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Abstract: According to the criterion of the visibility graph and the irreversibility of the time series,
this paper proposes a new perspective to construct the directed limited penetrable interdependent
network (DLPIN) for thermal coal between the opening and closing price series after the Johansen
cointegration test. The results of the statistical research and cointegration analysis show that there is
a cointegration relationship between the opening and the closing price series, and the relationship
between them does not follow a normal distribution. By analyzing the topological characteristic of
the DLPIN, the results indicate that there is an obvious "community structure" and scale-free features,
which show that there are groups and differences among the thermal coal price, and most of them
have a weak transmission ability of the thermal coal price information; only a few of them have a
strong transmission ability. The differences of the in-degree and out-degree show that some thermal
coal prices have a weak influence on the other prices but are strongly affected by the other prices.
In addition, most of the thermal coal prices are far away from the infectious source of the price
information; only a few are close to the infectious source of the price information to a certain extent.
Obviously, the influence of the thermal coal price has a certain range, which is closely related in a
short distance. Furthermore, these results can reveal the internal laws of the main price fluctuation
and information transmission for the thermal coal, and some references can be provided to reduce
risk investment and improve capital return for the related investors.

Keywords: thermal coal price; visibility graph; interdependent network; time series; centrality

1. Introduction

Thermal coal refers to the coal that is used as the raw material of power in the way of combustion,
which is the core strategic resource of coal resources and occupies the main position in China. According
to the BP Statistical Review of World Energy 2019 (68th edition), China remains the world’s largest
energy consumer and has been the main source of the global energy growth for 18 consecutive years,
accounting for 24% of the global energy consumption and 34% of the global energy consumption
growth, and coal consumption increased by 1.4%, twice the average growth rate in the past decade.
Although the coal is still the main fuel of the energy consumption in China, the share of coal in
China’s primary energy structure has dropped from 72% ten years ago and 60% in 2017 to 58% in
2018 with the continuous improvement of the energy structure, which hit a record low. Meanwhile,
driven by the huge domestic energy demand, the supply of coal continued to rise (+4.7%) since the
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supply side reform in 2016, and China expanded its coal import scale for the second consecutive year.
Obviously, Chinese coal prices are affected not only by their own prices, but also by the international
coal prices, which increased the uncertainty of coal price change and the investment risk of coal
industry. The thermal coal price fluctuation can not only accurately reflect the change of coal price [1],
but also affect the economic development [2–4] and the ecological environment [5]. With the separation
of the supply and demand in space, China’s power producers may increase the proportion of imported
thermal coal if the cost of the domestic transportation is too high, and then the increase of China’s
imported thermal coal may cause significant changes in the global cost coal market. Therefore, the study
on thermal coal price is of great significance to understand the trend of coal price change, alleviate the
contradiction between the supply and demand, guarantee the power production system, protect the
environment, and promote economic development [6].

Primary energy plays an important role in the global energy market. As a major source of
primary energy, coal has been widely used and consumed due to its abundant reserve, and plays an
important role in the global energy field and the growth of international trade. The global thermal
coal market has already developed [7], and many scholars consider the international coal market
to be well-integrated [8–12]. Yang et al. [13] analyzed China’s coal price disturbances from the
observations, explanations, and implications. Batten et al. [14] used a variety of measures to examine
the degree of integration for the global steam coal market. Zaklan et al. [15] conducted a comprehensive
multi-co-integration analysis on the export, transportation, and import prices in the value chain of
thermal coal, and investigated whether the logistics entered the coal price dynamics through the
transportation cost. Matyjaszek et al. [16] forecasted the coal prices by considering the full time series
and the transgenic time series. Papież and Śmiech [17] analyzed the correlation between the average
price return rate and the volatility spillover by discussing the integration of the thermal coal market,
then they evaluated the dynamics of the integration process of the international thermal coal price,
and investigated the changes in the roles of particular coal prices in this market based on the change of
the supply and demand structure [18]. From the perspective of market forces, Cui and Wei [1] studied
the phenomenon of thermal coal price distortion by the means of the empirical cointegration analysis
and economic theoretical modeling. In recent years, the coal price has a great fluctuation, which leads
to the uncertainty of the coal purchase decision. Considering the risk brought by the fluctuation of
coal price and reducing the cost and management risk, Huang and Wu [19] employed the scenario
analysis method to simulate the change rule of the factors affecting coal procurement, and established
the model of the thermal coal procurement. Śmiech et al. [20] analyzed the relationship between the
prices of the thermal coal in the Atlantic and Pacific Basin in detail, which showed that there was no
instantaneous causal relationship between the two importing regions of Asia and Europe, and the
Pacific Basin played a leading role in determining the thermal coal price. Moreover, other research
results have emerged in the analysis and prediction of coal prices [21–23].

A large number of fossil fuels are adopted with the economic development and the strong growth
of global energy demand, which led to the increase of the greenhouse gas emissions in the atmosphere.
The related research results have also been widely reported. Haftendorn et al. [24] used the coal
mod-world model of the global thermal coal market to evaluate the possible interaction between the
climate policy and global thermal coal market, which indicated that the market regulation effects of
coal market had a significant positive and negative impact on the effectiveness of the climate policy.
In addition, 50% of the total anthropogenic mercury emission in China is one of the largest sources of
mercury emission in China. Wang and Luo [25] studied the mercury emissions from the combustion
of thermal coal and household coal in China, and found that the atmospheric mercury emissions
account for about one-half of the total atmospheric mercury emissions from the combustion of the
thermal coal, household coal, and coal gangue. Based on the economic impact of the efforts made by
Kyoto Protocol and the European Union Emissions Trading System to mitigate the climate change,
Schernikau [26] analyzed the recent trend of the thermal coal market, and qualitatively discussed
the global thermal coal trading market with the help of a non-linear model. Li [27] investigated the
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evolution of international thermal coal trade, the nature of the coal trade contracts, and the pricing
mechanism of the two major coal trade areas in the Atlantic and Asia Pacific, and discussed the
historical development and future development direction of the market.

