21], multi-level LRP [22], and LRP considering
multiple constrains [23]. However, the above only considered the economic impacts of logistics.

As the name suggests, the GLRP deals with LRP considering environmental effects.
Dukkancj et al. [19] stated that the GLRP is constructed by the classical LRP and pollution-routing
problem which is also viewed as green VRP. As far as we know, many scholars have studied GLRP.
The first one is by Mohammadj et al. [24], who described a bi-objective stochastic green hub location
routing problem with simultaneous pickups and delivers, aiming at minimizing both the logistics cost
and environmental impacts. Table 1 is an extended one that reviews the papers on GLRP from the used
emission models, solution method, feature, and method handling environmental effects, following
the methods proposed by Dukkancj et al. [19] and Zhou et al. [25]. Looking at Table 1, following can
be detected:

(1) From the perspectives of the number of objectives defined for the GLRP, there are single- objective,
bi-objective, and triple-objective models, but multi-objective models with over three objectives
have not been studied. The single and bi-objective model has been widely researched.

(2) In views of emission model, most of these papers applied factor model to estimate the amount of
fuel consumption and carbon emissions, like the fuel consumption rate proposed by Xiao et al. [26],
models using fuel efficiency or emission parameter (see “Given” in Table 1). As an efficient micro
view, CMEM has been widely used in the GLRP, which is easily applicable and is capable to
accurately estimate fuel consumption and carbon emission. Only Benotmane et al. [27] used a
macro version to calculate fuel consumption.

(3) For handling the fuel consumption and carbon emission, several methods have been used as (a) a
part of logistics costs, namely penalty function, (b) the main objective like Pitakaso et al. [28],
(c) constraints like Qazvini et al. [29], and (d) an objective in the multi-objective model.

(4) Most of them developed heuristics to tackle the proposed GLRP model, and a few papers
also applied exact approaches. Moreover, there are two papers by Nakhjikan et al. [30] and
Govindan et al. [31] that studied the GLRP in terms of theory and applied practical cases to verify
their models.
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Table 1. Features of the GLRP without considering the cold chain.

Type Reference Emission Model Solution Method Features Method

SO

Koc et al. (2016) [32] CMEM Exact & heuristic HF Penalty
Qazvini et al. (2016) [29] Factor Exact SPD, TW Constraint/Penalty

Nakhjirkan and Rafiei (2017) [30] Factor Exact & heuristic Inventory Penalty
Wang et al. (2017) [33] Given – Inventory Penalty
Leng et al. (2018) [34] CMEM Heuristic TW Penalty

Benotmane et al. (2019) [27] Factor Heuristic Two echelons Penalty
Dukkanci et al. (2019) [19] CMEM Exact & heuristic TW, no vehicles cost Penalty

Koc (2019) [23] CMEM Heuristic TW Penalty
Zhang et al. (2019) [35] CMEM Heuristic TW, HF, SPD Penalty
Zhang et al. (2020) [36] CMEM Heuristic Time-dependent, TW Penalty

Pitakaso et al. (2020) [28] Given Heuristic Two echelons Main objective
Zhou et al. (2020) [25] Factor Exact Robust and stochastic Penalty

BO

Mohammadi et al. (2013) [24] Factor Heuristic TW, SPD Distance as a green object
Govindan et al. (2014) [37] Factor Heuristic Two echelons, TW As a green objective

Validi et al. (2014) [38] Given Heuristic HF As a green objective
Tang et al. (2016) [39] Factor Heuristic Inventory As a green objective

Tricoire and Parragh (2017) [40] Factor Exact & heuristic HF As a green objective
Toro et al. (2017) [41] Macro Exact Net present value As a green objective

Wang and Li (2017) [42] Factor Heuristic TW, HF, SPD Penalty
Qian et al. (2018) [43] Factor Heuristic Hyperheuristic As a green objective
Chen et al. (2018) [44] Given Heuristic Full truckloads As a green objective

Faraji and Afshar-Nadjafi (2018) [45] Given Heuristic TW, HF, multiple periods As a green objective
Leng et al. (2019a) [46] CMEM Heuristic TW, HF, SPD Penalty

Govindan et al. (2020) [31] Given – Reverse logistics, HF Penalty

TO
Rabbani et al. (2017) [47] Given Exact & heuristic Refueling stations As a green objective
Leng et al. (2019b) [48] CMEM Heuristic TW, HF, SPD Penalty
Shen et al. (2019) [49] Factor Heuristic Emergency chain, fuzzy As a green objective

MO Our study CMEM Heuristic Cold chain, TW, HF, SPD As a green objective

SO/BO/TO/MO is a model using the single-/bi-/tri-/multi objectives; Factor and Macro models are classified by
Demir et al. (2014) [50], CMEM is a micro model.

However, the above models only have three objectives, and no paper has investigated the
models with over three objectives, such as the total cost, traveled distance/time, GHG emissions,
clients’ satisfaction, cargo quality decay.

2.2. Review on GVRPCCL

With the increasing improvement of people’s living standards and the growing demand for
high-quality and fresh food, the CCLs industry has developed rapidly [9]. Ma et al. [51] studied
the CCL in terms of Industry 4.0 and provided theoretical proof for their models and carried
out numerical studies to illustrate the theoretical results. Al et al. [52] defined an integrated
mixed integer optimization model that considers inventory allocation problems, VRP, and CCL.
Wei et al. [53] defined a model on the transportation cost for the inventory routing problem combing
CCL. However, the environmental effect is not considered by the above papers. As stated by
Accorsi et al. [54], as much as 15% the worlds’ total energy already fuels cold-chain infrastructures with
40% of food logistics needing refrigeration, both the growth of food demand and the CCLs’ expansion
will therefore hugely increase energy consumption and associated GHG emissions. GVRPCCL concerns
economic, environmental, and cargos’ effects.One of the greatest challenges posed by today’s CCLs is
to provide high-quality food with minimizing GHG emissions and total logistics costs. In recent years,
the GVRPCCL has attracted extensive academic attention, and also provided optimization support for
real-world applications, such as fruit-and-vegetable [55,56]. Table 2 provides the papers on GVRPCCL
in terms of the number of objectives, emission model, solution method, method1 handling cargos’
quality decay, and method2 dealing with GHG emissions.
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Table 2. Features of the papers on the GVRPCCL.

Type Reference Emission Model Solution Method Method 1 Method 2 Feature

SO

Ma and Wu (2015) [57] Given Heuristic Penalty Penalty Stochastic demands, TW
Hariga et al. (2017) [58] Factor Exact & Heuristic NA Penalty Multi-stage, carbon tax regulation
Wang et al. (2017) [59] Factor Heuristic Penalty Penalty Carbon tax, TW
Hsiao et al. (2017) [60] Given Heuristic Penalty Penalty TW, shelf life
Hsiao et al. (2018) [55] Given Heuristic Penalty Penalty TW, shelf life

Stellingwerf et al. (2018) [61] CMEM Exact NA Penalty Stops, temperature-VRP
Zhang et al. (2019) [62] Factor Heuristic Penalty Penalty Soft TW

Chen et al. (2019) [9] CMEM Heuristic Penalty Penalty HF, TW
Wei et al. (2019) [53] Given Exact & Heuristic NA Penalty Time period
Qin et al. (2019) [5] Factor Heuristic Penalty Penalty TW, Client satisfaction

Chen et al. (2019) [63] Factor Exact & Heuristic NA Penalty TW, multi-compartment
Li et al. (2019) [4] Factor Heuristic Penalty Penalty Soft TW
Li et al. (2020) [64] Given Heuristic Penalty Penalty HF, TW

Wang and Wen (2020) [14] CMEM Heuristic Penalty Penalty Two-echelon, HF, TW
Wang et al. (2020) [10] Factor Heuristic Penalty Penalty Soft TW, risk factor
Qi and Hu (2020) [65] Factor Heuristic Penalty Penalty Emergency CCL, Minimum loss

BO Ma et al. (2018) [51] Given Exact An objective Constraint Shelf life

MO This study CMEM Heuristic An objective Green objective Cold chain, TW, HF, SPD

Looking at Table 2, the GVRPCCL has been widely researched, and we can obtain the
following summaries. (1) Only one paper considered the bi-objective model for the GVRPCCL.
Ma et al. [51] defined the model by minimizing transport cost and quality degradation. (2) like the
conclusion in Section 2.1, most of the papers applied factor models and special parameters-models
(i.e., Given) to estimate the fuel consumption and carbon emissions, and only three papers used CMEM.
(3) Most papers applied penalty function to deal with the cargo quality decay, and four papers didn’t
consider the cargo quality decay, and only one viewed it as an objective. (4) All papers applied penalty
function to handle the fuel consumption/carbon emissions as a part of transport costs, but Ma et al. [51]
applied a constraint to restrict the CO2 emission regulated by the government. (5) Among the papers
handling cargo quality decay, two methods have been developed: (a) shelf-life applying piecewise
function [55,60]; (b) the variable function of refrigerated goods quality [33].

However, the multi-objective model with three or more objectives for the GVRPCCL is not studied.
Meanwhile, LRP, as an extensive version of VRP, should be considered in the CCL, since location and
route problems are equally significant for CCLs, it is indispensable to combine the depots’ location
selection with route optimization for considering the comprehensive impacts bringing by the entire
logistics system [11].

