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Abstract: Several studies in environmental engineering emphasize the importance of air quality
forecasting for sustainable development around the world. In this paper, we studied a new approach
for air quality forecasting in Busan metropolitan city. We proposed a convolutional Bi-Directional
Long-Short Term Memory (Bi-LSTM) autoencoder model trained using a distributed architecture to
predict the concentration of the air quality particles (PM2.5 and PM10). The proposed deep learning
model can automatically learn the intrinsic correlation among the pollutants in different location.
Also, the meteorological and the pollution gas information at each location are fully utilized, which is
beneficial for the performance of the model. We used multiple one-dimension convolutional neural
network (CNN) layers to extract the local spatial features and a stacked Bi-LSTM layer to learn the
spatiotemporal correlation of air quality particles. In addition, we used a stacked deep autoencoder
to encode the essential transformation patterns of the pollution gas and the meteorological data,
since they are very important for providing useful information that can significantly improve the
prediction of the air quality particles. Finally, in order to reduce the training time and the resource
consumption, we used a distributed deep leaning approach called data parallelism, which has never
been used to tackle the problem of air quality forecasting. We evaluated our approach with extensive
experiments based on the data collected in Busan metropolitan city. The results reveal the superiority
of our framework over ten baseline models and display how the distributed deep learning model can
significantly improve the training time and even the prediction accuracy.
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1. Introduction

Nowadays, people are very concerned about air pollution with the development of industries.
The concentration of various kinds of pollution gas and solid particle, such as PM2.5, PM10, NO2,
SO2, CO, and O3 impacts human health and sustainable development around the world. In South
Korea, research on air pollution is very important and has constantly been viewed as a key topic in
environmental protection [1]. As depicted in Figure 1, air pollution has several significant factors.
We can classify these factors into two specific categories, namely primary factors and secondary factors.
The primary factors are essentially based on air pollutants such as solid particles, coal burning, traffic
volumes, and manufacturing emission. Each of these sources has a different spatial distribution and
temporal pattern. On the other hand, the secondary factors are mainly composed of meteorological
information, topography, and time. There is an increasing demand for predicting future air quality,
because people can take more precautions in order to not get sick if they know the air quality in advance.
Air quality forecasting is also highly significant to any government’s emergency management, since
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it can provide time for the government to implement appropriate emergency measures to mitigate
atmospheric pollution, such as limiting the production and emissions of heavily polluting enterprises
and restricting motor vehicles. However, air quality prediction is a complex task and improving the
accuracy of predictions and reducing the training time is an urgent and challenging problem in the
field of air pollution prevention.
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For the past ten years, several researchers have made effort on the air quality forecasting topic.
In these studies, the authors mainly focused on two types of modeling for air quality prediction. The first
type is knowledge-based models and the second type is data-driven models. The knowledge-based
models mainly focus on chemical and physical assumptions to represent the transportation and
transformation of air pollution particles. Many knowledge-based models have been proposed in
the literature. However, the successful application of knowledge-based models requires a solid
background in atmospheric and environmental science. Furthermore, when the model is applied
in different situations, the chemical and transportation rules may change, which generally lead the
model to inaccurate results. To solve this problem, some researchers in the literature implemented
statistical prediction methods such as autoregressive integrated moving average (ARIMA) [2], hidden
semi-Markov models (HSMMs) [3], and least absolute shrinkage and selection operator (LASSO)
model [4]. However, the statistical prediction method, which implements a mathematical logic and
regression analysis, has two significant shortcomings: (1) low accuracy; (2) urge time and energy
consumption, mainly caused by the analysis of long-term historical monitoring data. To summarize,
the statistical prediction methods [5] are effective for air quality forecasting. However, the diversity
factors of air pollution make it difficult to achieve a good prediction accuracy.