With the sustainable development of economy, the application of complex network appears
in almost every aspect of science and technology. The interdisciplinary field of network science
has attracted great attention in recent years. Although most results in this field were obtained by
analyzing isolated networks, many real-world networks actually interacted with and depended on
other networks [28,29]. Based on the criterion of the visibility graph and the irreversibility of the time
series, this paper presents a new perspective to construct the network between different time series,
which means that it is a new attempt to construct multi-layer network among the multiple time series.
According to these, the directed limited penetrable interdependent network (DLPIN) is constructed for
thermal coal between the opening price and closing price, and we analyze the importance, the value
and potential value of the nodes, and the transmission ability of the thermal coal price information
by the means of the degree (including the in-degree and out-degree), the betweenness centrality,
the closeness centrality, the eigenvector centrality, and the authority and the hub of the nodes in the
DLPIN. Meanwhile, we explore the closeness of the relationship between the node and its adjacent
nodes based on the clustering coefficient. This paper aims to explore the following topics:

In regards the different time series, how can the interdependent network of the thermal coal price
information be constructed?

Can it more effectively excavate the influence of the thermal coal price fluctuation by constructing
the interdependent network at different times?

What are the rules and mechanisms of the transmission ability for the thermal coal price information
at different times?

What are the relationships among the thermal coal prices, and what is the influence of the early
price on the later price?

This paper constructs the DLPIN of the thermal coal price fluctuation by the criterion of the
visibility graph and the irreversibility of the time series. The structure of this paper is as follows:
Section 2 explains the processing data and constructing network, which introduces the source of the
data, processing methods, and the rules of the constructing network. Section 3 analyzes the DLPIN of
the thermal coal price information. In Section 4, the conclusions and implications are given.

2. Analyzing Data and Constructing Network

2.1. The Source, Stationarity Tests, and Processing About the Data

2.1.1. The Source and Basic Statistical Analysis of the Data

In this paper, the opening and closing prices (from 26 September 2013 to 1 July 2019) of main
thermal coal futures in Zhengzhou Commodity Exchange are selected as the research data, and the
fluctuation trends are shown in Figure 1a,b.

According to Figure 1, it can be found that the maximum and minimum opening prices of the
thermal coal are 690.4 (the date: 18 December 2017) and 282.6 (the date: 25 November 2015), while the
maximum and minimum closing prices are 695.6 (the date: 18 December 2017) and 283.2 (the date:
24 November 2015), respectively. In addition, the opening and closing prices of the thermal coal are
consistent in the fluctuation behavior, that is, the fluctuation trend of the opening price series (OPS)
and closing price series (CPS) has a high similarity. However, some features can be obtained based on
the statistical analysis of the data, and the basic statistical characteristics of the thermal coal price in
different times are given, as shown in Table 1.
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Figure 1. The fluctuation trend of the thermal coal price. (a) The opening price in Zhengzhou
Commodity Exchange; (b) The closing price in Zhengzhou Commodity Exchange.

Table 1. The basic statistical characteristics of the thermal coal price in different times.

Price Series Mean Std. Dev Skewness Kurtosis Jarque-Bera Probability
Opening Price 522.15 98.92 −0.6290 2.3953 114.0466 *** 0.0000
Closing Price 522.38 99.03 −0.6265 2.3874 113.8754 *** 0.0000

Note: *** denotes the significance level = 1%.

The closing price has a higher maximum, minimum, and mean, and a relativity high standard
deviation, which indicates that the CPS has a large fluctuation. The opening and closing prices are all
negatively skewed, which shows that the price data on the left side of the average value is less than
that on the right side, the intuitive performance is that the tail on the left side is longer than that on the
right side, because there are a few variables whose values are very small, which makes the left tail
of the curve drag very long. In addition, the opening and closing price distributions peak at a level
lower than the normal distribution (whose peak is 3). According to the Jarquee-Bera test, the abnormal
distribution of the opening and closing price is confirmed by the statistics.

To explore the relationship of the thermal coal price in China, a cointegration analysis between
the OPS and the CPS is carried out. Cointegration test requires the order of the OPS and CPS to be
consistent. Therefore, the stationarity tests (including Augmented Dickey-Fuller (ADF), Phillips-Perron
(PP), Kwiatkowski–Phillips–Schmidt–Shin (KPSS)), and Elliott-Rothenberg-Stock Point-optimal (ERS))
are carried out on the OPS and CPS before performing cointegration test, as shown in Table 2.

Table 2. Unit root tests between the opening price series (OPS) and closing price series (CPS).

Different
Times

Level First Difference

ADF PP KPSS ERS ADF PP KPSS ERS

The OPS −1.3428 −1.2742 1.9876 *** 6.2557 −39.3769 *** −39.3651 *** 0.1307 0.0959 ***
The CPS −1.3753 −1.2694 1.9941 *** 6.0629 −40.1153 *** −40.1515 *** 0.1400 0.1407 ***

Note: The unit root tests about the ADF, PP, KPSS, and ERS Point-optimal include only a constant. *** denotes
significance at 1% levels.

To investigate the order of integration of the OPS and CPS, we have carried out some stationarity
tests on them, and the test results are shown in Table 2, which indicate that, in general, they are integrated
at order one (I(1)); this means that their first differenced series are stationary. Therefore, the results
suggest that the OPS and CPS meet the preliminary condition for carried out cointegration test.
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After the order of integration among the test OPS and CPS was determined by the stationarity
test, we carried out the Johansen [30] cointegration test to investigate the nexus between the OPS and
CPS, which is carried out based on the following vector error correction model of order µ:

Ψt = αβ′ Ψt−1 +

µ−1∑
i=1

Φi∆Ψt−i + η0 + δt, t = 1, 2, · · · , T, (1)

where, Ψt is an m-dimensional column vector of test variables, α and β are m × r matrices with r
cointegrating ranks, η0 is a constant vector, δt ∼ i.i.d.Nm(0, Ω), and T is the number of observations.
Gi and W are m ×m fixed matrices. Denoting Π = αβ, the Johansen cointegration test identifies
cointegration relationships by the rank of the Π matrix. In our study, we focus on the bivariate
cointegration test, so when the rank of Π is one, it implies that the variables are cointegrated. The rank
is identified by the following trace and maximum eigenvalue test statistics:

λTrace(r) = −T
n∑

i=r+1

ln(1− λ̂r+1), (2)

λMax(r, r + 1) = −Tln(1− λ̂r+1), (3)

where, λ̂i denotes the estimated values of eigenvalues. The lag order of the Johansen cointegration
model is determined by the Schwarz information criterion, which are shown in Table 3.