2.3. Review on GVRPCCL

The GLRPCCL is an extensive version of GVRPCCL by considering FAP, the reason could be that:
the location of the facility could not only improve the economic, environmental, and social impacts but
also could greatly reduce cargos’ quality decay. To our knowledge, only a few studies have considered
both LRP and CCL. To our knowledge, only a few studies have considered both LRP and CCL. This lack
of studies is seen, for instance, in the field of urban studies as transportation is currently dealing with
urban planning and consequently urban renewal and regeneration [66]. If we take into account one of
the most innovative way of provide the so-called right to the city [67], i.e., the Barcelona’s Poblenou
neighborhood superblocks, it is seen that the most recent studies [68–71] tackling the former industrial
heart of the Catalan capital did not take into account the issues this paper shows slightly referred on
the impacts on transportation system introduced by superblock unit in Poblenou.

Shen et al. [49] developed a bi-objective model for the LRPCCL, where the first objective optimizes
the total cost concerning transportation, refrigeration, cargo damage, and punish, and the second
is to minimize the no-load cost of vehicles. Zheng et al. [11] defined an optimal location-routing
model that takes into account the temperature changes among sensitive products in cold chain
distribution centers and aims to minimize the sum of fixed costs, variable costs, and transportation
costs. Zheng et al. [72] provided a multi-objective LRP model for the two-echelon cold chain logistics
network. The first objective aims to minimize the location cost of depots, and the second is used to
minimize the transportation cost. Wang et al. [73] split the GLRPCCL into two parts: the location of
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depots and the optimization of the transporting route. In the location of depots, the objective is to
minimize the total related costs, including installation costs, turnover costs, and transportation costs.
The second level is used to optimize the costs comprising vehicle cost, damage cost, and penalty cost
for violation of time window. Suraraksa et al. [74] also applied two phases to model their problem.
The first phase is to determine the location of fresh cargos distribution and demand distribution.
The second phase is to design the delivery route and the number of vehicles rented to minimize the
total distance travelled, while transporting the cargos from the wholesaler through the depots to the
retailer. However, the above didn’t consider environmental effects. And the latter two separately
optimized the FAP and VRPCCL, which may cause suboptimal solutions, like LRP [75]. The following
are the latest papers on the GLRPCCL.

Wang et al. [12] developed a single objective model for GLRPCCL, with the lowest total cost as
the objective function, which includes carbon emission costs, fixed costs of depots, transportation costs
related to refrigerated trucks, refrigeration costs, fine costs, and damage costs.

In Ren et al. [76], a mathematical formulation concerning the minimum distribution cost of fresh
food was developed and considered resource/information sharing and soft time window constraints.
Their model can meet the requirements of logistics distribution, including high timeliness, low cost,
greenness, and resource/information sharing. The objective is the total logistics cost, including the
costs of scheduling vehicles, transportation, cargo loss, carbon emissions, and penalty.

Van et al. [77] developed a two-stage distribution location-routing model with the minimum
total logistics costs as the objective, considering varying capacity of vehicles according to different
delivery stages. Their objective comprises fuel consumption cost of vehicles per kilometer, driver’s cost,
damage cost, refrigeration cost (i.e., energy consumption), penalty cost, and transfer cost.

The above three papers defined single-objective models for the GLRPCCL. The following defined
bi-objective models for the GLRPCCL.

Wang et al. [10] designed a bi-objective model for the GLRPCCL. In their model, the first objective
is used to minimize of total cost comprising of fuel consumption cost, quality damage cost, transport
cost, refrigeration cost of refrigerated vehicles, penalty cost of the time window, and opening cost of
depots, while the second is the shortest vehicle distribution time.

In the model proposed by Leng et al. [3], the first objective comprises the fixed costs of depots and
vehicles, vehicle renting cost, driver salaries, fuel consumption cost, carbon emission costs, and damage
costs of cargos that need to be refrigerated or frozen. The second objective consists of the waiting time
of clients and vehicles to promote client satisfaction and the efficiency of the CCLs. Leng et al. [15] also
developed a bi-objective model for the GLRPCCL, where the first objective is to minimize the total
cost of logistics, including the costs of operating depots, renting fleet, fuel consumption, and carbon
emissions, and the second objective is to reduce cargo damage, which can improve client satisfaction.
The formulation was also solved by decomposition-based hyperheuristic approaches [2].

From the perspectives of the above three papers, several conclusions are drawn: (1) only
bi-objective models are defined; (2) the penalty function is used to view the fuel consumption and
carbon emissions as a part of the total costs; (3) the constraints SPD, TW, HF, and a feature of the
mixed transportation are considered; (4) Only carbon emissions are concerned. However, this paper
defines the model from a novel perspective, a multi-objective model is developed for the GLRPCCL by
defining four objectives. The first objective is to optimize the economic effects concerning the fixed
costs of opening depots and renting fleet and the unfixed costs including drivers’ salaries and the
depreciation costs of vehicles. The second is to optimize the environmental effects, which is made
of the full set of GHG emissions including CO2, CH4, and N2O emissions. The third is to optimize
the social effects characterized by the average waiting time of drivers and clients. The last one is to
optimize the cargo’s effect that is affected by the cargos’ quality decay. To the best of our knowledge,
the proposed multi-objective formulation for the GLRPCCL has not been researched by others thus far.
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3. Formal Problem Description and Mathematical Model

The GLRPCCL is defined on a complete directed graph G=(V, E) where
V. = {1; ; N.; N. + 1; ; N. + M.} denotes the set of nodesrepresenting both the set of clients
(C = 1, ..., N) and the set of candidate depots (D = {N + 1, ..., N + M}) to be selected and
E = {(i, j) : i, j ∈ V, i 6= j}\{(i, j) : i, j ∈ D} is the set of arcs. For a client i ∈ C, the pickup and
delivery demand is pi and di, and the time window is [ei, li]. Each client has one identical type of
cargos (OC, RC, and FC) and service time sti depending on the pickup and delivery demand. For a
depot j ∈ D, the fixed costs of operating it, capacity, and closing time window are, respectively,
CDj, FDj, and TWDj. A heterogeneous fleet H = {h1, h2, h3}is used to serve the clients, and each
type of vehicle has a fixed cost of renting vehicle FVh and a fixed capacity CVh (h ∈ H). The drivers’
salary for each type of vehicle is denoted as DSh. The traveling speed and distance over (i, j) ∈ E are
pre-known and fixed. The goal of the presented model is to address the sustainable development for
the CCLs in views of improving the economic, environmental, and social effects, and also reducing the
quality degradation of RC and FC.

Before providing our model, several assumptions are given: (1) Each client must be served only
once by a depot and vehicle; (2) No overflows on the capacity of a vehicle and depot are allowed;
(3) The types of pickup and delivery demand of each client is the same; (4) The information of each arc
including speed and distance is known and static; (5) If the vehicle arrives early, it must wait until
the time window of each client is open, and must return to the original depot which it departs from
before the closing time window; (6) The OC and RC can be stored in the same vehicle, but the FC must
be separated.

Moreover, the proposed multi-objective model relies on the following three decision variables:
(1)xijh = 1 if the vehicle h ∈ H continuously visited clients i and j ∈ C and to 0 otherwise; (2) yi = 1 if
a depot i ∈ D is open and to 0 otherwise; (3) zij = 1 if the client i ∈ C is served by the depot j ∈ D and
to 0 otherwise.

3.1. Objectives Development

In the proposed multi-objective model for the GLRPCCL, four objectives are defined to concern
economic, environmental, and social impacts, as well as to reduce the quality degradation of cargos in
terms of RC and FC. The following four aspects are described as following.

(1) Economic aspect (the first objective)
Economic effects refer to the sustainable development concerning the long-term economic
interests of the logistics enterprise, namely the total logistics costs, which includes three parts:
the fixed costs of operating the selected depots, the fixed costs of renting fleet, and the variable
costs of hiring drivers and vehicle maintenance. Hence, the economic indicator is denoted as

TC = ∑
i∈D

FDiyi + ∑
i∈D

∑
j∈C

∑
h∈H

FVhxijh+ ∑
i∈C

∑
j∈D

∑
h∈H

DSh AT jhxijh (1)

where the unit of DSh is Yuan/min; ATjh (in seconds) is the moment that the typeh ∈ H of vehicle
arrives at the node j ∈ V.

(2) Environmental aspect(the second objective)
The transportation industry has a major impact on the planet, because of the large amount
of fuel used in its daily operations and the environmental consequences and greenhouse
effects resulted by consuming fossil fuel and exhausting gas [41]. Moreover, in cold chain
logistics, vehicles consume fuel and emit GHG during transportation and refrigeration equipment.
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Hence, the environmental impacts in this paper refer to the full set of GHG emissions including
carbon dioxide, methane, and nitrous oxide. The fuel consumption during the transportation is

TFC(t1, t2, s(t), h) = λ(khNhTh + Prc
h /η)× (t2 − t1) + γαG

∫ t2

t1

s(t)dt + γβh

∫ t3

t1

s(t)3dt (2)

where TFC(t1, t2, s(t), h) represents that the total fuel consumption (in liter) of a type of vehicle
h ∈ H traveling at s(t) from t1 to t2; G(in kg) is the sum of vehicle’s net weight (NWh) and the
weight of load; Prc

h is the engine power requirement related to engine wear and the operation
of vehicle accessories such as air conditioners and refrigeration compressors used in CCLs;
λ = ϕ/κψ, γ = 1/(1000× nt f η), α = a + gsinθ + gCrcosθ, and βh = 0.5Cd

hρAh; and the detailed
parameters in Equation (2) could see Tables S1 and S2 in the Supplementary Materials.
Considering the fourth assumption, in our instances, the speed and distance are no-dynamic.
hence, the fuel consumption TFCh(L) of vehicle type h over an arc (i, j) ∈ E with a distance dij
(in meter) traveling at constant speed sij (in m/s) is rewritten as

TFCijh = λ((khNhTh + Prc
h (index)/η)× dij/sij + γαGdij + γβhdijs2

ij)× xijh (3)

where Prc
h (index) is the extra power need to maintain the freshness of RC and FC, and it equals to

0 if only no RC and FC are loaded. For example, for a type of vehicle h1, if the types of loaded
cargos contain RC, Prc

h ( equals to 5 kW/s, and if the type of loaded cargos is FC, Prc
h (equals

to 8 kW/s. However, Equation (3) is not suitable for the case that the speed of vehicle equal
to 0, since if the types of cargos contain RC or FC and the vehicle must wait for opening the
time windows and serving the client, then the engine must not shut down. Hence, extra fuel
consumption follows Equation (2).