Recently, with the explosion of the era of big data and artificial intelligence, the data-driven
approach for air pollution modeling has been considered and applied in several forecasting systems.
Air quality prediction methods based on machine learning algorithms have overcome some of the
shortcomings of the older statistical prediction methods and numerical predictions mentioned above
and have become the mainstream of air quality prediction research. So far, air quality prediction
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methods based on machine learning have achieved some good results. For instance, Wang et al. [6]
proposed an online support vector machine (SVM) model to predict air pollutant concentration in
the Hong Kong downtown area. They performed a comparative experiment between conventional
SVM and online SVM and demonstrated the effectiveness of their model. In study [7], the authors
made a case study for air pollution prediction in Murcia city. The authors focused on the prediction of
the ozone (O3) level. They used several shallow machine learning models. Among these models the
Random Forest performed the best. Recently, study [8] proposed an air pollution forecasting approach
by using four advanced regression techniques (Decision Tree Regression, Random Forest Regression,
Gradient Boosting Regression, Artificial Neural Network (ANN) Multi-Layer Perceptron Regression)
and presented a comparative study to determine the best model for accurately predicting air quality
with reference to data size and processing time. The experiment results showed that Random Forest
Regression was the best model, performing well for pollution prediction for data sets of varying size
and location and with different characteristics.

Deep learning (DL) has been extremely applied in big data analysis to solve several problems related
to object recognition [9], image classification [10], speech recognition [10], time series forecasting [10],
and so on. Furthermore, the advent of deep learning technologies has remarkably enhanced the accuracy
and efficiency of air quality prediction. Deep learning is currently the most popular data-driven
method [9], which can extract and learn the inherent features of various air quality data automatically.
A wide range of papers applying deep learning for air pollution prediction in literature have achieved
good results. Among these papers, Zhao et al. [11] proposed a deep learning model called as long
short-term memory—fully connected (LSTM-FC) neural network, to predict the concentration of
PM2.5 among specific monitoring stations over 48 hours. The authors used historical air quality data,
meteorological data, and weather forecast data as input for their prediction model. Finally, they
evaluated the proposed approach with a dataset containing records of 36 air quality monitoring stations
and made a comparison with an ANN model and an LSTM model on the same dataset. Qi et al. [12]
proposed a hybrid model based on deep learning methods that embeds graph convolutional networks
and long short-term memory networks (GC-LSTM) to model and predict the spatiotemporal variation
of PM2.5 concentrations. The authors constructed historical observations as spatiotemporal graph
series, and historical air quality variables, meteorological factors, spatial terms, and temporal attributes
were defined as graph signals. For evaluation purposes, the authors compared their model with
some state-of-the-art approaches in different time intervals and based on the results of the proposed
model, achieved the best performance for predictions. Wen et al. [13] proposed a convolutional long
short-term memory neural network model to predict the concentration level of PM2.5. Spatiotemporal
features were extracted through the combination of the convolutional neural network (CNN) and
LSTM network. The meteorological data and aerosol data were also integrated, in order to improve
the performance of the model. Similar to the previous study, Huang et al. [14] developed a model
that integrates CNN and LSTM for PM2.5 prediction. They evaluated their model by using four
measurement indexes (Mean Absolute Error, Root Mean Square Error, Pearson correlation coefficient,
and Index of Agreement) in the experiments. Bai et al. [15] proposed a stacked autoencoder model
combining seasonal analysis and deep feature learning to predict the hourly concentration of PM2.5.
They evaluated their model using a dataset collected from three environmental monitoring stations in
Beijing. The results demonstrated the effectiveness of the proposed approach. Wang et al. [16] used
a hybrid deep learning model based on CNN and seq2seq. The CNN layer was used to extract the
spatial correlation among different stations and the seq2seq to capture the temporal relationship for
final prediction.

As we can see, a lot of hybrid models have been used recently for air quality forecasting task, and
some of them are performing well. However, these models suffer from two significant problems:

• The first problem is the very slow training speed, since the huge amount of data coming from the
different air quality monitoring stations is trained by using a centralized deep learning architecture.
In some worst cases these models need retraining because of their degradation caused by the
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variation of data distribution over time. So, the problem of the time and resource-consuming
during the training step is definitively a big challenge in air quality forecasting;

• The second shortcoming of these approaches is that they do not consider the fact that there is
usually some noise in air quality data and meteorological data, which affects, to a certain extent,
the accuracy and the performance of their predictions, since they are not able to extract suitable
features and information from pollution gas and meteorological data.

