Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Temporal Distribution of Fatal Crashes
3.2. Age and Gender
3.3. Rainfall Influence
3.4. Relative Risk during Rainy Conditions
3.5. Spatial Distribution of Crashes
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Status Report on Road Safety 2018. December 2018. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ (accessed on 8 September 2020).
- Ariffin, A.H.; Hamzah, A.; Solah, M.S.; Paiman, N.F.; Hussin, S.F.M.; Osman, M.R. Pedestrian-Motorcycle Collisions: Associated Risks and Issues. In MATEC Web of Conferences; EDP Sciences: Les Ulis, Paris, France, 2017; Volume 90, p. 01066. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Travel by Air, Land & Sea–Road & Traffic Safety. In Health Information for International Travel; 2020 Edition (Yellow Book 2020); Centers for Disease Control and Prevention: Atlanta, PA, USA, 2020. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-by-air-land-sea/road-and-traffic-safety (accessed on 4 September 2020).
- Munteanu, P.L.; Rosu, M.; Panaitescu, V.; Punga, A. Human and Environmental Factors Contributing to Fatal Road Accidents in a Romanian Population. RJLM 2014, 22, 97–100. [Google Scholar] [CrossRef]
- Pande, A.; Abdel-Aty, M. Discovering Indirect Associations in Crash Data through Probe Attributes. Transp. Res. Rec. 2008, 2083, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Hjelkrem, O.A.; Ryeng, E.O. Chosen Risk Level During Car-Following in Adverse Weather Conditions. Accid. Anal. Prev. 2016, 95, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, C.-L.; Subramanian, R.; Utter, D. Analysis of Speeding-Related Fatal Motor Vehicle Traffic Crashes Art. no. HS-809 839 2005. Available online: https://trid.trb.org/view/763754 (accessed on 29 June 2020).
- Xu, C.; Wang, W.; Liu, P. Identifying Crash-Prone Traffic Conditions Under Different Weather on Freeways. J. Saf. Res. 2013, 46, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Svancara, A.M.; Kelley-Baker, T. Understanding the Impact of Road Design Characteristic on Teen Driver’s Fatality. Traffic Inj. Prev. 2020, 21, 313–318. [Google Scholar] [CrossRef]
- Unrau, D.; Andrey, J. Driver Response to Rainfall on Urban Expressways. Transp. Res. Rec. 2006, 1980, 24–30. [Google Scholar] [CrossRef]
- Saha, S.; Schramm, P.; Nolan, A.; Hess, J. Adverse Weather Conditions and Fatal Motor Vehicle Crashes in the United States, 1994-2012. Environ. Health 2016, 15, 104. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liang, L.; Evans, L. Fatal Crashes Involving Large Numbers of Vehicles and Weather. J. Saf. Res. 2017, 63, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pisano, P.A.; Goodwin, L.C.; Rossetti, M.A.U.S. Highway Crashes in Adverse Road Weather Conditions. In Proceedings of the 24th Conference on International Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, USA, 21–24 January 2008; p. 16. [Google Scholar]
- Fultz, A.J.; Ashley, W.S. Fatal Weather-Related General Aviation Accidents in the United States. Phys. Geogr. 2016, 37, 291–312. [Google Scholar] [CrossRef] [Green Version]
- Bergel-Hayat, R.; Debbarh, M.; Antoniou, C.; Yannis, G. Explaining the Road Accident Risk: Weather Effects. Accid. Anal. Prev. 2013, 60, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Khan, G.; Qin, X.; Noyce, D.A. Spatial Analysis of Weather Crash Patterns. J. Transp. Eng. 2008, 134, 191–202. [Google Scholar] [CrossRef]
- Jackson, T.L.; Sharif, H.O. Rainfall Impacts on Traffic Safety: Rain-Related Fatal Crashes in Texas. Geomat. Nat. Hazards Risk 2014, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Nixon, W.A. Effects of Adverse Weather on Traffic Crashes. Transp. Res. Rec. J. Transp. Res. Board 2008, 2055, 139–146. [Google Scholar] [CrossRef]
- Andrey, J.; Mills, B.; Leahy, M.G.; Suggett, J. Weather as a Chronic Hazard for Road Transportation in Canadian Cities. Nat. Hazards 2003, 28, 319–343. [Google Scholar] [CrossRef]
- Sun, X.; Hu, H.; Habib, E.; Magri, D. Quantifying Crash Risk under Inclement Weather with Radar Rainfall Data and Matched-Pair Method. J. Transp. Saf. Secur. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Hambly, D.; Andrey, J.; Mills, B.; Fletcher, C.; Fletcher, C.G. Projected Implications of Climate Change for Road Safety in Greater Vancouver, Canada. Clim. Chang. 2012, 116, 613–629. [Google Scholar] [CrossRef]
- El-Basyouny, K.; Barua, S.; Islam, M.T.; Li, R. Assessing the Effect of Weather States on Crash Severity and Type by Use of Full Bayesian Multivariate Safety Models. Transp. Res. Rec. J. Transp. Res. Board 2014, 2432, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Milton, J.C.; Shankar, V.N.; Mannering, F.L. Highway Accident Severities and the Mixed Logit Model: An Exploratory Empirical Analysis. Accid. Anal. Prev. 2008, 40, 260–266. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C.; Mannering, F.L. A Note on Modeling Vehicle Accident Frequencies With Random-Parameters Count Models. Accid. Anal. Prev. 2009, 41, 153–159. [Google Scholar] [CrossRef]