EFCijh = λ(khNhTh + Ppc
h (index)/η)× (max(ej − AT jh, 0) + stj)× tc× xijh (4)

where tc is the state of the vehicle, in other words, tc=0 if the type of cargo is OC and to 1
otherwise. Hence, the total fuel consumption can be:

LFC = ∑
i∈V

∑
j∈V

∑
h∈H

(EFCijh + TFCijh) (5)

According to the “Greenhouse gas emissions accounting method for land transportation
enterprises” (National Development and Reform Commission of the People’s Republic of
China [78]), GHG emissions are composed of methane, carbon dioxide, and nitrous oxide,
and GHG emissions are estimated as follows:

E = ECO2 + ECH4 + EN2O (6)

CO2 emissions are directly proportional to fuel consumption. In other words, 1 liter of diesel can
produce 2.32 kg of carbon dioxide. For the amount of CH4 and N2O, we follow the methods used
by [4]:

ECH4 = ∑
i∈V

∑
i∈V

dij × EFCH4 × GWPCH4 × 10−9 (7)

EN2O = ∑
i∈V

∑
i∈V

dij × EFN2O × GWPN2O × 10−9 (8)

Hence, the environmental indicator is represented by total emissions:

TE = 2.32× LFC + ECH4 + EN2O (9)
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(3) Social aspect(the third objective)
The social indicator is extremely significant for the logistics enterprises’ development in long-term
cooperation with clients and drivers by earning their loyalty and favor. This paper uses average
waiting time (AWT) to represent the social indicator:

min AWT = ∑
i∈V

∑
j∈C

∑
h∈H
{(max(ej − AT jh, 0) + α(max(ej, AT jh)− ej)} × xijh/N (10)

The first part max(ej − ATjh, 0) represent that the waiting time of vehicle h ∈ H at client j ∈
V; the second part max(ej, ATjh) − ej is the waiting time of client j ∈ V before being served;
the parameter α is the degree of importance for the waiting time of the client, in this paper, we set
α = 2. Moreover, we set that lj equals to ej + stj.

(4) Quality decay of cargos (the fourth objective)
The purpose of CCL is to improve the quality of RC and FC as much as possible, but the RC
(e.g., strawberries, milk, bayberry) and FC (e.g., seafood) can easily deteriorate in the CCL, so
this kind of cargos needs to be maintained in a proper low-temperature environment. Perishable
goods will gradually decline in quality or lose value over time. When product quality drops to a
certain extent, degradation in quality will occur. The quality degradation of cargos consists of
two parts: the degradation that accumulates over time during transport and the degradation that
occurs when the door is opened during unloading. We used the variable function of refrigerated
goods quality proposed by [79] to estimate the quality decay: D(t) = Dθe− δt.
The cargoes damage CQD1 resulted by the refrigerated vehicles in the travel process and the
cargoes loss CQD2 during the vehicles serve the clients can be defined as:

CQD1ijh = Q∗ijh ∗ (1− e
−δ

1,state
(ATjh−maxei ,ATih+maxej−ATjh ,0−sti) ) (11)

CQD2ijh = (Q∗ijh − qj ∗ r) ∗ (1− e−δ2,stateST j) (12)

where Q∗ijh is the weight of RC/FC cargos loaded by the vehicle h ∈ H traveling over an arc
(i, j) ∈ E, and it equals to 0 if no RC/FC is loaded; δ1,state and δ2,state are the spoilage rates of each
type of cargos, and state ∈ {1, 2, 3}; let r equals to 0 if no RC and FC is load and to 1 otherwise.
Hence, the total quality degradation of cargos as follows:

CQD = ∑
i∈V

∑
j∈V

∑
h∈H

CQD1ijhxijh + ∑
i∈V

∑
j∈C

∑
h∈H

CQD2ijhxijh (13)

3.2. Constraint

This section provides the necessary constraints according to the above assumptions,
described as follows.

∑
h∈H

∑
i∈V

xijh = 1, j ∈ C (14)

∑
h∈H

∑
i∈V

xjih = ∑
h∈H

∑
j∈V

xijh, i ∈ C (15)

Particularly, constraint (14) ensures that each client must be served exactly once. Constraint (15)
makes sure that entering and leaving edges to each client are equal.

max{∑
i∈C

dizij, ∑
i∈C

pizij} ≤ CDjyj, j ∈ D (16)

∑
h∈H

∑
i∈C

Qjih = ∑
i∈C

dizij, j ∈ D (17)
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∑
h∈H

∑
i∈C

Qijh = ∑
i∈C

pizij, j ∈ D (18)

0 ≤ Qijh ≤ CVhxijh, i ∈ V, j ∈ V, h ∈ H (19)

Qijh ≥ (di − pi)xijh, i ∈ C, j ∈ V, h ∈ H (20)

Qijh ≤ (CVh − dj + pj)xijh, i ∈ V, j ∈ C, h ∈ H (21)

∑
i∈D

∑
j∈C

Qijh = ∑
i∈C

∑
j∈V

dixijh, h ∈ H (22)

∑
i∈C

∑
j∈D

Qijh = ∑
i∈C

∑
j∈V

pixijh, h ∈ H (23)

∑
i∈V

∑
h∈H

(Qijh − dj)xijh = ∑
i∈V

∑
h∈H

(Qjih − pj)xjih, j ∈ C (24)

Constraints (16)–(18) are the limitations on the load of the depots, and constraints (19)–(24) forbid
that the load of the vehicle exceeds the vehicle capacity. In detail, constraint (16) is the limitation on
the load of the depot. Constraint (17) guarantees that a total load of each depot is equal to the total
delivery demand of clients assigned to it before starting to serve clients. Constraint (18) guarantees that
a total load of each depot is equal to the total pickup demand of clients assigned to it when the vehicles
return to it. Constraints (19)–(21) are bounding constraints for load variables. Constraint (22) imposes
that a load of each vehicle must equal the total delivery demand before serving clients. Constraint (23)
ensures that a load of each vehicle must equal the total pickup demand after returning to the depot.
Constraint (23) is the equilibrium constraint for the load of each vehicle traveled over each arc. Qijh is
the load of a type of vehicle h ∈ H traveled over an edge (i, j) ∈ E.

AT jh = (max{ATih, ei}+ sti + dij/sij)xijh, i ∈ V, j ∈ V, h ∈ H (25)

ATijxijh ≤ AT jhxijh ≤ lj, i ∈ V, j ∈ V, h ∈ H (26)

AT jh ≤ TWDj, j ∈ D, h ∈ H (27)

Constraint (25) is the temporal coherence. Constraint (26) makes sure that the vehicle must reach
each client before its closing time. Constraint (27) is the limitation on that each vehicle must return to
its departed depot before its closing time window.

∑
h∈H

xijh ≤ zij, i ∈ C, j ∈ D (28)

∑
h∈H

xijh ≤ zji, i ∈ C, j ∈ D (29)

∑
h∈H

xijh + zik + ∑
m∈M,m 6=k

zjm ≤ 2, i, j ∈ C, k ∈ D (30)

Constraints (28)–(30) forbid illegal routes, i.e., routes that do not start and end at the same depot.

∑
j∈D

zij = 1, i ∈ C (31)

xijh + ∑
k∈V

∑
p∈H,p 6=h

xjkp ≤ 1, i ∈ V, j ∈ C, h ∈ H (32)

Constraints (30) and (31) ensure that each client is assigned to only one depot and
vehicle, respectively.

zij ≤ yj, i ∈ C, j ∈ D (33)

∑
i∈C

zij ≥ yj, j ∈ D (34)
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Constraint (33) makes sure that the unselected depot cannot serve the client. Constraint (34)
guarantees that the opened depot must serve at least one client.

cti ∗ ctj ∗ xijh /∈ {3, 6}, i ∈ C, j ∈ C, h ∈ H (35)

Constraint (35) limits on the type of cargos loaded by each vehicle. cti is the type of cargos of client
i ∈ C, and cti ∈ 1, 2, 3 where 1, 2, and 3 represents the OC, RC, and FC, respectively. Hence, the mixed
type of cargos loaded by a vehicle must not belong to RC&FC and OC&FC.