Considering these challenges, in this research we propose a deep learning model based on a
convolutional Bi-LSTM autoencoder framework for air quality forecasting. The proposed model is
trained by using a distributed architecture called data parallelism. The main contributions of this paper
are as follows:

• Study of current state-of-the-art machine learning and deep learning approaches for air
quality forecasting;

• Design and implementation of a distributed deep learning approach based on two-stage feature
extraction for air quality prediction. In the first stage, a stacked autoencoder extracts useful features
and information from pollution gas data and meteorological data. In the second stage, considering
the properties of multivariate time series air quality particles data, we use a one-dimension
convolutional layer (1D-CNN) to extract the local pattern features and the deep spatial correlation
features from air quality particles data. The CNN model is widely used in object recognition and
image processing area, but due to its one-dimensional characteristics it can also be applied to
time series forecasting tasks. Finally, the extracted features are interpreted by a Bi-LSTM layer
throughout time steps to make the final prediction;

• Evaluation of the proposed approach based on two specific phases. In the first phase we train
our deep learning framework within a centralized architecture with a single training server and
we compare it against ten state-of-the-art models. In the second phase we use a distributed deep
learning architecture called data parallelism to train the proposed framework on several training
workers to optimize its accuracy and its training time.

The remaining parts of this paper are organized as follows: Section 2 presents the data collection
and the feature correlation. In Section 3 we introduce our deep learning framework. The experiments
are described in Section 4. Finally, the conclusion and future work are discussed in Section 5.

2. Data Collection and Features Correlation

2.1. Data Collection

The proposed deep learning approach was tested by using two different data sources: (1) air
quality monitoring data from Air Korea [17] and (2) meteorological data from the Korean Meteorological
Agency (KMA) [18]. Both data sources were collected in Busan metropolitan city. The air quality
dataset included 20 monitoring stations, as depicted in Figure 2. The dataset period was from January
2019 to December 2019. It contained nine specific features, which were: PM2.5, PM10, NO2 (Nitrogen
dioxide), CO (Carbon monoxide), O3 (Ozone), SO2 (Sulfur dioxide) for air quality related features, and
the temperature, the humidity, and the wind speed for meteorological features.
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Figure 2. Air quality monitoring station present in Busan city.

2.2. Statistical Analysis

Figure 3 presents the overall characteristics of the air quality data. It shows the mean values of
the PM2.5 and the PM10 particles for all the monitoring stations except stations 2, 10, 16, 17, and 18,
because those stations had several months of missing values, and were excluded from this study.
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Among them, Jangnim-dong station and Hakjang-dong station recorded, respectively, 26.63 ug/m3

and 26.6 ug/m3 for PM2.5 and 46.21 ug/m3 and 46.41 ug/m3 for PM10, which were reported as the
highest mean values among all the stations. This result also shows that Busan city did not suffer from
very bad air quality during 2019, since according to the Korean air quality index (CAI) [17], if the PM2.5

concentration is between 16 and 35 and the PM10 concentration between 31 and 80, this means that the
CAI is normal.

As mentioned above, we did not consider some stations due to their huge amount of missing
values. Then, the remaining 15 stations also had some missing values due to sensor errors. Without
changing the design of the proposed framework, we used the average value of the data in the same
period to replace the missing values based on the following equations:

xβt ⇐ mβ
t xβt +

(
1−mβ

t

)
x̃β, (1)

mβ
t =

 1, xβt , True
0, xβt , False

, (2)
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∑T
α=1 mβ

α, xβα, Hhour(St, Sα)∑T
α=1 mβ

α, Hhour(St, Sα)
, (3)

Hhour(St, Sα) =
{

1, St = Sα
0, St , Sα

. (4)

In the above equations, α represents the time step where the β-dimensional component has been
observed, x̃β is the mean value of the β-dimensional component of the current time in the same month,
xβt represents the current true observation of the component, and St is the time corresponding to the t-th
time step. Figure 4 shows the concentration level of each features of the dataset after we preprocessed
it and filled all the missing values according to the above methodology.
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As presented in Figure 1, several factors affect the quality of the air, and each factor has its
own physical properties and dimensions. A deep analysis of these factors is required in order to
achieve a good accuracy and prevent training problems such as overfitting, so in data preprocessing
of our framework, we merged both data sources as one dataset, and we normalized that dataset by
subtracting the mean of each feature and dividing by the variance of each feature, as presented in the
following equation:

xi
std =

xi
− xi

mean

σi
x

. (5)

In the above equation, xi
mean and σi

x represent, respectively, the mean and variance of the i-th
characteristic variable.