- Depaire, B.; Wets, G.; Vanhoof, K. Traffic Accident Segmentation by Means of Latent Class Clustering. Accid. Anal. Prev. 2008, 40, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Matkan, A.A.; Mohaymany, A.S.; Mirbagheri, B.; Shahri, M. Detecting the Spatial–Temporal Autocorrelation Among Crash Frequencies in Urban Areas. Can. J. Civ. Eng. 2013, 40, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D. Detecting the Spatial–Temporal Autocorrelation Among Crash Frequencies in Urban Areas. Accid. Anal. Prev. 2004, 36, 637–647. [Google Scholar] [CrossRef]
- Andrey, J. Long-Term Trends in Weather-Related Crash Risks. J. Transp. Geogr. 2010, 18, 247–258. [Google Scholar] [CrossRef]
- Edwards, J.B. Weather-Related Road Accidents in England and Wales: A Spatial Analysis. J. Transp. Geogr. 1996, 4, 201–212. [Google Scholar] [CrossRef]
- Andreescu, M.; Frost, D. Weather and Traffic Accidents in Montreal, Canada. Clim. Res. 1998, 9, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Sangare, M.; Gupta, S.; Bouzefrane, S.; Banerjee, S.; Muhlethaler, P. Exploring the Forecasting Approach for Road Accidents: Analytical measures with Hybrid Machine Learning. Expert Syst. Appl. 2020, 113855, 113855. [Google Scholar] [CrossRef]
- Oralhan, B.; Göktolga, Z.G. Determination of the Risk Factors That Influence Occurrence Time of Traffic Accidents with Survival Analysis. Iran. J. Public Health 2018, 47, 1181–1191. [Google Scholar]
- Benlagha, N.; Charfeddine, L. Risk Factors of Road Accident Severity and the Development of a New System for Prevention: New Insights from China. Accid. Anal. Prev. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Pande, A. ATMS Implementation System for Identifying Traffic Conditions Leading to Potential Crashes. IEEE Trans. Intell. Transp. Syst. 2006, 7, 78–91. [Google Scholar] [CrossRef]
- Ma, Z.; Shao, C.; Yue, H.; Ma, S. Analysis of the Logistic Model for Accident Severity on Urban Road Environment. In Proceedings of the 2009 IEE Intelligent Vehicles Symposium, Xi′an, China, 3–5 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 983–987. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.-R.; Wang, J. Analysis of Accident Severity on Chinese Two-Lane Rural Highways Using Multinomial Logit Model. ICTIS 2011, 693–699. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Noyce, D.A. Rainfall Effect on Single-Vehicle Crash Severities Using Polychotomous Response Models. Accid. Anal. Prev. 2010, 42, 213–224. [Google Scholar] [CrossRef]
- Wilson, F.A.; Stimpson, J.P. Trends in Fatalities from Distracted Driving in the United States, 1999 to 2008. Am. J. Public Health 2010, 100, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Lira, M.C.; Sarda, V.; Heeren, T.C.; Miller, M.; Naimi, T.S. Alcohol Policies and Motor Vehicle Crash Deaths Involving Blood Alcohol Concentrations Below 0.08%. Am. J. Prev. Med. 2020, 58, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanis, P.P.; Chang, H.-L. Modeling the Relationship of Accidents to Miles Traveled. Transp. Res. Rec. 1986, 1068, 42–51. [Google Scholar]
- Amoros, E.; Martin, J.-L.; Laumon, B. Comparison of Road Crashes Incidence and Severity Between Some French Counties. Accid. Anal. Prev. 2003, 35, 537–547. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Chen, C.L.; Radwan, A.E. Using Conditional Probability to Find Driver Age Effect in Crashes. J. Transp. Eng. 1999, 125, 502–507. [Google Scholar] [CrossRef]
- Yan, L.; He, Y.; Qin, L.; Wu, C.; Zhu, D.; Ran, B. A Novel Feature Extraction Model for Traffic Injury Severity and Its Application to Fatality Analysis Reporting System Data Analysis. Sci. Prog. 2019, 103, 3685041988647. [Google Scholar] [CrossRef]
- National Center for Statistics and Analysis. Fatality Analysis Reporting System (FARS) Analytical User’s Manual, 1975-2018; National Highway Traffic Safety Administration: Washington, DC, USA, 2019. [Google Scholar]
- National Highway Traffic Safety Administration. Traffic Safety Facts 2011 Data—Pedestrians. Ann. Emerg. Med. 2013, 62, 612. [Google Scholar] [CrossRef]
- Li, G.; Baker, S.P.; Langlois, J.A.; Kelen, G.D. Are Female Drivers Safer? An Application of the Decomposition Method. Epidemiology 1998, 9, 379–384. [Google Scholar] [CrossRef]
- Kahane, C.J. Injury Vulnerability and Effectiveness of Occupant Protection Technologies for Older Occupants and Women. Art. no. DOT HS 811 766 2013. Available online: https://trid.trb.org/view/1252398 (accessed on 21 July 2020).