4. Solution Method

In the single-objective problems, the purpose is to search one and only one optimal solution.
While the multi-objective problem is to obtain a set of Pareto solutions. This section provides the
solution method to obtain the Pareto solutions for solving the proposed multi-objective problem.
The following describes the solution representation, 16 neighborhood operators, and an effective
algorithm framework of MOEAs.

4.1. Solution Representation

One significant decision to develop an algorithm for combinatorial optimization problems is to
decide how to represent the solution in an effective way and associate it with the search space [24].
The chromosome used represents a complete solution, i.e., a set of routes. Each routing is stored in the
cell array (called as route cell) which is also stored in another cell array (called as depot cell) that has a
fixed length equaling the number of depots M. The depot cells contain the information about decision
on being selected whether or not and the route cells. If there is an unopened depot, the information
is set to ∅ and no routes are assigned. Moreover, we also apply the objective cell which is in line
with the objective values of the proposed problem which allowing a fast evaluation of the change of
objective values.

Figure 1 is a simple chromosome representation of a solution, which has a set of 15 clients
C ∈ {1, 2, ..., 14, 15} and a set of 5 possible depots D ∈ {16, 17, 18, 19}. The solution in the figure selects
{16, 17, 19} depots to serve the clients in the given order by four routes (vehicles).

The applied solution representation, together with the following 16 neighborhood operators,
allows obtaining feasible results, which could avoid to using repair methods for restoring feasibility.
Hence, the proposed representation and operators can speed up the search over the solution spaces.

Figure 1. A simple solution representation.
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4.2. Neighborhood Operator

Aiming at effectively solving the proposed problem, this paper developed a large composite
neighborhood formed by 16 operators, which is grouped into three modules: dominated pool
(DP), non-dominated pool (NDP), and mutational pool (MP). The purpose of DP is to obtain the
children solutions dominating parent solutions, which could speed up convergence in the early stages.
The goal of NDP is to achieve the children solutions that can’t be dominated by parent solutions,
which could help in obtaining a well-distributed Pareto front in the later period of the algorithm.
However, NDP may cause a stagnant state for the search process if the DP is not used. Although MP is
usually not sufficient to obtain competitive solutions, it can provide randomization when searching
global optimal solution. Note that the DP and NDP are based on local search procedures.

The set of MP consists of 6 mutational operators: “add”, “delete”, “crossover”, “insert”, “swap”,
and “decompose”. The first mutational operator was proposed by [80], named “add". It could
avoid premature convergence with few depots. The mechanism is to diversify the selected depots by
randomly choosing a new one, before reassigning between 1 and 2/3 of the routes to it. The second
mutational operator randomly deletes one opened depot and reassigns the routes to other opened
depots. The third mutational operator is “crossover” which exchanges one route of an opened depot
with another route of the other opened depots until a feasible solution is generated. The “insert"
operator is executed by inserting a client into another route. The “swap" operator swaps two clients
from different routes. Finally, the “decompose” operator split a solution into sub solutions, which could
avoid a long tracing of the route of vehicles with larger load. However, the use of MP is not to search
for better results but to provide randomness.

The set of DP and NDP consists of five local search operators: “2-opt”, “swap+”, “insert+”,
“fragment-based swap”, and “fragment -based insert”, which is used to search dominated solutions
or non-dominated results. The “swap+”/“insert+” operators are similar to the mutational operators
“swap”/“insert”, while “fragment-based swap” and “fragment-based insert” are used to dealing with
a fragment of two or three client locations rather than one client. The operator “2-opt” removes the
two arcs from two different routes before reconnecting the new four fragments created. Figure 2 shows
the schematic diagrams of several operators.

Figure 2. Schematic diagrams of 6 mutational operators.

Moreover, in this paper, tow search strategies are proposed for DP and NDP operators: first (FI)
and best improvement (BI). FI returns with a dominated solution for DP and a non-dominated solution
for NDP once the solution is searched. While BI returns with a Pareto solution dominating parent
solution for DP and a set of Pareto results that can’t be dominated by the parent solution for NDP until
to extra better solutions can be found. However, the decisive issue is to design the stop criteria for
providing a fair comparison, described in Section 4.3.
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4.3. Optimization Framework

The proposed MOEA algorithm starts by initializing the population (P), calculating fitness (FP),
and the archive population (AP) only including Pareto solutions, which is then returned (Step 1).
After that, the main loop is executed and stops when the maximum number of iterations Tmax

is reached.
In each iteration of the main loop, tournament selection is used to select individuals to construct

the mating pool according to the evaluation function in NSGA-II, SPEA2, and IBEA (Step 4).
For each individual in the mating pool, a three-phase evolutionary process is developed to modify it.
First, the proposed algorithm randomly selects a mutational operator from MP to perturb the individual
(Steps 6 and 7). Second, a local search procedure is randomly selected from DP to search for better
solutions that dominated the individual generated in the first phase (Steps 8 and 9). The third phaser
randomly select a local search procedure from NDP to achieve non-dominated results (Steps 10 and 11).
The reason for this strategy is that DP can speed up the convergence by obtaining better solutions and
NDP can achieve many non-dominated solutions, which could search the well-distributed solutions
located in the real Pareto front (RPF). Steps 14 and 15 are used to update the population which will be
evolved in the next iteration, and the environmental selections of NSGA-II, SPEA2, and IBEA are used.
The goal of Steps 16–18 is to update the AP made of 10×Np individuals by the environmental selection
used in NSGA-II. The reason returning the AP is that the proposed problem is NP-hard, the population
AP contains the best Pareto solutions so far in each independent run. pm is the mutational probability.

Algorithm 1 MOEA framework for the GLRPCCL
Input: Np, Tmax, pm, and k in IBEA
Output: Archive population (AP)

//Initialization
1: T←0; Generate(P); Calculate fitness (FP); AP←P

//Main loop
2: Repeat
3: T←T + 1; OP=Φ
4: Tournament selection (P, FP) to construct mating set (MS)
5: while i<Np do

//Mutation
CS←MS(i)

6: if rand ≤ pm then
Randomly select an operator (op) in MP
Apply op to modify MS(i) and obtain CS

7: end if
//Local search

8 : Randomly select an operator (op) in DP
9 : Apply op to improve CS and obtain CS2
10: Randomly select an operator (op) in NDP
11: Apply op to improve CS2 and obtain CS3

//Construct offspring population (OP)
12: OP←[OP, CS2, CS3]
13: end while

//Update population
14: Merge population: TP←[P, OP]
15: Update of population: Apply environmental selection of a MOEA

(i.e., NSGA-II, SPEA2, IBEA) to generate new population (NP)→ P
//External archive

16: Merge population: TAP→[AP, OP]
17: if the number of non-dominated results in TAP exceeds 10× Np then

Save the best 10× Np individuals of TAP into AP
else

Save the nondominated individuals of TAP into AP
18: end if
19: until T← Tmax
20: Return AP
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The algorithm returns the AP when the main loop stops. Algorithm 1 provides an overview of
the pseudo-code of the proposed MOEA framework. However, Algorithm 1 is only suitable for the
MOEA implementing FI. To provide fair comparisons between MOEAs using FI and MOEAs using BI,
this paper provides the average computing time of Step 5–13 in MOEAs using FI as the termination
conditions of the MOEAs using BI.

5. Computational Experiments and Analysis

Implementation aspects, computational experiments, and analysis are presented and discussed in
the following sections.

5.1. Implementation and Parameters Setting

The proposed MOEA algorithms are implemented in MATLAB language and run on a PC with
an Intel Core i5-6200K CPU at 2.40 GHz and 8 GB memory under the Windows 10 system.

Since the proposed problem is time-consuming and difficult to solve, the population size Np is
set to 100. As to the size of the archive population, we save 10× Np individuals. For the maximum
number of iterations (Tmax) used in MOEAs using FI, it depends directly on the number of clients
and depots:

Tmax = ω× (N + M) (36)

The multiplier ω depends on the size of the instance, taking on the value 30 for smaller instances
(N = 40), 40 for mid-size instances (N = 50), and 50 for larger instances (N = 60). The larger the instance
size, the harder it is to solve. Hence, the performance of the algorithm depends on ω. In the IBEA,
we follow the suggested value for the parameter κ equalling to 0.05. For the mutational probability Pm,
we set it by the initial experiments in Section 5.4.

5.2. Performance Indicator

This paper investigates the multi-objective GLRPCCL, hence, how to effectively evaluate the
performance of the proposed MOEA framework is a significant issue for the multi-objective GLRPCCL.
Li et al. [81] stated that the assessment of an MOEA is mainly from two aspects: the proximity to
the RPF and the diversity of the approximate Pareto front (APF). Hence, this paper applied four
widely used metrics to estimate the performance of the proposed approaches: hypervolume (HV) [82],
inverted generational distance (IGD) [83], coverage (C) [82], and diversity metric (DM) [16].

HV measures the size of the coverage space between the APF and a reference point. The greater
the HV value, the better the diversity and distribution. IGD measures the distance between RPF
and APF. The lower the IGD value, the better the quality of the APF approximating the entire RPF.
IGD is equal to 0, indicating that the obtained Pareto front contains every point of the RPF. The C is to
compare the relative coverage of the two solution sets in MOEA. In this paper, we use the sets of RPF
and APF to compare the non-dominated relationship between APF and RPF. A smaller value of this
metric indicates the APF has better performance. The DM is adopted to evaluate the diversity of a set
of non-dominated solutions. A larger DM value indicates a better diversity of APF.