2.3. Features Correlation

In order to build a proper prediction model for air quality, it is important to understand and identify
the correlation between the various factors of air quality index. In our case, since we wanted to predict
the concentration level of particles PM2.5 and PM10, it was very crucial to understand the correlation
between each of these two particles with the others features, especially with the meteorological features.
Particles PM2.5 and PM10 are affected by many measurable factors, but not all of them should be
used as input for the forecasting task, and the irrelevant factors would become burdensome for the
model. In order to see the correlation between each of these particles with the meteorological data, we
calculated the correlation coefficient (δ) between each features and the target particle based on the
following formula, supposing that we had an observation vector A = (a1, a2, a3, . . . , an) with another
vector B = (b1, b2, b3, . . . , bn):

δ =
n
∑n

i=1 aibi −
∑n

i=1 ai
∑n

i=1 bi√
n
∑n

i=1 a2
i −

(∑n
i=1 ai

)2
√

n
∑n

i=1 b2
i −

(∑n
i=1 bi

)2
. (6)

In the above formula, when 0 < δ < 1, there is a positive correlation, and if we have −1 < δ < 0,
the correlation will be negative. When the value of δ is closer to 1, the difference between A and B
is smaller and the correlation is higher. In Figure 5 we present the features correlation heatmap of
the dataset with the particle PM2.5 as target. Besides the feature correlation heatmap, we also created
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several pairwise bivariate distribution plots in order to clearly see how each particle is affected by
the gas features (O3, NO2, CO, and SO2) and the meteorological features (wind speed, temperature,
and humidity).Sustainability 2019, 11, x FOR PEER REVIEW 7 of 18 
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This analysis was very important because in the proposed approach we propose encoding the key
evolution patterns of the meteorological and the gases time series data to provide more information
and patterns for the final prediction of both particles.

As depicted in Figures 5 and 6, PM2.5 and PM10 both had a negative correlation with the
temperature and the wind speed, which means that lowering the temperature could increase the
concentration level of these particles and result in bad air quality. At the same time, high wind speed
will result in normal or good air quality, since the wind will disperse the particles in the air and
high humidity usually causes a high concentration of particles. Moreover, high levels of NO2, CO,
SO2, and a low level of O3 also lead to a high concentration of particles. It was also found that both
particles were highly correlated, which indicates that they have very similar patterns, so we did not
use both as input to predict one or another in order to avoid redundant information that could lead to
overfitting. For example, while predicting the PM2.5 we did not use PM10 as input, and vice versa.
On the other hand, all the meteorological features were weakly correlated with each other, which
shows that there is no information replica between them, and they could be directly used as the input
of the prediction model.
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3. Proposed Deep Learning Architecture

Several researchers in literature have studied hybrid deep learning models, which are usually
effective for improving the performance of typical deep learning algorithms. In the proposed
architecture, we combine a stacked autoencoder, a convolutional neural network, and a bi-directional
LSTM layer together to predict the concentration level of PM2.5 and PM10 based on data collected
in Busan metropolitan city. The proposed deep learning framework is based on two stages of deep
features extraction. In the first stage we extract suitable features from both particles time-series
data, and in the second stage we use a stacked autoencoder layer for encoding the key patterns of
meteorological and gas related features. Figure 7 shows the architecture of the proposed model.
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3.1. 1D-CNN for Deep Features Extraction on PM2.5 and PM10 Particles Data

The CNN model is widely used in the object recognition and image processing area, but due to its
one-dimensional characteristics it can also be applied to time series forecasting tasks. In our study, the
CNN model takes the air quality data in one-dimensional form, wherein the data are shaped in order
of sequential time instants. Moreover, considering the properties of multivariate time series air quality
data, we also leverage the strength of one-dimensional CNN (1D-CNN) to extract the local pattern
features, and the deep spatial correlation features of the 20 air quality monitoring stations present in
Busan metropolitan city. A standard CNN model has four layers: input, convolutional, pooling, and
output layers. A typical convolution process can be represented by the following equation:

X(l) = φ
(
X(l−1)

∗W(l) + b(l)
)
. (7)

X(l) and X(l−1) symbolize the output pattern of the lth and (l − 1)th layers. W(l) and b(l) are,
respectively, the weight and the bias of the lth layer, and φ is the activation function. To minimize
the dimension of data, the CNN network implements a pooling layer after the convolutional layer to
improve the model configuration. The pooling layer can select useful data from the input layer. CNN
combines convolutional and pooling layers, which is represented through the following equation:

X(l+1) = φ(pool max X(l+1)
∗W(l+1) + b(l+1)). (8)

In order to represent the spatial-temporal features of PM2.5 and PM10 particles among all the
monitoring stations, we pre-trained several one-dimensional CNN layers to select local recurring
features and deep spatial similarity features of multiple patterns observed in different stations.
Apart from image processing that uses two-dimensional image pixels as CNN’s inputs, multiple
one-dimensional data are inputted to the first part of our deep learning framework.