Table 3. Unrestricted cointegration test from the OPS vs. CPS.

Variables Test Hypothesized
No. of CE(s) Statistic Value

Critical Value
Prob.**

0.01 0.05

The OPS vs.
the CPS

Trace
None * 307.5460 19.9371 15.4947 0.0001

At most 1 1.6982 6.6349 3.8415 0.1925

Maximum
Eigenvalue

None * 305.8478 18.5200 14.2646 0.0001
At most 1 1.6982 6.6349 3.8415 0.1925

Note: Trace test and Max-eigenvalue test indicate 1 cointegrating equation(s) at the 0.01 and 0.05 level,
CE(s) is the Cointegrating Equation (s), * denotes rejection of the hypothesis at the 0.01 and 0.05 level,
** MacKinnon-Haug-Michelis (1999) p-values.

Table 3 illustrates the results of the Johansen cointegration test, which indicates that there is a
cointegration between the OPS and CPS. It can be seen that the cointegration relationship between
the OPS and CPS can be obtained by the econometrics, which is also the basis for us to establish an
interdependent network between them. In addition, the relationships between the OPS and the CPS
can be further analyzed by the Bierens-Martins test and Gregory-Hansen test, but these are not the
subject to be studied in the text. On these foundations, the fluctuation state of the OPS and CPS will be
explored by constructing the DLPINs based on the network science.

2.1.2. The Processing of the Data

In order to clarify the corresponding relationship between the network nodes and the price time
series, the price time series are numbered, that is, the corresponding number of the opening price
time series is 1–1405 from 26 September 2013 to 1 July 2019, and the corresponding number of the
closing price time series is 1406–2810 from 26 September 2013 to 1 July 2019, which is the name of the
corresponding nodes. According to the Equation (4), the OPS and CPS are standardized, the value of
which is from 0.2 to 0.9.

Xi = 0.2 +
xi −min(xi)

Maxx(xi) −min(xi)
× (0.9− 0.2), (4)

where, xi represents the price series of the thermal coal, Xi represents the standardized price series.
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Therefore, the corresponding relationship between the standardized price series and the number
series is obtained, as shown in Table 4.

Table 4. The corresponding relationship between the price series and number series.

Different Series Numbers Times xi Xi

The Opening
Prices Series

(The OPS)

1 26 September 2013 525.40 0.6115
2 27 September 2013 535.80 0.6292
3 30 September 2013 545.00 0.6447
4 8 October 2013 555.00 0.6617
5 9 October 2013 546.40 0.6471
6 10 October 2013 545.60 0.6458
. . . . . . . . . . . .

1405 1 July 2019 605.40 0.7471

The Closing
Prices Series

(The CPS)

1406 26 September 2013 534.40 0.6268
1407 27 September 2013 546.60 0.6475
1408 30 September 2013 555.00 0.6617
1409 8 October 2013 547.40 0.6488
1410 9 October 2013 547.00 0.6481
1411 10 October 2013 547.40 0.6488
. . . . . . . . . . . .

2810 1 July 2019 598.80 0.7359

2.2. The Constructing Network

2.2.1. The Definition of the Network Node

According to the corresponding relationship between the price series (which is standardized
and shown in Xi) and the number series, a network with 2810 nodes obtained, where nodes 1–1405
are the corresponding nodes of the opening price series (OPS) for the thermal coal in the network,
nodes 1406–2810 are the corresponding nodes of the closing price series (CPS) for the thermal coal,
then the number series are the node names of the network, as shown in Figure 2.
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2.2.2. The Rules of the Constructing Network

In the interdependent network, the edge connecting the internal nodes of the sub-network is
called the internal connection edge, and the connection edge generated between the subnetworks
is called the external connection edge, which together constitute the backbone structure of the
interdependent network.
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The criterion of the DLPIN is as follows: As for the time series X = {Xi}, i = 1, 2, · · · , n, and N is
the distance of the limited penetrable visibility, if the data points (ta, Xa) and (tb, Xb) separated by m
data points are visible in the discrete time series (X), then there are k data points between the two data
points, which satisfy Equation (5):{

Xa −Xi
ti − ta

<
Xa −Xb
tb − ta

, ta < ti < tb, (5)

and other m− k data points (t j, X j) satisfy Equation (6):{Xa −X j

t j − ta
<

Xa −Xb
tb − ta

, ta < t j < tb, (6)

where, b = a + m, m > 0, N ≥ 0.
According to Equations (5) and (6) based on the criteria of the directed limited penetrable visibility

graph [31,32] and the irreversibility of the time series, the DLPIN of the opening and closing price
for thermal coal is constructed in this paper, and the rule of the network construction is different
between the same price series and different price series, whose specific algorithm is shown in the
Algorithm 1. (In order to show their rules and differences, the first six data in the OPS and CPS are
taken as an example.)

