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Abstract: High-voltage direct current (DC) transmission systems and multi-terminal direct current
transmission systems are attracting attention for expanding the grid to promote introduction of
renewable energy. Fault clearing in DC systems is difficult because there is no zero point of current.
Hybrid circuit breakers are suitable for fault clearing in DC systems. Conventional hybrid circuit
breakers have a hard-switching path that damages the switch. Hard switching damages the device
and produces emissions due to harmonic noise. A novel resonant hybrid DC circuit breaker is
proposed in this paper. The proposed circuit breaker reduces the damage to the switching device
using soft switching due to the current zero point. The proposed circuit breaker is compared with
conventional hybrid circuit breakers using numerical simulations. Interruption times and switching
types of circuit breakers were compared. The simulation results of the fault clearing characteristics of
the proposed breakers show that the proposed breakers have sufficient performance and are capable
of stable reconnections in multi-terminal direct current transmission systems.

Keywords: HVDC; MTDC; hybrid DC circuit breaker; fault clearing; ZCS; HB-MMC

1. Introduction

The introduction of renewable energy sources (RESs), such as wind generators and photovoltaic
generators, has been advancing in recent years [1–3]. However, power quality is reduced by the unstable
output of RESs [4]. This problem is solved by a smoothing effect through the power system’s expansion.
The generation fluctuations of many RESs cancel each other out to yield the total system generation in a
large area that fluctuates less [5,6]. Therefore, power system expansion is required. High-voltage direct
current (HVDC) transmission and multi-terminal direct current (MTDC) transmission have attracted
attention for system expansions [7–10]. Direct current (DC) systems are more efficient than alternating
current (AC) systems in long-distance transmission [11]. Furthermore, there are no problems with
inductance, capacitance, and phase displacement, which are common in AC transmission.

Modular multilevel converter (MMCs) attracted attention as grid-connected converters [12,13].
An MMC is composed of a number of cascaded cells and outputs voltages that are close to sine
waveforms through multi-level conversion [14,15]. MMC cells are classified into half-bridge (HB) cells
and full-bridge (FB) cells [16]. FB cells have four semiconductor switches per cell. HB cells have two
semiconductor switches per cell. The advantage of HB cells is that HB cells cost less than FB cells
and have lower steady-state conduction losses because of the smaller number of switching devices.
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The advantage of FB cells is that they have a fault interruption capability [17]. However, because it
blocks all converters connected to the grid, it is not possible to identify the point of failure. In addition,
this clearing method requires a long preparation time for restoration [17]. HB cells do not have a fault
interruption capability. A DC circuit breaker solves this problem.

DC fault interruption is difficult because there are no current zero points [18–21]. DC circuit
breakers are the most reliable in fault interruption in DC systems [22]. There are three main types of
DC circuit breakers: mechanical circuit breakers, semiconductor circuit breakers, and hybrid circuit
breakers [23]. The response of mechanical circuit breakers is slow. Semiconductor circuit breakers have
a steady-state loss problem. In 2012, a hybrid circuit breaker with high speed and low steady-state loss
was developed by Asea Brown Boveri (ABB) ltd [24]. A hybrid circuit breaker is shown in Figure 1.
A hybrid circuit breaker has a main path consisting of an ultrafast disconnector (UFD) and a load
commutation switch (LCS), as well as a breaker path consisting of many semiconductor switches and
a metal oxide varistor (MOV). The operation of a hybrid circuit breaker is shown in Figure 2 [25].
The main path carries the current during normal operation (a). When a fault is detected, the LCS is
switched off immediately; hence, the fault current starts to be commutated to the breaker path (b).
The UFD begins to open after the transition. The fault current flowing through the semiconductor
switches in the breaker path increases until the UFD opens. When the UFD is fully open, the breaker
path’s semiconductor switches are turned off, and the current is commutated to the MOV (c). The MOV
reduces the current and eliminates the fault. In the process of (b)–(c), the semiconductor switch in the
breaker path rapidly turns off the high current and uses hard switching. Hard switching can exceed the
reverse bias safety operation area (RBSOA) and cause significant damage to semiconductor devices [26].
In addition, hard switching causes electromagnetic interference (EMI) due to high-frequency noise [27].