3.2. Using Stacked Autoencoders for Gas Features and Meteorological Patterns Encoding

There are several important indicators in the air quality forecasting task. Predicting particles such
as PM2.5 and PM10 without gas features and meteorological information may result in bad accuracy
and therefore bad decision-making, and this is why the large majority of the available dataset related to
air quality are not only based on particle matters, but also on meteorological data and gas-related data.
Considering that, in this study, we took into consideration the meteorological and the gas features to
improve the accuracy of our model while predicting PM2.5 or PM10. We used a stacked autoencoders
network to encode the information from these features. An autoencoder can be viewed as a kind of
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neural network typically based on one hidden layer, which aims to set the objective value equal to the
input. It usually compresses the input into a latent-space representation, and then reconstructs the
output from this representation. Autoencoder networks are unsupervised models including two major
processes, which are encoder process and decoder process. These major processes allow this neural
network to learn some more abstract features by an unsupervised way. In this paper, we intended to
build a vector representation for meteorological and gas information and use it for the final prediction
of the PM2.5 or PM10 particle.

3.3. Implementation of Stacked BiLSTM for Capture Temporal Dependencies Considering Forward and
Backward LSTM Directions Simultaneously

Traditional methods such as ARIMA and some shallow learning algorithms have suffered poor
performance in forecasting tasks due the fact that they do not consider the long-term dependence
of time series data. The LSTM network as presented in Figure 8 has been so far the best solution to
overcome this shortcoming. In an LSTM model, units can teach the network to learn when to forget
historical data and when to update memory units through a new input architecture. The basic structure
of an LSTM memory unit is composed of three essential gates, namely, input, forget, and output, as
presented in Figure 8. The gates include a sigmoid layer and a pointwise multiplication operation and
can control the data flow of LSTM to prevent gradient eruption. The input gate determines the number
of new features that will be reserved, the output gate decides the data that will be delivered, and the
forget gate regulates the content that will be abandoned from the previous states. The memory units
include a historical information form, which is controlled by the three gates. The conventional LSTM
block computing process uses the following equations:

it = σ(Wixt + Uiht−1 + Vict−1), (9)

ft = σ
(
W f xt + U f ht−1 + V f ct−1

)
, (10)

ot = σ(Woxt + Uoht−1 + Voct), (11)

c̃t = tan h(Wcxt + Ucht−1), (12)

ct = ft◦ct−1 + it◦c̃t, (13)

ht = ot
◦ tan h(ct). (14)

The input gate it determines the value that needs to be updated and updates the memory cell c̃t.
The forget gate ft identifies the information that is to be forgotten at t − 1 time with the output value
ht−1. The output gate ot and memory cell ct determine the information that can be output and get the
output value ht.
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One drawback of the traditional is that it only proceeds in a unidirectional way and may cause
the loss of significant information when extracting deep suitable features. Therefore, it is important
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to utilize both directions of network traffic in order to generate more important features. The goal is
to split the state neurons of a standard LSTM into a part that is responsible for the backward states
and a forward state. Outputs from forward states are not connected to inputs of backward states, and
vice versa. The Bi-LSTM combines the hidden LSTM states of opposite directions to the same output.
With this architecture, the output layer will be able to get information from both future and previous
states. In this paper, we applied Bi-LSTM, as shown in Figure 9, to capture the temporal dependencies
of particle matters between two directions. The Bi-LSTM considers forward and backward LSTMs
simultaneously through two independent hidden layers. The outputs of the forward and backward
LSTMs are concatenated to compute the output of Bi-LSTM. The hidden states of the forward and
backward layers are measured based on the following equations:

h f = o f
◦ tan h

(
c f

)
, (15)

hb = ob
◦ tan h(cb). (16)
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3.4. Using a Distributed Deep Learning Architecture to Train The Proposed Approach