Algorhitm 1. Construction process the edge between the node (ti, Xi) and (ti+j, Xi+j), 1 ≤ i < i + j ≤ n

1: As for the adjacent nodes:
2: for i = 1:n − 1
3: [(ti, Xi), (ti+1, Xi+1)] = 1
4: end
5: As for the non-adjacent nodes, when N = 0:
6: for i = 1:n − 1% Note: The adjacent nodes are visible
7: [(ti, Xi), (ti+1, Xi+1)] = 1;
8: for j = 2:n − i
9: X1 = [Xi+j − Xi]/j;
10: N = 0;
11: for u = 1:j − 1% Note: Whether the node blocks the their visibility (ti, Xi) and (ti+j, Xi+j).
12: X2 = [Xi+u − Xi]/u;
13: if (X2 > X1) % Note: Blocked
14: N = N + 1;
15: [(ti, Xi), (ti+j Xi+j] = 0;
16: elseif N > 1
17: break;
18: end
19: end
20: if (N = 0) % Note: The node (ti, Xi) and (ti+j, Xi+j) are not blocked.
21: [(ti, Xi), (ti+j Xi+j] = 1;
22: elseif (N > = 1)
23: [(ti, Xi), (ti+j Xi+j] = 0;
24: end
25: end
26: end
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27: As for the non-adjacent nodes, and when N = 1:
28: for i = 1:n − 1% Note: The adjacent nodes are visible.
29: [(ti, Xi), (ti+1, Xi+1)] = 1;
30: for j = 2:n − i
31: X1 = [Xi+j − Xi]/j;
32: N = 0;
33: for u = 1:j − 1% Note: Whether the node blocks the their visibility (ti, Xi) and (ti+j, Xi+j).
34: X2 = [Xi+u − Xi]/u;
35: if (X2 > X1) % Note: Blocked
36: N = N + 1;
37: [(ti, Xi), (ti+j Xi+j] = 1;
38: elseif N > = 2
39: break;
40: end
41: end
42: if (N == 0) % Note: The node (ti, Xi) and (ti+j, Xi+j) are not blocked.
43: [(ti, Xi), (ti+j Xi+j] = 1;
44: elseif (N == 1)
45: [(ti, Xi), (ti+j Xi+j] = 1;
46: end
47: end
48: end

(1) Constructing the network with the same price series

According to the directed limited penetrable visibility algorithm, the networks of the OPS and
CPS are constructed, and the limited visibility distance is N = 1.

According to the irreversibility of the time series (that is, the early price can affect the later price,
but the later price cannot affect the earlier price), the node (N1) of the OPS is selected to carry out
directed limited penetrable criterion for the later nodes N2, N3, · · · , N6, respectively. Then the node
(N1) and the nodes N2, N3, N4 generate the connected edge, and the direction is from the node (N1) to
the nodes N2, N3, N4, as shown in Figure 3.
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Each of the remaining nodes is carried out in this process for the OPS. Similarly, the CPS are
treated the same way. According to this progress, the directed limited penetrable visibility graph of the
OPS and CPS can be given, as shown in Figure 4.



Sustainability 2020, 12, 7815 9 of 23
Sustainability 2019, 11, x FOR PEER REVIEW 9 of 24 

0.61

0.62

0.63

0.64

0.65

0.67

1 2 43 5 6 7 8 109 11 12

The closing price seriesThe opening price series

0.6115

0.6292

0.6447

0.6617

0.6471

0.6458

0.6268

0.6475

0.6617
0.6488

0.6481

0.6488

0.66

 
Figure 4. The directed limited penetrable visibility graph of the OPS and CPS. 

Here, the solid line represents the connected edge which is not blocked, and the dotted line 
represents the connected edge which is blocked once, that is, 1N = . 

(2) Network construction between the OPS and CPS 
The correlation is relatively weak between the different price series, which reduces the tightness 

between the OPS and CPS. Therefore, the network is constructed based on the directed non-
penetrable algorithm, where the distance is 0N = . Due to the difference in the opening and closing 
price time of the day, there are differences in the connection of the directed edges among different 
price series. For the difference, the algorithm is carried out in the following two situations. 

(a) According to the OPS and CPS, it can be found that the OPS of the day can affect the CPS of 
the day and after. Therefore, the node 1( )N  of the OPS conducts directed non-penetrable algorithm 

to the nodes 7 8 12( , , , )N N N  of the CPS, respectively.  

According to these, there is a directed connection between the node 1( )N  and the nodes 

7 8( , )N N  from the node 1( )N  to the nodes 7 8( , )N N . This follows that the node ( ,1 6)iN i≤ ≤  

of the OPS conducts directed non-penetrable algorithm to the nodes 6 1 6 12( , , , )i iN N N+ + +   of the 
CPS (as shown in Figure 5), respectively. 

 (b) According to the OPS and CPS, it can be found that the CPS of the day can just affect the 
OPS of the next day and after. Therefore, the node 7( )N  of the CPS conducts directed non-

penetrable algorithm to the nodes 2 3 6( , , , )N N N  of the OPS, respectively. Then there is a 

directed connection between the node 7( )N  and the nodes 2 3 4( , , )N N N  from the node 7( )N  to 

the nodes 2 3 4( , , )N N N . And so on, the node ( ,7 11)iN i≤ ≤  of the OPS conducts directed non-

penetrable algorithm to the nodes 5 4 6( , , , )i iN N N− −   of the CPS, respectively, as shown in Figure 
6. 

Figure 4. The directed limited penetrable visibility graph of the OPS and CPS.
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(2) Network construction between the OPS and CPS

The correlation is relatively weak between the different price series, which reduces the tightness
between the OPS and CPS. Therefore, the network is constructed based on the directed non-penetrable
algorithm, where the distance is N = 0. Due to the difference in the opening and closing price time
of the day, there are differences in the connection of the directed edges among different price series.
For the difference, the algorithm is carried out in the following two situations.

(a) According to the OPS and CPS, it can be found that the OPS of the day can affect the CPS of
the day and after. Therefore, the node (N1) of the OPS conducts directed non-penetrable algorithm to
the nodes (N7, N8, · · · , N12) of the CPS, respectively.

According to these, there is a directed connection between the node (N1) and the nodes (N7, N8)

from the node (N1) to the nodes (N7, N8). This follows that the node (Ni, 1 ≤ i ≤ 6) of the OPS
conducts directed non-penetrable algorithm to the nodes (Ni+6, Ni+1+6, · · · , N12) of the CPS (as shown
in Figure 5), respectively.