- Dong, Q.; Wang, C.; Xiong, C.; Li, X.; Wang, H.; Ling, T. Investigation on the Cooling and Evaporation Behavior of Semi-Flexible Water Retaining Pavement based on Laboratory Test and Thermal-Mass Coupling Analysis. Materials 2019, 12, 2546. [Google Scholar] [CrossRef] [Green Version]
- American Society for Testing and Materials. ASTM Definitions of Terms Relating to Traveled Surface Characteristics. In Annual Book of ASTM Standards (E867); American Society for Testing and Materials: West Conshohocken, PA, USA, 2000; Volume 4, pp. 2–7. [Google Scholar]
- Ghebreyesus, D.; Sharif, H.O. Spatio-Temporal Analysis of Precipitation Frequency in Texas Using High-Resolution Radar Products. Water 2020, 12, 1378. [Google Scholar] [CrossRef]
- Black, A.W.; Mote, T.L. Characteristics of Winter-Precipitation-Related Transportation Fatalities in the United States. Weather Clim. Soc. 2015, 7, 133–145. [Google Scholar] [CrossRef]
- Stevens, S.E.; Schreck, C.J.; Saha, S.; Bell, J.E.; Kunkel, K.E. Precipitation and Fatal Motor Vehicle Crashes: Continental Analysis with High-Resolution Radar Data. Bull. Am. Meteorol. Soc. 2019, 100, 1453–1461. [Google Scholar] [CrossRef]
- Texas Demographic Center, Texas 2010 Census Data. Available online: https://demographics.texas.gov/ (accessed on 21 July 2020).
- Elvik, R. Laws of Accident Causation. Accid. Anal. Prev. 2006, 38, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Andrey, J.; Hambly, D.; Mills, B.; Afrin, S. Insights into Driver Adaptation to Inclement Weather in Canada. J. Transp. Geogr. 2013, 28, 192–203. [Google Scholar] [CrossRef]
- Farmer, C.M. Relationships of Frontal Offset Crash Test Results to Real-World Driver Fatality Rates. Traffic Inj. Prev. 2005, 6, 31–37. [Google Scholar] [CrossRef]
- Farmer, C.M.; Lund, A.K. Trends Over Time in the Risk of Driver Death: What If Vehicle Designs Had Not Improved? Traffic Inj. Prev. 2006, 7, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Cheung, I.; McCartt, A.T. Declines in Fatal Crashes of Older Drivers: Changes in Crash Risk and Survivability. Accid. Anal. Prev. 2011, 43, 666–674. [Google Scholar] [CrossRef]
- Sharif, H.O.; Jackson, T.L.; Hossain, M.; Zane, D. Analysis of Flood Fatalities in Texas. Nat. Hazards Rev. 2015, 16, 04014016. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.O.; Dessouky, S.; Weissmann, J. Exploring Rainfall Impacts on the Crash Risk on Texas Roadways: A Crash-Based Matched-Pairs Analysis Approach. Accid. Anal. Prev. 2018, 117, 10–20. [Google Scholar] [CrossRef]
- Wang, J.-S. Target Crash Population for Crash Avoidance Technologies in Passenger Vehicles, Art. no. DOT HS 812 653 2019. Available online: https://trid.trb.org/view/1602884 (accessed on 21 July 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Sharif, H.O. Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018. Sustainability 2020, 12, 7976. https://doi.org/10.3390/su12197976
Han Z, Sharif HO. Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018. Sustainability. 2020; 12(19):7976. https://doi.org/10.3390/su12197976
Chicago/Turabian StyleHan, Zhongyu, and Hatim O. Sharif. 2020. "Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018" Sustainability 12, no. 19: 7976. https://doi.org/10.3390/su12197976
APA StyleHan, Z., & Sharif, H. O. (2020). Investigation of the Relationship between Rainfall and Fatal Crashes in Texas, 1994–2018. Sustainability, 12(19), 7976. https://doi.org/10.3390/su12197976