To the best of our knowledge, distributed deep learning training architecture has never been
used to challenge the problem of air quality forecasting, especially to reduce the training time and the
memory consumption. Our framework was implemented using a distributed deep learning model
called data parallelism. We distributed the historical air quality data and the meteorological data across
multiple pipelines or nodes before training. The following algorithm represents the training process of
the proposed framework (Algorithm 1):

Algorithm 1 Distributed training process

1: Initialization of coordinator node parameters
2: Define the number of training nodes N
3: Dataset portioning into n shards
4: for each monitoring station
5: datashard← dataset/N
6: end for
7: for each node i ∈ {1,2, 3, . . . , N} do
8: LocalTrain(Model[parameters], datashard)
9: ∇fi← Backpropagation () //send gradient to coordinator node
10: end for
11: UpdateMode← Asynchronous () // Model replicas will be asynchronously aggregated via peer-to-peer
communication with the coordinator node

12: Aggregate from all nodes: ∇f ← 1/N
N∑

i=1
∇ f i

13: for each node i ∈ {1,2, 3, . . . , N} do
14: CoordinatorNode.Push (ParametersUpdate)
15: end for
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In order to reduce the training time and produces a significant computing performance we used a
distributed training process called data parallelism by having n training workers optimize a central
proposed model by processing n different shards (partitions) of the dataset in parallel. In this setting,
we distributed n model replicas over n processing training nodes. Therefore, every node held one
model replica. Then, the workers trained their local replica using the assigned data shard. A parameter
server was responsible for the aggregation of model updates, and parameter requests coming from
different workers. The final flow of the proposed approach is presented in Figure 10.
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4. Experiment Evaluation

4.1. Experiments Setup

This section describes the hardware and software environment of the experiments. We conducted
our experiments on a PC Server, with an AMD Ryzen 7 2700x 8-core processor 3.7 GHz processor, two
GPUs (NVIDIA GeForce RTX 2080), and 32 GB memory. The proposed framework was implemented
using python programming language, we used TensorFlow which is an open source deep learning
library to build our learning model, and the other deep learning state-of-the-art models. The library
PySpark from the software apache spark was used to perform a distributed computing platform.
Scikit-learn was adopted to build shallow learning models. Evaluation of performance was conducted
using sklearn metrics. The optimization method was Adam optimizer. In all experiments, the training
data and the testing data accounted for 80% and 20% of the dataset, respectively. We compared our
framework against 10 state-of-the-art models, which were:

• ARIMA [2]: autoregressive integrated moving average (ARIMA) is a time series prediction model
which combines moving average and autoregression components;

• Random Forest regression [8]: a machine learning algorithm which aims to generate every tree in
the ensemble from a sample with replacement (bootstrapping) from the training set;

• GBDT [8]: Gradient Boosting Decision Tree (GBDT) is a powerful and widely used machine
learning method in time series data;

• Lasso: Lasso is a popular regression analysis algorithm that performs both variable selection
and regularization;

• SVR: support vector regression is a machine learning method used for time series forecasting. This
method is based on five specific kernels, which are linear, poly, RBF, sigmoid, and precomputed.
In this experiment we used the linear kernel to predict the air quality and compare with the
proposed approach;

• ANN multi-layer perceptron regression: a multilayer perceptron (MLP) is a class of feedforward
ANN that learns a function f (.) : Rm

→ R0 by training on a dataset, where m is the number of
dimensions for input and 0 is the number of dimensions for output;
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• RNN: the recurrent neural network is a specific kind of neural network that allow previous output
to be used as inputs while having hidden states;

• LSTM [11]: long short-term memory network (LSTM) is a special kind of recurrent neural network,
widely used for time series forecasting;

• Stacked deep autoencoder (DEA) [15]: autoencoder is a kind of unsupervised learning structure
that owns three layers: input layer, hidden layer, and output layer;

• CNN+LSTM [12]: hybrid model based on convolution neural network and LSTM.