However, in our case, the set of RPF is unknown. Therefore, according to the literature [84],
we use all the APF sets obtained by all algorithms to form RPF after removing the repeated and
dominated solutions. However, the set RPF is still an approximation of the true Pareto front.

5.3. Test Instances

The instances used in this paper were provided by [2]. In the randomly generated instances,
the number of clients isN ∈ {40, 50, 60}, and the number of depots is M ∈ {6, 7, 8}. Clients and depots
are randomly distributed in the square 50 km × 50 km. A uniform distribution is applied to generate
the pickup and delivery demand for each client in a range [0.1 1.6] tons and the capacity of the depots
in a range [10, 15] tons. The opening time window of each client was derived from the instance C101
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in [85], then it is divided by 2, and the closing time window of each client relies on the service time
(see Equation (37), that is, li = ei + sti(i ∈ C).

sti = 1800× di + pi

∑i∈N (di + pi)/N
(37)

For the operation fee of each depot, we set them in a range [500, 100] Yuan, and the closing time
windows of all depots are set to 12 h. The speed of each edge is in a range [20, 70] km/h.

5.4. Parameter Tuning for Pm

In this section, we apply three well-known MOEAs combined with FI and BI to solve the instance
with 40 clients, aiming at analyzing the effect of mutational probability Pm and the performance of six
pairs, that is, NSGA-II/FI, NSGA-II/BI, SPEA2/FI, SPEA2/BI, IBEA/FI, and IBEA/BI. A total of 12
independent runs are performed.

To effectively analyze the performance, the comparison analysis has three features: (1) we used
the gaps of HV and IGD rather than the raw IGD and HV values since the raw IGD and values can’t
reflect the whole performance for all instances and variants (see Equations (38) and (39)); (2) the
non-dominated sorting strategies to obtain the best front construed by the gaps of HV and IGD; (3) if
the first front organized by the gaps of HV and IGD have multiple points, we used the scoring system
of the CHESC cross-domain heuristic search challenge (http://www.asap.cs.nott.ac.uk/external/
chesc2011/), in other words, the top eight ones score 10, 8, 6, 5, 4, 3, 2, and 1, respectively. This paper
uses the average gaps of IGD and HV, hence, the highest score is 20 for each pair. Aiming at analyzing
the effect of mutational probability Pm, we set pm ∈ 0, 0.2, 0.4, 0.6, 0.8, 1. Table 3 is the average gap of
12 runs for six MOEAs, and the average gaps of four instances for the HV and IGD values are plotted
in Figure 3.

GapHV(i) =
HVRPF − HVi

HVRPF
× 100% (38)

GapIGD(i) =
IGDi −mini∈K {IGDi}

mini∈K {IGDi}
× 100% (39)

Looking at Table 3 and Figure 3, for average gaps of HV, IBEA/BI was the best in terms of
the minimum average gaps of HV, regardless of the Pm value, followed by IBEA/FI. When Pm is
larger than 0, NSGA-II/FI and NSGA-II/BI are better than SPEA2/FI and SPEA2/BI. In terms of the
search strategy, IBEA/BI is better than IBEA/FI, however, NSGA-II/FI was better than NSGA-II/BI.
For the SPEA2, the performance of SPEA2/FI using pm ∈ {0.2, 0.4, 0.6, 1} is better than SPEA2/BI.
Moreover, the average gaps of HV obtained by SPEA2 increase as Pm increases, but the others are
concave. Hence, from the perspective of average gaps of HV, IBEA/BI using pm = 0.4 was the best
among six pairs.

Figure 3. Tendency of average gaps of IGD and HV along with Pm.

http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.asap.cs.nott.ac.uk/external/chesc2011/
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For average gaps of IGD values, although the average gaps of HV obtained by IBEA are the best,
the average gaps of IGD are the worst when Pm < 0.8, and the IGD gaps of IBEA decrease along with as
Pm increases. The average gaps of IGD achieved by IBEA using Pm = 1 are lower than that of SPEA2 but
larger than that of NSGA-II. For the performance of SPEA2, the average gaps increase as Pm increases
when Pm > 0 (except for SPEA2/FI using 0.2). For the performance of NSGA-II, with the change of Pm,
the change on average gaps is little. However, the effect of BI and FI is difficult to identify. From the
minimum gap, NSGA-II/BI using pm = 0.8 is the best, followed by NSGA-II/FI using pm = 1.

Through the above performance analysis, SPEA2 performed the worst. However, it is hard to
identify the top four pairs for the following experiments. Hence, we used the non-dominated sorting
strategy to find the first front, as shown in Figure 4. The results show that nine points construct the first
front. Then we utilized the scoring system to rank nine pairs in the first front, and the scores show that
NSGA-II/BI using 0.8 and IBEA/BI using 0.4 obtain 10 scores, and NSGA-II/FI using 1 and IBEA/BI
using 0.8 obtain 9 scores, while others achieve 8 scores. Hence, the top four pairs (i.e., NSGA-II/BI
using 0.8, IBEA/BI using 0.4, NSGA-II/FI using 1, and IBEA/BI using 0.8) are selected for the following
experiments. Moreover, we selected the best Pareto fronts with the maximum HV values and minimum
IGD values from 12 runs for each instance to plot the HV values and IGD values as iteration increases,
as shown in Figure 5, where the final population is the one produced in the last iteration.

Table 3. Average gaps of 12 runs for HV and IGD.

Instance Algorithm Average Gaps of 12 Runs (HV) Average Gaps of 12 Runs (IGD)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

C40-6-1

NSGAII/FI 13 12.6 12 12.4 12.8 13.1 64.1 56.6 40.1 44.7 48.4 42.7
NSGAII/BI 14.8 12.7 12.8 13.3 14.1 15.2 72.7 37.3 37.9 33.1 31.2 35.6
SPEA2/FI 10.7 12.6 13.2 15 15.8 16.5 27.9 42.5 40.1 52 50.6 55.5
SPEA2/BI 11 13.1 14.2 15.1 15.6 16.8 29.5 40.2 44.1 48.1 46.5 52.8
IBEA/FI 7.6 7 7 7.1 7.2 7.8 71.5 38 26.1 32 21.3 16.5
IBEA/BI 7.9 5.9 5.4 6.1 6.5 6.4 72.6 26.8 33.5 23.3 16 16.7

C40-6-2

NSGAII/FI 12.4 11.7 11 12.1 11.8 11.8 147.2 22.1 20 28.2 20 16.5
NSGAII/BI 12.5 11.9 12.6 12.1 12.4 13.8 161 27.1 27.9 22.7 17 28.7
SPEA2/FI 11.2 12.3 12.6 13.7 14.2 14.9 150.5 36.3 36.6 49 45.2 46.5
SPEA2/BI 11.4 12.8 13.7 14.7 14.8 15.6 175.2 40.3 55.9 51.3 58.7 52.9
IBEA/FI 10.6 8.6 8.3 8.1 8.6 8.6 390.6 200.1 139.9 102.2 39.1 36.1
IBEA/BI 9.1 6.9 6.4 6.9 7.1 8.1 316.1 260.7 102.5 66.3 46.9 32.9

C40-6-3

NSGAII/FI 13.5 11.2 10.7 11 11.8 12.1 272.8 40.9 25 19.6 25.1 21.1
NSGAII/BI 13.4 11 10.7 11.5 11.7 12.3 236.5 33.6 29.5 23.4 22.3 24.2
SPEA2/FI 12.6 11.1 12.1 13.2 15.2 15.2 295.9 34.7 34.7 33.2 47.1 48.7
SPEA2/BI 12 11.5 12.2 13.4 13.8 15.2 213.1 27.7 28.2 36 35.6 44.5
IBEA/FI 11.8 8.2 6.8 6.4 6 7.1 400.1 228.7 140.1 94.9 59.8 48.5
IBEA/BI 10.5 7.3 6.4 5.8 5.6 6.6 332.7 186.6 124.4 81.4 56.9 53.8

C40-6-4

NSGAII/FI 12.9 11.1 12.4 11.8 12.7 13.5 136.5 47.2 39.9 30.7 34.2 36.8
NSGAII/BI 12.6 12.9 13.1 13.2 14.2 14.2 93.1 42.2 35.3 40.6 43.3 42.3
SPEA2/FI 12.2 11.9 12.9 14.1 15.2 16.1 114.2 29.5 23.7 23.1 29.6 29.8
SPEA2/BI 11.6 12.3 13.6 14.4 14.9 15.8 59.7 29.2 29.1 28.4 31.2 34.1
IBEA/FI 11.3 7.9 9.1 7.9 8.2 8.7 189.4 63.5 84 52.3 65.9 35.6
IBEA/BI 10.6 7.3 7.2 7.6 6.8 8.6 137.9 99.6 65.3 68.3 60.9 40.2

Average

NSGAII/FI 12.9 11.6 11.5 11.8 12.3 12.6 155.1 41.7 31.2 30.8 31.9 29.3
NSGAII/BI 13.3 12.1 12.3 12.5 13.1 13.9 140.8 35 32.6 30 28.5 32.7
SPEA2/FI 11.7 12 12.7 14 15.1 15.7 147.1 35.8 33.8 39.3 43.1 45.1
SPEA2/BI 11.5 12.4 13.4 14.4 14.8 15.9 119.4 34.4 39.3 40.9 43 46.1
IBEA/FI 10.3 7.9 7.8 7.36 7.5 8 262.9 132.6 97.5 70.4 46.5 34.2
IBEA/BI 9.5 6.9 6.3 6.57 6.5 7.41 214.8 143.4 81.4 59.8 45.2 35.9
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Figure 4. First front constructed by nine points.