(b) According to the OPS and CPS, it can be found that the CPS of the day can just affect the
OPS of the next day and after. Therefore, the node (N7) of the CPS conducts directed non-penetrable
algorithm to the nodes (N2, N3, · · · , N6) of the OPS, respectively. Then there is a directed connection
between the node (N7) and the nodes (N2, N3, N4) from the node (N7) to the nodes (N2, N3, N4).
And so on, the node (Ni, 7 ≤ i ≤ 11) of the OPS conducts directed non-penetrable algorithm to the
nodes (Ni−5, Ni−4, · · · , N6) of the CPS, respectively, as shown in Figure 6.

According to the above rules of constructing the network, the directed interdependent network of
the OPS and CPS for the thermal coal can be given, as shown in Figure 7.

As shown in Figure 7, there are internal connections (N1N2, N1N3, N1N4, · · · ) and
(N7N8, N7N9, N8N9, · · · ) within the network of the OPS and CPS, and the external connections
(N1N7, N1N8, N2N8, · · · ), which form the edge of the directed interdependent network together.
In order to highlight the difference between the strong penetration within the same price series and the
weak penetration between different price series, the visibility distance (N = 0 or N = 1) of different
penetration is set when connecting the network in this paper, which better preserves the internal
associated compactness of the same price series and the associated sparsity between different price
series, and is useful for fully mining price fluctuation information of the thermal coal.
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2.3. The Statistical Characteristics of the DLPIN

According to the progress of constructing the network in Section 2.2, the DLPIN of the OPS and
CPS is constructed. As for the network, the calculation of the average degree, the average path length,
and the diameter are simple, but the density [33] (as shown in Equation (7)) and the modularity [34]
(as shown in Equation (8)) are complex, a detailed description of which is given.

As for the directed network, which has N nodes, the maximum number of edges that may exist in
the network is 2C2

N = N(N − 1), the actual number of the connected edges in the network is L, then the
following Equation (7) for the density can be given:

D(G) =
L

N(N − 1)
. (7)

Which can be used to describe the evolutionary trend of the connected edges among the nodes in
the network. The range of the density is [0, 1]: when the network is fully connected, D(G) = 1; When
there is no edge connection in the network, D(G) = 0.

As for a given directed network, the adjacency matrix of which is A = (ai j), and the number of
elements that are not 0 is M, that is, the directed network has M edges, then the following Equation (8)
for the modularity can be given:

Q =
1
M

∑
i j

(ai j −
kout

i · k
in
j

M
) ·ϕ(vi, v j), (8)

where, kin
i and kout

i indicate the in-degree and out-degree of node i, respectively. Meanwhile, vi and v j
mean the affiliated community of the nodes i and j in the network, respectively. The modularity is
used to measure the possibility of a specific cluster in the network, that is, the clustering intensity in
the network, and the range of which is [0, 1].

According to Equations (7) and (8), the statistical characteristics of the network can be obtained,
as shown in Table 5.

Table 5. The statistical characteristics of the network.

Index Name Corresponding Value

Total number of the edges 68,573
The average degree 24.403

The average path length 4.397
The diameter 12

The density (D(G)) 0.0087
The modularity (M) 0.586
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According to Table 5, the total connection rate and average connection rate of the nodes in
the DLPIN are 0.0645 and 0.000178, respectively. The result shows that there is a sparse connected
relationship among the nodes, and the size of the density also reflects this point. Meanwhile,
the difference between the total connection rate and the average connection rate is large, which indicates
that there are a few nodes with high connection rate, but a large number of nodes with a low connection
rate in the DLPIN. In addition, we divide the community of the DLPIN based on the modularity,
and use the same color to show the distinction. The size of the nodes represents the size of its degree,
the same color nodes indicate that they belong to the same community, and the division result is shown
in Figure 8.
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Figure 8. The DLPIN of the thermal coal price information.

According to Figure 8, the community structure divided by this method is clear and strong,
showing good division quality, and 13 different communities are divided, which reflects the node
concentration, rather than the random distribution among all modules. In addition, the number of
the nodes in each community is different, that is, the possibility that each node belongs to a certain
community is different, which shows that thermal coal price is similar in the whole, but different in the
local part. Therefore, the community of the network is divided to determine whether the node belongs
to a community based on the modularity, which is conducive to the study on the “mass generation” of
the nodes in the network.

3. Analysis of the DLPIN

In order to mine the transmission ability of the thermal coal price information, the topological
features of the DLPIN are analyzed based on the degree, centrality, clustering coefficient, and authority
and the hub of the nodes, which is helpful to identify the important nodes and to quantitatively analyze
their role in the DLPIN.
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3.1. The In-Degree, Out-Degree, and Degree Distribution of the Nodes for DLPIN

According to the above constructing rules for the network, each node of the DLPIN corresponds
to the OPS and CPS, that is, the OPS corresponds to the number of each node from 1 to 1410, and the
CPS corresponds to the number of each node from 1411 to 2810, which corresponds to the time from
26 September 2013 to 1 July 2019. Based on this, the in-degree, out-degree, and degree distribution of
the nodes of the DLPIN are given, as shown in Figure 9.
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Here, the in-degree indicates the influence of the early nodes to it (that is, the influence of the
early price to the price), the out-degree indicates the influence of the node to the later nodes (that
is, the influence of this price to the later price), and the degree means the importance of the node in
the DLPIN.