A novel resonant hybrid DC circuit breaker is proposed in this paper. The proposed circuit
breaker creates a current zero point. Zero-current switching (ZCS) avoids the negative effects of
hard switching. A fault in an MTDC system was simulated to verify the practicality of the proposed
circuit breaker. The proposed circuit breaker’s interruption time is sufficiently short and provides
stable power transmission during faults. The effectiveness of the proposed method was verified by
MATLAB/Simulink simulations.

The remaining sections of the paper discuss the following: Section 2 describes a fault in the
HB–MMC system. Section 3 explains the configuration of the MTDC system and the proposed hybrid
circuit breaker. Section 4 discusses the principle of operation of the proposed circuit breaker. Section 5
presents the simulation results. Finally, Section 6 presents the inferences and conclusions concerning
the proposed idea.
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of fault current; (c) Fault interruption.

2. Analysis of an HB–MMC System Fault

An equivalent circuit of an HB–MMC during a fault is shown in Figure 3 [28]. The MMC operates
as a converter during the fault. The equivalent circuit at fault consists of a circuit of resistance R,
inductance L and capacitor C. The conditions for the current to create a zero point are represented by
Equation (1).

R
2
<

√
L
C

(1)

where α = R
2L , β = 1

2L

√
4L
C −R2.

Let the initial current be i0; the fault current i(t) is represented by Equation (2) [2].

i(t) = i0 +
E
βL

e−αtsinβt (2)
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Figure 3. Equivalent circuit during the fault of HB-MMC.

3. Configuration of the MTDC System and Circuit Breaker

3.1. Configuration of the MTDC System

In this paper, a modular multi-level converter is adopted as the AC/DC converter for the MTDC
system. The configuration of the MMC is shown in Figure 4 [17]. The number of submodule stages
is four. The configuration of the HB cell is shown in Figure 5 [17]. The HB–MMC–MTDC system
assumed in this paper is shown in Figure 6 [29]. Power flow control between the four regions of
the MTDC system is achieved by the MMC. The MTDC system’s parameters are listed in Table 1.
The transmission line model is shown in Figure 7 [30].
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Table 1. Parameters of the HB-MMC-MTDC system.

Parameters Symbol Value

DC link voltage Vdc1,Vdc2,Vdc3,Vdc4 150 kV
Transmission distance l 120 km

Resistor of transmission line Rline 1.39 mΩ/km
Inductance of transmission line Lline 0.159 mH/km

DC capacitor Cdc 300 µF
DC inductance Ldc 100 mH

Suppression inductance Ls 100 mH
Cell capacitor CSM 300 µF

3.2. Configuration of Circuit Breaker

The proposed resonant hybrid DC circuit breaker is shown in Figure 8. The hybrid circuit breaker
consists of a mechanical switch, a semiconductor switch, a resonant circuit, and a demagnetization
circuit. The mechanical switch conducts during normal operation. The semiconductor switch operates
the resonant circuit to generate a current zero point on the transmission line at the time of the fault.
ZCS avoids the negative effects of hard switching. Moreover, the residual inductance is low and the
energy to demagnetize is low. The proposed circuit breaker is installed on the DC side of each converter,
as shown in Figure 6. The circuit breaker limits the fault section and reduces the impact on other
systems. In addition, the circuit breakers are connected in close proximity between the converters,
and the AC system is largely unaffected by the DC faults. The parameters of the proposed breaker are
shown in Table 2.
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Table 2. Parameters of the hybrid circuit breaker.

Parameters Symbol Value

Demagnetization resistor Ra 10 Ω
Resonant capacitor Cre 1 µF

Resonant inductance Lre 1 mH
Snubber resistor Rs 500 Ω

Snubber capacitor Cs 0.08 µF

3.3. Parameter Design

The MMC during the failure is represented in Figure 3. Considering n = 4, R, L, and C are
represented by Equations (3)–(5).

R = 2Rline = 2×Rl ×
l
2
= 2× 1.39× 10−3

× 60 = 0.1668[Ω] (3)

L = 2Ls
3 + 2Lline + 2Ldc + Lre = 2×100×10−3

3 + 2× 0.159× 10−3
× 60 + 2× 100× 10−3 + Lre

= 285.7 + Lre[mH]
(4)

C =
3
2 CmCre

3
2 Cm + Cre

=
3
2 × 300× 10−6

3
2 × 300× 10−6 + Cre

Cre =
450

450 + Cre
Cre[µF] (5)

The condition for having a current zero point is given by Equation (2). Assuming the inductor to
be 1 mH, the condition of the resonant capacitor is represented by Equation (6).