Figure 5. The HV and IGD values varying with the number of iterations.

5.5. Contradictory Nature and Necessity of Researching Four Objectives

This section discusses the contradictory nature of four objectives: (1) TC and AWT. The first
objective TC contains the fixed costs of vehicle and depots, as well as the drivers’ salary proportional
to the total traveled time, and AWT are included in the total traveled time. However, the fixed costs
of depots, the fixed costs of vehicles, and the drivers’ salary per minute depending on vehicle type
could provide contradictory nature between TC and AWT. (2) TE. The TE contains CO2, CH4, and N2O
emissions. And the carbon emission depends on the vehicle type, load, cargo type, speed, and traveled
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distance, while CH4 and N2O emissions are in line with the traveled distance. (3) CQD. The objective
CQD depends on the cargo type, the traveled time with s 6= 0, and the waiting time with s = 0,
while the spoiled rate is different. However, there is a positive correlation between TC and TE/AWT,
since the number of Pareto fronts of the instances with 40 clients is the fewest among six pairs
constructed by two of the proposed four objectives, as shown in Figure 6, which also shows that there
is certain contradictory nature among the proposed four objectives.

In terms of the necessity of researching four objectives, we provide the maximum and minimum
values concerning TC (in Yuan), TE (in kg), AWT (in minutes), and CQD (in kg) in the Pareto front,
as shown in Table 4. For the TC, TE, AWT, and CQD, the average gaps between the maximum
and minimum values reach to 234.71%, 202.34%, 970.30%, and 149.09%, respectively. Hence, it is
necessary to study the proposed multi-objective problem for the GLRPCCL. The reason is that if they
can’t simultaneously consider economic, environmental, and social effects and the cargos’ quality,
the decision-makers may make an imperfect judgment on the designs of the GLRPCCL.

Figure 6. Pareto fronts with two objectives of the instances containing 40 clients.

Table 4. Maximum and minimum values in the Pareto front.

Instance Minimum Value Maximum Value
TC TE AWT CQD TC TE AWT CQD

C40-6-1 3738.48 932.90 23.02 76.87 11,873.98 2376.73 187.43 159.98
C40-6-2 4129.70 953.86 25.42 119.71 13,660.60 2491.31 181.40 269.60
C40-6-3 3761.50 1051.80 22.05 117.86 13,117.77 2585.22 184.89 284.43
C40-6-4 3780.67 931.78 23.07 63.01 13,189.96 2108.46 159.12 169.93
C50-7-1 4912.56 1188.49 18.83 120.80 16,657.81 3292.93 196.43 285.33
C50-7-2 5345.49 1067.50 20.73 114.89 15,978.91 3259.81 192.12 250.48
C50-7-3 5118.51 1259.00 15.46 140.63 16,916.36 3856.75 190.59 336.35
C50-7-4 4580.33 1006.93 15.80 100.03 13,922.51 3258.54 158.12 238.41
C50-7-5 4662.00 1037.09 12.07 153.45 15,261.42 3625.81 205.85 417.56
C60-8-1 5565.93 1257.69 12.59 117.96 17,675.54 4015.26 165.35 301.91
C60-8-2 5206.41 1300.65 16.99 133.74 18,977.81 4809.71 201.07 356.98
C60-8-3 5130.46 1276.07 18.45 150.45 19,731.14 4582.69 198.99 381.13
C60-8-4 5188.25 1292.08 19.71 138.22 18,057.16 4157.19 183.95 386.58
C60-8-5 5434.07 1177.94 11.58 181.35 17,679.90 3684.71 174.90 513.57
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5.6. Effect of Delivery Strategy

This section is conducted to analyze the benefit of mixed transportation (MT) compared to the
traditional way named individual transportation (IT) that only one type of cargo can be assigned in
a vehicle. The used instances in this section are the cases with 40, 50, and 60 clients. Table 5 is the
performance indicators of Pareto fronts, that is, raw HV, IGD, C, and DM values.

Table 5. Performance indicators of IT and MT.

Instance HV IGD C DM
IT MT IT MT IT MT IT MT

C40-6-1 2.1192× 1011 2.1599× 1011 14.2566 2.8993 0.9468 0.7344 0.8214 0.9227
C40-6-2 4.5283× 1011 4.6690× 1011 19.5010 1.0978 0.9625 0.6617 0.7434 0.9675
C40-6-3 5.3288× 1011 5.3967× 1011 15.8131 1.7935 0.9680 0.6803 0.7778 0.9589
C40-6-4 2.2240× 1011 2.2865× 1011 16.2299 2.5124 0.9567 0.6774 0.8191 0.9332
C50-7-1 9.8539× 1011 1.0049× 1012 22.8042 0.7387 0.9852 0.9482 0.7086 0.9839
C50-7-2 7.3610× 1011 7.4825× 1011 24.3371 1.9301 0.9557 0.9458 0.7689 0.9522
C50-7-3 1.4567× 1012 1.4774× 1012 20.8781 1.7198 0.9701 0.9400 0.7712 0.9524
C50-7-4 5.4693× 1011 5.5718× 1011 18.1430 1.6732 0.9301 0.9090 0.7798 0.9529
C50-7-5 1.8063× 1012 1.9208× 1012 43.6377 0.4140 0.9961 0.9825 0.7256 0.9918
C60-8-1 1.2246× 1012 1.2687× 1012 30.2990 0.5709 0.9885 0.9669 0.7547 0.9844
C60-8-2 2.6436× 1012 2.6937× 1012 26.2407 1.7824 0.9760 0.9679 0.7561 0.9634
C60-8-3 2.6939× 1012 2.7430× 1012 30.3263 2.3379 0.9683 0.9567 0.7774 0.9511
C60-8-4 2.0328× 1012 2.0741× 1012 23.7116 1.3938 0.9715 0.9631 0.7328 0.9716
C60-8-5 2.1694× 1012 2.2769× 1012 35.5579 1.8574 0.9770 0.9787 0.7187 0.9608

On average, the proposed strategy could improve the HV value by 2.619%, the IGD value by
92.153%, the C value by 9.215%, and the DM by 26.519%. However, the IT could obtain better C value
for the C60-8-5 compared to the proposed MT. For the other performance indicators of other instances,
the proposed strategy performs better than IT, showing that mixed transportation can help in the
design of the GLRPCCL in terms of environmental, economic, and social effects, as well as maintaining
cargos’ quality.

5.7. Effect of Depots’ Time Window and Depot Cost

This section analyses the joint effects of depots’ time windows and depot cost from a novel
perspective. Assuming that the depots’ costs depend on the depots’ time windows, that is, the unit of
depots’ costs is Yuan/hour. Considering the original instances, the depots’ cost per hour in this section
equals the original depots’ cost divided by 12 h. Moreover, we also use the variants with TWD ∈ {9, 15,
18, 21, 24} h. The results of these experiments are compared with the base case. Tables 6 and 7 detailed
the raw values of HV and IGD values for each instance with six versions.

Table 6. Raw HV values of six variants of TWD.

Instance V1(9) V2(12) V3(15) V4(18) V5(21) V6(24)

C50-7-1 1.257× 1012 1.234× 1012 1.197× 1012 1.167× 1012 1.132× 1012 1.100× 1012

C50-7-2 7.163× 1011 6.936× 1011 6.634× 1011 6.372× 1011 6.051× 1011 5.737× 1011

C50-7-3 1.550× 1012 1.519× 1012 1.465× 1012 1.416× 1012 1.376× 1012 1.327× 1012

C50-7-4 5.894× 1011 5.742× 1011 5.553× 1011 5.390× 1011 5.215× 1011 5.041× 1011

C50-7-5 1.324× 1012 1.284× 1012 1.223× 1012 1.166× 1012 1.121× 1012 1.059× 1012

C60-8-1 1.102× 1012 1.075× 1012 1.046× 1012 1.010× 1012 9.778× 1011 9.480× 1011

C60-8-2 2.118× 1012 2.077× 1012 2.009× 1012 1.948× 1012 1.885× 1012 1.826× 1012

C60-8-3 1.613× 1012 1.568× 1012 1.527× 1012 1.470× 1012 1.411× 1012 1.366× 1012

C60-8-4 1.832× 1012 1.790× 1012 1.740× 1012 1.695× 1012 1.646× 1012 1.597× 1012

C60-8-5 2.061× 1012 2.000× 1012 1.905× 1012 1.840× 1012 1.754× 1012 1.685× 1012
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Table 7. Raw IGD values of six variants of TWD.

Instance V1(9) V2(12) V3(15) V4(18) V5(21) V6(24)

C50-7-1 68.838 52.983 84.555 153.712 281.527 451.025
C50-7-2 66.469 67.152 102.654 207.666 385.319 640.475
C50-7-3 50.302 39.490 77.792 162.864 300.579 489.882
C50-7-4 48.622 44.106 56.633 119.794 222.746 373.270
C50-7-5 51.867 49.439 107.765 224.534 410.125 598.243
C60-8-1 45.200 50.228 74.601 144.240 279.142 444.744
C60-8-2 47.074 43.352 55.814 119.988 227.824 389.878
C60-8-3 40.975 45.443 67.780 112.527 269.238 440.275
C60-8-4 42.466 47.948 64.009 127.510 228.563 368.378
C60-8-5 67.540 62.766 90.947 193.527 362.582 585.554

In terms of raw HV values, we find that as the TWD increases, the value of HV gradually decreases,
which means that the lower the TWD, the wider the Pareto front is. Moreover, we calculate the gaps
of HV values of each variant to the HV of RPF made of six variants, and we plot the average gaps in
Figure 7, which shows that the gaps of HV are almost linear with TWD. Hence, in the context of the
same operating cost per hour, lower TWD can help in designing the network of the GLRPCCL.