According to Figure 8, the maximal in-degree is 574 (N710, the date: 26 October 2016), the maximal
out-degree is 226 (N301, the date: 19 December 2014), and the maximal degree is 723 (N759, the date:
8 November 2016), but the node with the largest degree is neither the node with the largest out-degree
nor the node with the largest in-degree. However, the change trend of the degree (where the degree is
the sum of the in-degree and out-degree) under time characteristics is similar to the in-degree. In the
DLPIN, it can be seen that the in-degree of the nodes is greater than the out-degree, and the in-degree
and degree change of the nodes is consistent under the temporal distribution, which indicates that the
in-degree of the nodes has a greater contribution rate to the degree of the nodes. Meanwhile, the early
nodes have a larger out-degree and a lower in-degree, which is because the early nodes are more likely
to be connected to their later nodes, while the later nodes are less likely to be connected to their later
nodes, that is, this is due to the irreversibility of the price effect mechanism. Therefore, the results
show that the DLPIN not only presents the connection relationship between the OPS and CPS, but also
inherits the connection relationship within the OPS and CPS, thereby enhances the tightness of the
connection and improves the transmission ability of the thermal coal price fluctuation information.

In order to further explore the in-degree, out-degree degree, and their corresponding distributions
for the nodes in the DLPIN, the double logarithmic distribution and cumulative degree distribution
are given, as shown in Figure 10.
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Figure 10 shows that there is most of the nodes with a smaller in-degree, out-degree, and degree,
that is, most nodes in the DLPIN are only connected with few nodes. However, the number of the
nodes with a larger degree is fewer, that is, there are few nodes connected with many nodes, presenting
long tail distribution, which has an obvious scale-free feature. The result shows that there is a weak
influence relationship among the most nodes, and only a few nodes have strong influence. According
to the construction rules of the DLPIN, the key node (i.e., the node with a larger degree) plays an
important role in the connectivity, whose existence makes the scale-free network have a strong ability
to bear the impact of the emergencies, but it is fragile in the face of the collaborative attacks.

The double logarithmic curve of the node degree in the DLPIN is regressed based on the least
square method; the regression equation is y = −1.2053− 0.8988, and the correlation coefficient of the
trend line is 0.7299, which shows that the degree of the nodes is power-law distribution, and the
power-law index is 1.2053. It can be seen that the fitting effect is good, but it does not belong to the
common scale-free network power-law index range (0, 3] Therefore, the DLPIN of the thermal coal
price fluctuation is a kind of special network with a unique and complex static evolutionary feature,
and a deep analysis will be in the next.

3.2. The Centrality of the Nodes for DLPIN

In general, the greater the degree of the node, the more important the node is, but it is a little
one-sided to measure the importance of the nodes only from the degree of the nodes. Identifying the
key nodes and analyzing their important role are the focus of the research for the network. Therefore,
this section makes the quantitative research on the centrality of the nodes to mine the important nodes
from different angles based on the shortest path method, then the value and potential value of the
nodes are analyzed in the DLPIN. Some concepts and equations are given to understand this paper.
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1. Betweenness Centrality (BC)

The BC [35] means the ratio of the shortest path through a point, and is one of the criteria to
measure the centrality of network graph based on the shortest path, the calculation of which is
shown in Equation (9):

BCi =
∑

s,i,t

ni
st

gst
, (9)

where, gst indicates the number of the shortest path from the node s to t, ni
st is the number of the

shortest path about the node i passed by the gst edges of the shortest path from the node s to t.

2. Closeness Centrality (C-C)

The C-C [36] means the sum of the distances from a point to all other points. The smaller the
sum, the shorter the path from this point to all other points, and the closer the point is to all other
points, the calculation of which is shown in Equation (10):

C−Ci =
N

N∑
j=1

di j

, (10)

where, di j is the distance from the node i to j, N is the number of the total nodes.

3. Eigenvector Centrality (EC)

The EC [37] is different from that of degree centrality. A node with a high degree centrality has
many connections but the EC of the nodes is not necessarily high, because all the connecters
may have low EC. Similarly, a node with a high EC is not necessarily a node with a high degree
centrality, which is because it has few but very important connecters and can also have high EC,
the calculation of which is shown in Equation (11):

ECi = c
N∑

j=1

ai jx j, (11)

where, x j is the of the value of importance measure for the node i, c is a proportional constant,
and ai j is the element of the adjacency matrix A = (ai j).

3.2.1. The BC of the Nodes for DLPIN

In the network, whichever node is the busiest, that is, whichever node bears the strongest
connectivity role, is the node that is in a more important position in the network. However, the BC is
defined as the percentage of the number of the shortest paths passed through the nodes to the number
of all shortest paths in the network, which mainly studies the influence of nodes on information flow.
According to Equation (9), the BCi of the node i can be calculated, the distribution characteristics of
which are shown in Figure 11.

According to the construction rules of the DLPIN, the connectivity of the network refers to the
ability of the node to receive and transmit the thermal coal price fluctuation information, that is,
the stronger the ability is, the bigger the BC is, which can measure the fluctuation state of the thermal coal
price information. According to Figure 11, a few nodes with a large degree have a strong connectivity,
while some nodes with a large degree have weak connectivity, even worse than those nodes with
a small degree, which may be caused by the huge difference between the in-degree and out-degree
(as shown in Table 6, the in-degree of the nodes is large, but the out-degree of the nodes is small, or the
in-degree is large, and the out-degree is small). This result indicates that some nodes in the DLPIN
have a weak ability to transmit the information for the thermal coal price, that is, they cannot transmit
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the received information completely, which leads to the loss of the price fluctuation information.
By analyzing the nodes that lost much information, we can explore the hidden information to carry
out strategic management on the possible trend of price change in the next period.Sustainability 2019, 11, x FOR PEER REVIEW 16 of 24 
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Table 6. The statistical information of the BC and degree (the first six from big to small).

Sort BC From Big to Small Sort k From Big to Small

BC k kin kout k kin kout BC

0.0900 723 580 143 723 580 143 0.0900
0.0880 690 574 116 690 574 116 0.0880
0.0805 161 74 87 610 594 16 0.0043
0.0667 153 94 59 596 585 11 0.0028
0.0534 88 41 47 579 530 49 0.0339
0.0377 96 56 40 563 532 31 0.0266

Therefore, the importance of the node in its related shortest path can be investigated by the
means of analyzing the BC, the node containing important information in the DLPIN can be identified,
but whose disadvantage is that it cannot be used as a judgment basis to measure the importance of the
node in all paths. In order to resolve the problem and reflect the global structure in all paths, the next
section will analyze the closeness centrality and distribution characteristics of the nodes to reveal the
whole characteristics of the DLPIN, which are dependent on the thermal coal price fluctuation.