Cre < 2.16× 10−5[F] (6)

Considering the calculation error, Cre = 1[µF].

4. Operation Principle of the Circuit Breaker

The operation of the proposed breaker is shown in Figure 9. In the case of a fault, the current is
increased towards the fault point (a). The semiconductor switch and the resonant circuit are turned
on after detecting a drop in DC transmission voltage or a rise in DC current due to the fault (b).
The impedance at the semiconductor branch approaches zero due to the resonance phenomenon.
Therefore, the rectification of the semiconductor switch creates a current zero point at the mechanical



Sustainability 2020, 12, 7771 7 of 14

switch. The mechanical switch turns off at the current zero point (c). After the mechanical switch is
turned off, the semiconductor switch turns off at the current zero point. After the current interruption,
the thyristor Tha is turned on and the residual inductance is demagnetized (d).
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5. Simulations

5.1. Simulation Conditions

In this paper, the fault clearing characteristics and a system restart are simulated in the case of a
short-circuit fault. The system was simulated in MATLAB/Simulink and was modeled as follows.

• The AC system assumed to have a 230 kV, three-phase AC power supply.
• The fault detection method is shown in Figure 10. A fault is determined when the voltage is less

than 100 kV and the current exceeds 300 A.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 15 

resumes from t = 3.3 s. The utility of the proposed circuit breaker is demonstrated when the effective 
power of each system is stable and restored. 

 
Figure 10. Fault detection method. 

5.2. Simulation Results of the ABB’s Breaker 

Figure 11 shows the mechanical switch current and Figure 12 shows the semiconductor switch 
current. When a fault is detected, the LCS is turned off and the current in the mechanical switch 
generates a current zero point. The current in the semiconductor switch is rectified and flows into the 
MOV when the UFD opens. The MOV current is shown in Figure 13. Current is reduced and fault 
clearing is achieved. The current interruption time is 1.5 ms. In Figure 12, the semiconductor switch 
is turned off rapidly from 2 kA. In these simulation results, the hard switching of conventional hybrid 
circuit breakers was observed. 

 
Figure 11. Current of the mechanical switch (ABB). 

Figure 10. Fault detection method.



Sustainability 2020, 12, 7771 8 of 14

The DC fault current interruption characteristics of the ABB’s hybrid circuit breaker are simulated
for comparison with the proposed circuit breaker. The ABB’s hybrid circuit breaker is shown in Figure 1.
Assuming that the time to open the UFD takes 1.5 ms, hard switching of the circuit breaker is observed.
The circuit breaker’s interruption time should be within 5 ms [24]. If the proposed circuit breaker has
an interrupting capability within 5 ms and achieves ZCS, the effectiveness of the proposed method
is demonstrated.

The proposed circuit breaker simulated the fault interruption of the MTDC system. The sequence
of the fault interruption simulation is as follows. A short-circuit failure occurs in the MTDC system at
t = 3. After the fault clearing, the circuit breaker is re-closed and power transmission resumes from
t = 3.3 s. The utility of the proposed circuit breaker is demonstrated when the effective power of each
system is stable and restored.

5.2. Simulation Results of the ABB’s Breaker

Figure 11 shows the mechanical switch current and Figure 12 shows the semiconductor switch
current. When a fault is detected, the LCS is turned off and the current in the mechanical switch
generates a current zero point. The current in the semiconductor switch is rectified and flows into the
MOV when the UFD opens. The MOV current is shown in Figure 13. Current is reduced and fault
clearing is achieved. The current interruption time is 1.5 ms. In Figure 12, the semiconductor switch is
turned off rapidly from 2 kA. In these simulation results, the hard switching of conventional hybrid
circuit breakers was observed.
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5.3. Simulation Results of the Proposed Breaker

The current of a mechanical switch is shown in Figure 14 and the current of a semiconductor
switch is shown in Figure 15. The mechanical switch is found to pass through the zero point during
rectification to complete the interruption. The semiconductor switch current is interrupted at the
current zero point. The current interruption time is between 1 and 1.1 ms. ZCS can be observed in
Figure 15.