Figure 7. Change trend of HV gaps with increasing TWD.

In terms of raw IGD value, for C50-7-1, C50-7-3, C50-7-4, C50-7-5, C60-8-2, and C60-8-5, the raw
IGD values of V2(12) are lower than V1(9). The reasons may be that (1) The lower TWD have tighter
restrictions on the assignments of clients and vehicles than higher TWD, but the operating costs of
lower TWD allow the decisions that a larger set of depots can be opened; (2) The effectiveness of the
proposed algorithm is poor. Figure 8 plots the average IGD gaps of each variant to the minimum IGD
values. We can find that the average IGD gap is a polynomial or exponential equation of TWD.
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Figure 8. Change trend of IGD gaps with increasing TWD.

From the above analyzes, we could conclude that the Pareto front of the instances using lower
TWD is better than those using larger TWD in terms of HV, but there may exist the best TWD values for
a special instance to obtain the minimum IGD values. Hence, the logistics enterprises should analyze
the joint effects of depots’ cost and closing time windows to improve the performance of the GLRPCCL
concerning multiple impacts.

5.8. Effect of Fleet Composition

We now analyze the impact of one of the operations decisions, namely fleet composition. In this
part, we generate six variants for each original instance with different fleet composition, including h1,
h2, h3, h1&h2, h1&h3, and h2&h3, The first three only consider the homogeneous vehicles, while the
latter three are also the versions of HF that only consider two types of vehicles. Tables 8–10 present
the raw HV, IGD, and C values for the instances with seven variants, and the last row represents the
number of rank places at first, second, and third places of seven variants for 10 instances.

Looking at Table 8, the instances using h1&h2&h3 as fleet could obtain nine maximum HV values
and averagely improve the HV values about 7.245%, 3.622%, 23.349%, 0.870%, 2.184%, 2.667% when
compared to h1, h2, h3, h1&h2, h1&h3, and h2&h3, respectively. However, the maximum HV value is
obtained by h2&h3 for the instance C50-7-5. From a detailed perspective of the HV values obtained by
the homogeneous fleet, eight instances prefer the use of h1, followed by h2. However, the instances
C50-7-5 and C60-8-5 prefer the use of h2, followed by h3. In terms of the heterogeneous fleet using two
types of vehicles, the HV values of the instances using h1&h2 are the maximum among three variants,
followed by h1&h3. But the instance C50-7-5 and C60-8-5 uses the h2&h3 to achieve the highest HV
values. The reason may be that clients’ pickup and delivery demand and time windows may affect the
selection of type of vehicles. Hence, logistics companies should analyze the effects of fleet composition,
which is a significant factor in affecting the performance indicators of the GLRPCCL.



Sustainability 2020, 12, 8068 22 of 28

Table 8. Raw HV values of seven variants.

Instance h1 h2 h3 h1&h2 h1&h3 h2&h3 h1&h2&h3

C50-7-1 9.588× 1011 9.587× 1011 7.657× 1011 9.943× 1011 9.824× 1011 9.706× 1011 1.001× 1012

C50-7-2 7.401× 1011 7.192× 1011 5.875× 1011 7.485× 1011 7.482× 1011 7.265× 1011 7.549× 1011

C50-7-3 1.429× 1012 1.418× 1012 1.176× 1012 1.461× 1012 1.443× 1012 1.425× 1012 1.470× 1012

C50-7-4 5.426× 1011 5.283× 1011 4.343× 1011 5.499× 1011 5.486× 1011 5.300× 1011 5.549× 1011

C50-7-5 1.479× 1012 1.827× 1012 1.655× 1012 1.825× 1012 1.792× 1012 1.886× 1012 1.867× 1012

C60-8-1 1.236× 1012 1.209× 1012 9.951× 1011 1.263× 1012 1.247× 1012 1.218× 1012 1.268× 1012

C60-8-2 2.603× 1012 2.602× 1012 2.254× 1012 2.665× 1012 2.644× 1012 2.613× 1012 2.677× 1012

C60-8-3 2.666× 1012 2.647× 1012 2.254× 1012 2.712× 1012 2.689× 1012 2.650× 1012 2.725× 1012

C60-8-4 1.993× 1012 1.998× 1012 1.670× 1012 2.053× 1012 2.030× 1012 2.006× 1012 2.063× 1012

C60-8-5 1.807× 1012 2.187× 1012 1.890× 1012 2.196× 1012 2.106× 1012 2.219× 1012 2.232× 1012

f/s/t 0/0/0 0/0/0 0/0/0 0/8/2 0/0/8 1/1/0 9/1/0

Table 9. Raw IGD values of seven variants.

Instance h1 h2 h3 h1&h2 h1&h3 h2&h3 h1&h2&h3

C50-7-1 28.3382 28.1789 164.4297 17.1665 21.6414 26.7950 10.4875
C50-7-2 22.2361 31.3098 130.5514 18.8328 21.4808 27.6786 11.4050
C50-7-3 18.2962 25.5281 172.3676 17.9380 21.1502 24.0540 11.2074
C50-7-4 17.4139 23.1922 114.0420 15.3664 15.9547 21.7611 9.7126
C50-7-5 221.2876 32.2058 106.5927 37.6615 40.2009 25.8714 24.1445
C60-8-1 24.4832 30.6912 165.9259 18.7288 22.7786 28.1751 10.8799
C60-8-2 31.9548 28.5600 151.1358 21.5366 24.6615 26.5044 14.2788
C60-8-3 30.3134 31.8175 157.9705 24.1734 27.7285 31.1875 15.4287
C60-8-4 26.9337 25.6547 172.5683 18.2267 23.6548 23.9208 10.7317
C60-8-5 190.7419 29.9549 129.8395 29.5820 47.3324 24.9296 18.9193

f/s/t 0/0/1 0/0/1 0/0/0 0/8/1 0/0/6 0/2/1 10/0/0

Table 10. Raw IGD values of seven variants.

Instance h1 h2 h3 h1&h2 h1&h3 h2&h3 h1&h2&h3

C50-7-1 0.9541 0.9925 0.9990 0.8911 0.9481 0.9853 0.8681
C50-7-2 0.9557 0.9979 0.9987 0.9021 0.8852 0.9918 0.8616
C50-7-3 0.9401 0.9953 0.9998 0.8929 0.8925 0.9861 0.8545
C50-7-4 0.9035 0.9957 0.9997 0.8407 0.7733 0.9903 0.8128
C50-7-5 0.9820 0.9812 0.9936 0.9411 0.9886 0.9365 0.9413
C60-8-1 0.9625 0.9989 0.9994 0.9160 0.9121 0.9948 0.8718
C60-8-2 0.9664 0.9949 0.9999 0.9442 0.9331 0.9894 0.9095
C60-8-3 0.9618 0.9928 0.9994 0.9255 0.8965 0.9858 0.9029
C60-8-4 0.9674 0.9907 0.9999 0.9093 0.9264 0.9752 0.9060
C60-8-5 0.9879 0.9827 0.9971 0.9481 0.9830 0.9609 0.9464

f/s/t 0/0/0 0/0/0 0/0/0 0/4/6 2/4/2 1/0/1 7/2/1

Table 9 shows the raw IGD values for the instances using seven variants. We can find that all
instances using h1&h2&h3 can obtain the minimum IGD values, which are, respectively, higher than
h1, h2, h3, h1&h2, h1&h3, and h2&h3 about 59.40%, 52.67%, 90.61%, 37.75%, 47.79%, and 47.24%.
The instance C50-7-5 and C60-8-5 using h1 achieve the maximum IGD value, showing that it prefers
the usage of h2 rather than h1. The instances C50-7-1, C50-7-5, C60-8-2, C60-8-4, and C60-8-5 using
h2 could obtain lower IGD values than that using h1, and the instances C50-7-5 and C60-8-5 using
h2&h3 can achieve the best IGD values when compared to the variants using two types of vehicles.
Hence, the above conclusion is examined and effective.

Table 10 presents the raw C values for the instances using seven different fleet compositions.
The instance using h1&h2&h3 could obtain the minimum C values except for the C50-7-4, C50-7-5,
and C60-8-3. The above similar conclusions are also be drawn for Table 10. The Pareto solutions of
the instances using h1&h2&h3 should be made of the other six pairs, but this paper can’t achieve
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the perfect point. The reasons are that: (1) the proposed multi-objective GLRPCCL is NP-hard and is
much more difficult to solve than the LRP and VRP; (2) it is difficult to obtain all individuals located in
the Pareto front since the number of individuals of the first front is plentiful and over ten thousand;
(3) the efficiency of the proposed algorithm can’t be guaranteed for all instances. However, from the
results, the instances using HF could obtain better Pareto fronts when compared to those using a
homogeneous fleet.