We evaluated the performance of our model using the following evaluation metrics:

• MAE (mean absolute error): mean absolute error is used to measure the average magnitude of the
errors in a set of data values (predictions), without any consideration of direction. This metric is
based on the following statement:

MAE =
1
n

∑n

i=1

∣∣∣yi − ŷi
∣∣∣ (17)

• RMSE (root mean square error): the root mean square error is used to aggregate the magnitudes
of the errors in predictions for various times into a single measure of predictive power. It is a
measure of accuracy, which is widely used to compare the prediction error of multiple models for
a specific dataset:

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2 (18)

• SMAPE (symmetric mean absolute percentage error): the SMAPE is an accuracy metric based on
percentage errors. This metric can be defined as follows:

SMAPE =
1

2n

∑n

i=1

∣∣∣yi − ŷi
∣∣∣(∣∣∣yi

∣∣∣+ ∣∣∣ŷi
∣∣∣) × 100%. (19)

We divided our experiments into two phases. For the first phase we trained our model on a
centralized deep learning architecture, as usually happens in the literature, and compared it with
the-state-of-the-art methods that we mentioned above. For the second phase the proposed deep learning
framework was trained based on a distributed deep learning architecture called data parallelism.
In this phase we used 10 workers to train 10 different shards of the meteorological, gas, and air quality
data in parallel. Each worker held a replica of the proposed framework. We further used a parameter
node for the aggregation of model updates, and parameter requests coming from different workers.

4.2. Experiment Setup

4.2.1. Phase 1

In phase 1, we predicted the concentration level of the particle PM2.5 and PM10 based on the
historical air quality and meteorological data of Yeonsan-dong station. We used three layers of encoders
with the sigmoid function as activation function and three layers of decoders with Relu function.
The stacked autoencoders and decoders had different hidden layers, they were based on {128, 64,
32} nodes for the encoder parts and {32, 64, 128} nodes for the decoders. After pre-training SAE
on meteorological and gas data, we could obtain rough compressed data from final hidden layer of
corresponding SAE. These data were consequently concatenated with the output layer of the Bi-LSTM
network to make the final prediction. Table 1 summarizes the comparison results of different algorithms.
As shown in the table, the proposed framework was superior to other baseline models in terms of
PM2.5 and PM10 prediction performance. The accuracy of the GBDT model was the lowest for both
particles’ prediction. It had the highest MAE, RMSE, and SMAPE values, which were, respectively,
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16.17, 22.96, and 33.59 for PM2.5 prediction, and 23.05, 25.55, and 34.17 for PM10 prediction. The MLP,
SVR, RFR, and the LASSO algorithms also had high error rates. These five models performed poorly
while predicting both particles PM2.5 and PM10. The ARIMA performed a little bit better compared to
the previous one. It got 9.03, 13.49, and 27.81, respectively, for MAE, RMSE, and SMAPE evaluation
metrics while predicting PM2.5. On the other hand, 9.34, 12.89, and 27.78, respectively, for MAE,
RMSE, and SMAPE evaluation metrics while predicting PM10. The classic neural networks algorithms
like RNN, DAE, and LSTM were between 7.19 and 7.90 for the MAE, 8.93 and 10.02 for RMSE, and
23.15 and 24.17 for SMAPE metric for the PM2.5 forecasting. For PM10 forecasting the results were
similar. Finally, the hybrid model based on the convolutional neural network and LSTM had the best
performance among the state-of-the-art models in both predictions.

Table 1. Models’ evaluation results.

Models
PM2.5 PM10

MAE RMSE SMAPE MAE RMSE SMAPE

GBDT 16.17 22.96 33.59 23.05 25.55 34.17
MLP 15.63 19.03 32.11 22.38 19.91 36.09
SVR 14.28 18.72 33.17 15.71 19.32 34.18
RFR 12.73 16.31 29.41 13.64 14.63 30.41

LASSO 10.35 13.99 28.89 12.31 14.21 29.37
ARIMA 9.03 13.49 27.81 9.34 12.89 27.78

RNN 7.90 10.02 24.17 8.47 12.33 25.23
DAE 7.89 10.31 24.29 8.10 11.17 24.94

LSTM 7.19 8.93 23.15 6.99 9.33 24.61
CNN +
LSTM 5.90 8.33 21.03 6.21 8.27 21.93

Proposed
Approach 5.07 6.93 18.27 5.83 7.22 17.27

However, our approach outperformed even the hybrid model for both particles’ predictions.
As we can see, the deep learning models performed better than the classic machine learning algorithms
in general. By this, we can conclude that deep learning-based approaches are more efficient than
machine learning approaches for air quality forecasting task, and the hybrid models are more efficient
than the standard deep learning models.