3.2.2. The C-C of the Nodes for DLPIN

In order to describe the difficulty for the nodes to reach other nodes in the DLPIN, the distribution
characteristics of the C-C are given (as shown in Figure 12) based on Equation (10), which reflects the
closeness between one node and the other nodes.

According to Figure 12, the C-C of the nodes in the DLPIN shows a small difference in the early
stage in the temporal distribution characteristics, that is, the transmission of the thermal coal price
fluctuation information has similar transmission capacity in the early stage. However, the degree of the
node is small and the C-C increases rapidly in the later stage, that is, the thermal coal price fluctuation
has a strong influence on the adjacent price in the later stage. These two phenomena show that the
transmission of the thermal coal price information has a certain distance and has a strong influence in
a short distance. In addition, there are three nodes with C-C = 1 in the DLPIN, which are N1405, N2808,
and N2809, which means that these nodes can directly reach other nodes when it can reach, that is,
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the shortest path is 1. However, there is only one node with C-C = 0 (N2810), which means that this
node cannot reach other nodes in the DLPIN. It can be seen that the C-C reflects the influence of the
nodes to other nodes through the DLPIN, which not only considers the degree of the nodes, but also
considers the location of the nodes in the DLPIN. Therefore, the transfer ability of the thermal coal
price fluctuation can be identified by means of analyzing the C-C, which can provide a basis for the
short-term prediction of the thermal coal price.Sustainability 2019, 11, x FOR PEER REVIEW 17 of 24 
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3.2.3. The EC of the Nodes for DLPIN

The importance of the nodes is not only related to the number of the connected edges, but also
linearly related to the importance of the connected nodes, which means that the nodes can indirectly
improve their importance in the network by the connecting important nodes. According to the
algorithm and Equation (11) of the EC, the EC distribution of the nodes in DLPIN are as shown in
Figure 13.Sustainability 2019, 11, x FOR PEER REVIEW 18 of 24 
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According to Figure 13, the EC of the nodes in the DLPIN is counted, and the first six nodes
(of which the order is from large to small) are selected. The corresponding degree and time distribution
of the nodes are shown in Table 7.
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Table 7. The statistical information of the EC for DLPIN.

DLPIN

EC k The Nodes Time

1.0000 610 N750 26 October 2016
0.9294 596 N2154 25 October 2016
0.8572 723 N759 08 October 2016
0.8495 551 N749 25 October 2016
0.8454 690 N2163 07 October 2016
0.8386 561 N2153 24 October 2016

From Figure 13, we can find that most of the nodes have smaller eigenvalue centrality value,
while the number of the nodes with a larger EC is smaller, which shows that most of the nodes are far
away from the infectious source of the thermal coal price information, and a few nodes are close to
the infectious source of the price information, which also needs to be focused on. Meanwhile, it can
be seen that the nodes with a larger degree have a larger EC based on the distribution relationship
between the degree and EC. Since the EC describes the long-term influence of the nodes in the DLPIN,
which is mainly used for propagation analysis, therefore, we can realize the mining of the thermal
coal price fluctuation, and analyze the path and range of the price information transmission through
the EC, which is conducive to grasp the dynamic transmission characteristics of the influential price
information for the thermal coal price fluctuation.

3.3. The Clustering Coefficient (CC) of the Nodes for DLPIN

The clustering coefficient (CC) of the node mainly reflects the closeness of the relationship among
the adjacent nodes of the node, which indicates how the node is embedded in its adjacent nodes.
According to the definition and algorithm of the clustering coefficient (CC) [38], this section analyzes
the relationship between the clustering coefficient of the DLPIN and time and degree, as shown in
Figure 14.Sustainability 2019, 11, x FOR PEER REVIEW 19 of 24 
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According to Figure 14, the average CC of the DLPIN is 0.303, which indicates that there is a
relatively close relationship among any other nodes directly connected with the nodes, and has no
obvious relationship with the temporal distribution characteristics of the nodes, but has a significant
decreasing trend with the degree of the nodes. Meanwhile, it can be found that the node with a largest
degree has the smallest CC through the relationship between the degree and CC, which indicates that
there is a loose closeness among other nodes directly connected with this node. Therefore, it can be
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seen that the nodes with a larger CC have smaller degree, but a few larger CC will also appear in
these nodes with a larger degree, which shows that the different networks are not completely random,
and have the characteristics of "community" to some degree. This result is consistent with the above
division of the modularity in Section 2.3. Through the analysis of the CC of the nodes in the DLPIN,
the closeness among the OPS and CPS is explored, which can provide a reference for the research on
the “mass occurrence” of the thermal coal price fluctuation and information transmission in the future.

3.4. The Authority and the Hub of the Nodes for the DLPIN

Considering the importance of the nodes in a directed network, a simple method is to treat the
directed network as an undirected network, then the important index of the nodes in the undirected
network can be directly used. However, the directionality of the edges in the directed network is very
important for the nodes, and the authority and the hub are good indicators to measure the importance
of the nodes in the directed network. According to the HITS algorithm [39], the algorithm of the
authority and the hub is as follows:

(1) Initial step: Let the initial value of the authority and the hub of all nodes in the network be
xi(0), yi(0), i = 1, 2, · · · , n;

(2) Iterative process: Perform the following three operations in the step k(k ≥ 1);

1. The correction rules of the authority: The authority of each node is corrected to the sum of the
hubs pointing to this node, as shown in Equation (12):

x′i(k) =
N∑

j=1

a jiy′ j(k− 1), i = 1, 2, · · · , N (12)

2. The correction rules of the hub: The hub of each node is corrected to the sum of the authorities
pointing to this node, as shown in Equation (13):

y′i(k) =
N∑

j=1

ai jx′ j(k), i = 1, 2, · · · , N. (13)

3. Equations (9) and (10) are normalized, the pattern of which is shown in the Equation (14):

x′i(k) =
x′i(k)
‖(x′(k))‖

, y′i(k) =
y′i(k)
‖(y′(k))‖

, i = 1, 2, · · · , N. (14)

According to Equations (12)–(14), we can calculate the authority and the hub, and obtain the
distribution characteristics of the in-degree, out-degree, degree, authority value, and hub value of the
nodes in the DLPIN, which are dependent on the thermal coal price information. Then we obtain the
distribution characteristics of the in-degree, out-degree, degree, authority, and hub of the nodes in the
DLPIN, as shown in Figure 15.