5.9. Management Insights

This paper investigates the sustainable development for the GLRPCCL from the environmental,
economic, social, and cargos’ effects by defining the multi-objective model for the GLRPCCL. Based on
the above experiments, several management implications can be drawn as follows.

Section 5.6 carried out the experiments to analyze the effect of delivery strategies, and the
results show that the mixed transportation could obtain the Pareto fronts dominated the fronts of the
individual transportation in terms of performance indicators. Hence, the mixed transportation is the
best choice for cold chain logistics.

Section 5.7 conducted the experiments to analyze the joint effects of depots’ time windows and
operating costs, which illustrated that when the operational cost per hour is identical, the lower time
windows could obtain better performance indicators for the Pareto solutions. Hence, the logistics
companies should consider the joint effects of depots’ time windows and operating costs to obtain a
good delivery network before serving the clients.

Section 5.8 investigated the benefits of using a heterogeneous fleet in designing the delivery
network for the GLRPCCL. Compared to the homogeneous fleet and heterogeneous fleet made of
two types of vehicles, the heterogeneous fleet using three types of vehicles could obtain the best
performance indicators of Pareto front. In terms of comparison analysis, the heterogeneous fleet using
two types of vehicles also performs well. Moreover, the fleet composition is jointly affected by the
time windows, pickup demand, and delivery demand, which results in that there is a special type of
vehicle that may be the best choice for an instance. Hence, before assigning the vehicles, the logistics
enterprises should determine the appropriate fleet composition to avoid wasting resources.

6. Conclusions

GLRPCCL is an important issue in logistics and is quite crucial to reach the sustainable
development concerning economic, environmental, and social effects as well as the cargos’ effect.
For this purpose, this paper studied a GLRPCCL with multiple features: the time windows,
the heterogeneous fleet, simultaneous pickup and delivery, and mixed transportation. The main
contribution of this paper is the investigation of defining the model for the GLRPCCL concerning
multiple effects.

A multi-objective MILP formulation was proposed which minimizes four impacts. In the defined
model, the first objective is to optimize the total logistics costs including the fixed costs of depots and
fleet as well as the costs of drivers’ salaries. The second is defined by the total emissions made of CO2,
CH4, and N2O emissions. The third concerns the social impacts by minimizing the average waiting
time of vehicles and clients. The last one emphasizes the quality degradation of cargos which is one of
the main purposes of cold chain logistics. Since this problem is NP-hard, an effective framework of
MOEA was developed. In the framework, two search strategies were utilized, and a large composite
neighborhood made of 16 operators was developed to obtain Pareto solutions.

Afterward, the experiments were conducted by benchmark instances. The first experiment
was carried out to analyze the sensitivity of mutational probability for obtaining Pareto fronts.
The analysis illustrated that different MOEAs favor different parameter settings, and IBEA and
NSGA-II are, respectively, the best in achieving maximum HV values and minimum IGD values.
Furthermore, we also analyzed the contradictory nature among four objectives and provide the
descriptions on the necessity to study the proposed model. The results show that our proposed model
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could improve the economic, environmental, social effects and could reduce the quality decay of
cargos. Finally, we carried out extensive experiments to analyze the effects of the delivery strategy,
depots’ costs and closing time windows, and fleet composition on the Pareto solutions of the GLRPCCL.
And the conclusions are drawn as management insights.

The paper under consideration has some limitations. First, the algorithms could be improved
to obtain good Pareto fronts, which may be affected by the mutational probability. Second, the type
of cargos of each client is the same. For future research, we will develop a high-efficiency MOEA
framework with free parameters. And we also will improve the model by defining that the cargos’ types
of each client are different. Meanwhile, various uncertainties of the problem, such as uncertainties of
travel time and clients’ demands, will be considered, and fuel supply at stations may also be concerned.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/19/8068/s1,
Table S1: Parameters in the proposed model, Table S2: Vehicle-specific parameters.
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32. Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. The fleet size and mix location-routing problem with time windows:
Formulations and a heuristic algorithm. Eur. J. Oper. Res. 2016, 248, 33–51. [CrossRef]

33. Wang, S.; Tao, F.; Shi, Y.; Wen, H. Optimization of vehicle routing problem with time windows for cold chain
logistics based on carbon tax. Sustainability 2017, 9, 694. [CrossRef]

34. Leng, L.; Zhao, Y.; Wang, Z.; Wang, H.; Zhang, J. Shared mechanism-based self-adaptive hyperheuristic for
regional low-carbon location-routing problem with time windows. Math. Probl. Eng. 2018, 2018. [CrossRef]

35. Zhang, L.Y.; Tseng, M.L.; Wang, C.H.; Xiao, C.; Fei, T. Low-carbon cold chain logistics using ribonucleic
acid-ant colony optimization algorithm. J. Clean. Prod. 2019, 233, 169–180. [CrossRef]

http://dx.doi.org/10.3390/ijerph15010086
http://www.ncbi.nlm.nih.gov/pubmed/29316639
http://dx.doi.org/10.1108/JM2-05-2018-0064
http://dx.doi.org/10.3390/su12051967
http://dx.doi.org/10.1371/journal.pone.0230867
http://www.ncbi.nlm.nih.gov/pubmed/32271771
http://dx.doi.org/10.3929/ethz-a-004284029
http://dx.doi.org/10.1016/j.cor.2019.01.011
http://dx.doi.org/10.1080/21681015.2018.1479894
http://dx.doi.org/10.1016/j.ejor.2019.04.002
http://dx.doi.org/10.1007/s10696-018-9319-9
http://dx.doi.org/10.1109/ACCESS.2020.2979259
http://dx.doi.org/10.1016/j.cor.2011.08.013
http://dx.doi.org/10.1016/j.compag.2020.105406
http://dx.doi.org/10.1504/IJMCP.2016.079837
http://dx.doi.org/10.7307/ptt.v29i4.2193
http://dx.doi.org/10.1016/j.jclepro.2019.118317
http://dx.doi.org/10.1016/j.ejor.2015.06.082
http://dx.doi.org/10.3390/su9050694
http://dx.doi.org/10.1155/2018/8987402
http://dx.doi.org/10.1016/j.jclepro.2019.05.306


Sustainability 2020, 12, 8068 26 of 28

36. Zhang, C.; Zhao, Y.; Leng, L. A Hyper-Heuristic Algorithm for Time-Dependent Green Location Routing
Problem With Time Windows. IEEE Access 2020, 8, 83092–83104. [CrossRef]

37. Govindan, K.; Jafarian, A.; Khodaverdi, R.; Devika, K. Two-echelon multiple-vehicle location–routing
problem with time windows for optimization of sustainable supply chain network of perishable food.
Int. J. Prod. Econ. 2014, 152, 9–28. [CrossRef]

38. Validi, S.; Bhattacharya, A.; Byrne, P. Integrated low-carbon distribution system for the demand side
of a product distribution supply chain: A DoE-guided MOPSO optimiser-based solution approach.
Int. J. Prod. Res. 2014, 52, 3074–3096. [CrossRef]

39. Tang, J.; Ji, S.; Jiang, L. The design of a sustainable location-routing-inventory model considering consumer
environmental behavior. Sustainability 2016, 8, 211. [CrossRef]

40. Tricoire, F.; Parragh, S.N. Investing in logistics facilities today to reduce routing emissions tomorrow.
Transp. Res. Part Methodol. 2017, 103, 56–67. [CrossRef]

41. Toro, E.M.; Franco, J.F.; Echeverri, M.G.; Guimarães, F.G. A multi-objective model for the green capacitated
location-routing problem considering environmental impact. Comput. Ind. Eng. 2017, 110, 114–125.
[CrossRef]

42. Wang, X.; Li, X. Carbon reduction in the location routing problem with heterogeneous fleet, simultaneous
pickup-delivery and time windows. Procedia Comput. Sci. 2017, 112, 1131–1140. [CrossRef]

43. Qian, Z.; Zhao, Y.; Wang, S.; Leng, L.; Wang, W. A hyper heuristic algorithm for low carbon location routing
problem. In International Symposium on Neural Networks; Springer: New York, NY, USA, 2018; pp. 173–182.

44. Chen, C.; Qiu, R.; Hu, X. The location-routing problem with full truckloads in low-carbon supply chain
network designing. Math. Probl. Eng. 2018, 2018. [CrossRef]

45. Faraji, F.; Afshar-Nadjafi, B. A bi-objective green location-routing model and solving problem using a hybrid
metaheuristic algorithm. Int. J. Logist. Syst. Manag. 2018, 30, 366–385. [CrossRef]

46. Leng, L.; Zhao, Y.; Wang, Z.; Zhang, J.; Wang, W.; Zhang, C. A novel hyper-heuristic for the biobjective
regional low-carbon location-routing problem with multiple constraints. Sustainability 2019, 11, 1596.
[CrossRef]

47. Rabbani, M.; Davoudkhani, M.; Farrokhi-Asl, H. A new multi-objective green location routing problem with
heterogonous fleet of vehicles and fuel constraint. Int. J. Strateg. Decis. Sci. 2017, 8, 99–119. [CrossRef]

48. Leng, L.; Zhao, Y.; Zhang, J.; Zhang, C. An effective approach for the multiobjective regional low-carbon
location-routing problem. Int. J. Environ. Eesearch Public Health 2019, 16, 2064. [CrossRef]

49. Shen, L.; Tao, F.; Shi, Y.; Qin, R. Optimization of location-routing problem in emergency logistics considering
carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 2982. [CrossRef] [PubMed]
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