In addition, we investigated the impact of each epochs on different deep learning models, as
presented in Figure 11. It can be seen how our method maintained the best performance compared
to the other models, especially while predicting PM2.5 particles. During the prediction of PM10 the
proposed model had a lesser error rate for the first 10 epochs, from epoch 17 to 24, the hybrid CNN
+ LSTM had the lesser error rate, and at the end we can see how the MAE value of the proposed
model decreased again and was lesser than the other algorithms. Furthermore, in this experiment,
for more detailed comparison, we plotted the prediction performance of the proposed model against
the three best performing baseline models (DAE, LSTM, and CNN + LSTM) while predicting both
particles PM2.5 and PM10. As represented in Figures 12 and 13, in contrast to the baseline models, the
prediction pattern of the proposed model was very similar to the real pattern of the time-series data for
both particles.
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deep learning models.

The prediction curve of the proposed model increased quickly, so it could forecast the particles
more accurately; on the other hand, baseline models, especially the deep autoencoders model, failed to
track the trends of PM2.5 and PM10. In this experiment the difference between both patterns (prediction
and real) can be seen more clearly during the time period of wave peak (see Table 2).

Table 2. Training time evaluation.

Models Average Training Time (s)

RNN 482
DAE 463

LSTM 345
CNN + LSTM 341

Proposed model 310

Then, we found in our experiment that the proposed framework had not only the best accuracy
compared to the baseline models but it also had the best training average times, as it averaged 310/s
while making the prediction PM2.5. The RNN model recorded the highest average training time, and
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the LSTM and the hybrid model had almost the same average time. In the following we will optimize
the performance of the proposed model, especially its training, by using a distributed architecture.

4.2.2. Phase 2

In this phase, we trained our model based on Algorithm 1. We used ten specific training workers
to perform this task. The replica of the proposed was dispatched over each worker with the model’s
parameters. We intended to predict the same particles using the same data as phase 1. As shown in
Figure 14, the proposed model performed the best for both particles’ prediction while training it using
six workers.
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Figure 14. Evaluation of the proposed model while using the distributed training process.

For instance, during the prediction of PM2.5, when the number of training workers reached six,
the MAE value was 5, the RMSE was 7.1, and the SMAPE 17.5, each of these values were recorded as
the lowest among all training workers’ numbers. These error values were even similar to the ones
recorded in phase 1. Also, we could observe a similar result happening for the predictions of particle
PM10, which recorded the values 5, 7.5, 22.8, respectively, for MAE, RMSE, and SMAPE. By looking at
this experience, we can conclude that the right number of nodes for the prediction of these two air
quality particles is six. Furthermore, we were also interested in analyzing the training time of the
proposed model during this second experimental phase.

As depicted in Figure 15, the training time of our model decreased while the number of workers
increased. At four workers we reached 200 s, which was the lowest training time. At six workers the
time increased a little bit to 220 s and then decreased to 210 s and stayed constant. Compared to the
centralized training in phase 1, the training time in phase 2 also decreased two times, which makes our
methods more effective.
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5. Conclusions

In this paper we proposed a convolutional Bi-LSTM autoencoder model for air quality prediction
in Busan metropolitan city. The proposed approach utilizes the historical PM2.5 and PM10 time series
data with the encoded meteorological and gas pollution data to perform the prediction. We used a
two-stage feature extraction method to allow our model to perform well in any atmospheric condition
(stable or unstable). In the first stage a stacked autoencoder extracts useful features and information
from pollution gas data and meteorological data, and in the second stage a convolutional layer is
used to extract deep spatial correlation features from air quality particles data. The training process
of the proposed approach was based on a distributed learning method, namely data parallelism, in
which several training workers were leveraged for training each partition of the air quality dataset by
using a model replica. A coordinator node was responsible for the aggregation of model updates, and
parameter requests coming from different workers. The experiments were conducted based on one-year
air quality data collected in Busan city. The training data and the testing data accounted for 80% and 20%
of the dataset, respectively, which means almost two months for testing data. The experimental results
showed the superiority of the proposed model over ten state-of-the-art models. The proposed model
recorded the lowest error rate while predicting both particles. For PM2.5 prediction, we registered
5.07, 6.93, and 18.27, respectively, for MAE, RMSE, and SMAPE evaluation metrics, and for PM10

forecasting we recorded 5.83, 7.22, and 17.27, respectively, for the same metric. Also, it was found
that the distributed training method can significantly improve the training time, which can help the
government to implement appropriate emergency measures to mitigate atmospheric pollution in a
short period of time.
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