The transmission line current is shown in Figure 16 and the transmission line voltage is shown in
Figure 17. In the case of the fault, the transmission of power to other systems is stable and voltage
fluctuations are controlled. The submodule capacitor voltage of the MMC at the point of fault is
shown Figure 18. The submodule capacitor voltage outside the point of fault is shown in Figure 19.
The voltage fluctuation is small and stable, and protection of the MMC is achieved. The active power of
each converter is shown in Figure 20. The fault point’s active power P1 has zero power, and the other
systems are making up for the lack of power. At t = 3.3 s, the system is restarted. When reconnected,
the time required to recover the current is 1 s. In these simulation results, the proposed circuit breaker
achieves soft-switching fault interruption. In addition, the reconnections are smooth. Therefore,
the practicality of the proposed circuit breaker has been demonstrated.
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5.4. Discussion

A comparison table is shown in Table 3. The ABB’s hybrid circuit breakers can eliminate HVDC
system failures within 5 ms. However, hard switching in fault interruption was observed. The proposed
hybrid circuit breaker can eliminate the fault of the HVDC system within 5 ms. ZCS was observed in
fault interruption. In the fault simulation in the MTDC system, the circuit breaker showed sufficient
fault rejection performance, and a stable system restart was observed.
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Table 3. Comparison table.

ABB’s Breaker Proposed Breaker

Switching Hard Switching ZCS (Soft Switching)

Interruption time 1.5 ms 1–1.1 ms

6. Conclusions

In this paper, a resonant hybrid DC circuit breaker for multi-terminal HVDC systems was proposed.
The hard switching with conventional hybrid circuit breakers upon interruption has an adverse effect
on the semiconductor switch. The resonant hybrid circuit breaker proposed in this paper provides
soft-switching interruption and avoids the adverse effects of hard switching. The ABB’s circuit breaker
and the proposed circuit breaker were compared in a simulation. The ABB’s circuit breaker has an
interruption time of 1.5 ms and is suitable for the protection of HVDC systems. However, the current
of 2 kA was rapidly interrupted, and hard switching was observed upon the fault current interruption.
The proposed circuit breaker interrupts the current in 1 to 1.1 ms. The fault current is interrupted at the
current zero point when the current is interrupted. Smooth reconnections of the system were confirmed
to be about 1 s after fault clearing. Therefore, the proposed circuit breaker avoids the adverse effects of
hard switching and can be applied to MTDC systems.

The proposed circuit breaker can be applied to the fault interruption of equipment handling high
power in addition to current interruption of power lines. In the future, it is necessary to conduct
simulations on transmission lines with distributed power sources, as well as experiments on actual
equipment and simulations on high-power devices.
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Nomenclature

The following notations are used in this manuscript.

Abbreviations
AC Alternating current
DC Direct current
EMI Electromagnetic interference
FB Full bridge
HB Half bridge
HVDC High-voltage direct current
LCS Load commutation switch
MOV Metal oxide varistor
MTDC Multi-terminal direct current
RBSOA Reverse bias safety operation area
UFD Ultrafast disconnector
ZCS Zero-current switching
Variables
C Line capacitor during the fault [F]
Cdc DC capacitor [F]
Cre Resonant capacitor [F]
Cs Snubber capacitor [F]
CSM Cell capacitor [F]
iAa, iAb, iAc Current of upper arm [A]
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iBa, iBb, iBc Current of lower arm [A]
Idc1 − Idc4 Transmission line current of each converter [A]
ims Mechanical switch current of DC circuit breaker [A]
iss Semiconductor switch current of DC circuit breaker [A]
iare MOV current of DC circuit breaker [A]
L Line inductance during the fault [H]
l Transmission distance [km]
Ldc DC inductance [H]
Lline Transmission line inductance [H]
n The number of submodules
P1 − P4 Active power of each converter [MW]
R Line resistance during the fault [Ω]
Ls Suppression inductance [H]
Rline Transmission line resistance [Ω]
vcAa1, vcAa2 The voltage of the upper-arm cell capacitor in phase a [V]
vcAb1, vcAb2 The voltage of the upper-arm cell capacitor in phase b [V]
vcAc1, vcAc2 The voltage of the upper-arm cell capacitor in phase c [V]
vcBa1, vcBa2 The voltage of the lower-arm cell capacitor in phase a [V]
vcBb1, vcBb2 The voltage of the lower-arm cell capacitor in phase b [V]
vcBc1, vcBc2 The voltage of the lower-arm cell capacitor in phase c [V]
Vdc1 −Vdc4: DC link voltage [V]
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