From Figure 15, it can be seen that the in-degree and authority have the similar change trend in
the DLPIN, and the out-degrees and hub also have the similar change trend, that is, with the increase
of the in-degree and out-degree, the authority and hub also increase, respectively. This shows that the
importance of the nodes in the directed network can be effectively identified by the authority and hub
of the nodes, and the identification of the important nodes in the network can effectively grasp the
important price information and analyze the transmission of the price information, which is helpful
to deal with the risks of the price changes. Meanwhile, the authority represents the influence of the
historical price information on it, and the hub represents the impact on the later prices. From the
temporal distribution characteristics of the authority, the node with the largest authority in the DLPIN
appears on 25 October 2016 (the closing price time), of which the corresponding in-degree, degree,
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and maximum degree are 585, 596, and 723, respectively. From the temporal distribution characteristics
of the hub, the node with the largest hub in the DLPIN appeared on 19 December 2014 (the opening
price time), and whose corresponding out-degree, degree, and maximum degree are 226, 234, and 723,
respectively. The results show that the node with the largest degree is not the node with the largest
hub and authority. In conclusion, there is an obvious increasing relationship between the in-degree
and authority of the nodes in the DLPIN, and between the out-degree and hub of the nodes, but there
is no significant change relationship between the degree and the authority and hub.
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4. Summaries and Enlightenments

As for the thermal coal price, there is always the focus of the debate between the coal mining
industry and power industry with the increasing contradiction of coal and power industry, which has
also been received more and more attention in recent years. According to the criterion of the visibility
graph and the irreversibility of the time series, this paper establishes the DLPIN of the thermal coal
price fluctuation between the OPS and CPS, and obtains some practical results about the thermal coal
price by means of the analysis of the network, which are as follows:

(1) In this network, the number of the nodes with a smaller in-degree, out-degree, and degree is
larger, while the number of the nodes with a smaller in-degree, out-degree, and degree is smaller,
which show that there is a weak influence relationship among the most nodes, and only a few
nodes have strong influence. Meanwhile, their distributions present a long tail distribution,
which means that the DLPIN has an obvious scale-free feature and is a special network with a
unique and complex static evolutionary feature.

(2) By analyzing the information flow of the nodes in the DLPIN, it is found that some nodes
have weak ability to transmit the price information, that is, they cannot transmit the received
information completely, resulting in the loss of the price fluctuation information of the thermal
coal, which is dependent on the thermal coal price fluctuation.
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(3) Most of the nodes are far from the infectious source of the price information, but only a few
nodes are closer. Meanwhile, the transmission of the thermal coal price information has a certain
distance, and there is a strong influence on the future price in a short distance.

(4) The nodes with a larger CC generally have lower degree in the DLPIN, but a small number
of the nodes with a larger CC also appear in the nodes with a larger degree, which indicates
that the DLPIN is not completely random, and has the characteristics of “community” to some
extent. By analyzing the CC corresponding to each time node, this paper explores the closeness
of the price information, which can provide some references for the future research on the “mass
generation” and information transmission for the thermal coal price information.

(5) There is an obvious increasing relationship between the in-degree and authority of the nodes in
the DLPIN, and between the out-degree and hub of the nodes, but there is no significant change
relationship between the degree and the authority and hub.

Understanding coal price features is challenging. As we know, thermal coal industry is a typical
demand-driven market in China, the price of which is largely affected by the state of macroeconomic
development and the development of the related downstream industries, and the thermal coal future
prices is no exception. Meanwhile, China’s coal price presents violent fluctuations influenced by many
factors, and the fluctuation of thermal coal price are complex and susceptible to many uncertain factors,
such as coal production capacity, coal inventory, coal import and export, transportation costs, supply
and demand of the upstream and downstream products (coal-consuming industries, especially power,
building materials and chemical industries ), international coal prices, national policies, other energy
prices (i.e. gasoline price ), etc., which will have an impact on the thermal coal price, and result in the
frequent fluctuations and unpredictable changes of the thermal coal price. Therefore, it is imperative
for the governments to take measures to stabilize coal market.

To control the risks of the coal price fluctuation and ensure energy security, mining the fluctuation
law of the thermal coal price should be the focus of the researchers. Through the study on the fluctuation
laws of the thermal coal price, this paper explores a scientific and reasonable thermal coal price
mechanism to solve the problem of the low resource allocation efficiency and the resulting environmental
degradation through the "invisible hand" of the price market. Future research on the market price
of thermal coal can provide a valuable tool to promote the sustainable development of the coal
industry and the economy-society-environment. In addition, studying the overall-coordination-linkage
mechanism between different coal product prices, and establishing a multilayer network between
different coal product price fluctuations will be the focus of future research in the coal industry.
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18. Papież, M.; Śmiech, S. Dynamic steam coal market integration: Evidence from rolling cointegration analysis.

Energy Econ. 2015, 51, 510–520. [CrossRef]
19. Huang, Y.H.; Wu, J.H. A portfolio theory based optimization model for steam coal purchasing strategy:

A case study of Taiwan Power Company. J. Purch. Supply Manag. 2016, 22, 131–140. [CrossRef]
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