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Abstract: Cloud manufacturing is an emerging service-oriented paradigm that works by taking
advantage of distributed manufacturing resources and capabilities to collaboratively perform a
manufacturing task, with the consideration of QoS (Quality of Service) requirements such as cost,
time and quality. Incorporating environmental concerns and sustainability into cloud manufacturing
to produce a much greener product has become an urgent issue since there is fierce market
competition and an increasing environment consciousness from customers. In this paper, we present
a multi-objective optimization approach to selecting and scheduling cloud manufacturing services
from the viewpoints of the economy and environment including carbon emissions and water resource.
Subject to the carbon cap regulation, a multi-objective model for a cloud manufacturing task is built
with the aim of minimizing total costs, carbon emissions, and water resource use. Transportation mode
selections and carbon emissions from both cloud manufacturing services and transportation activities
are taken into account in this model. The ε-constraint method is employed to obtain the exact Pareto
front of optimal solutions. A case study from automobile cloud manufacturing is used to illustrate
the effectiveness of the presented approach. Numerical experiments are conducted to compare the
presented approach and the simple additive weighting method. The results show that the presented
ε-constraint method can obtain a better and more diverse Pareto set of solutions and that it can solve
the models in a reasonable time.

Keywords: cloud manufacturing; multi-objective optimization; carbon emissions; sustainable
manufacturing

1. Introduction

With the development of modern information technology, fierce market competition, and diverse
customer needs, cloud manufacturing has emerged as a convenient manufacturing mode for organizing
global manufacturing resources and capabilities to perform a specific manufacturing task by means of
cloud computing [1]. Cloud manufacturing can be regarded as a specific kind of SaaS (Software as a
Service), i.e., manufacturing as a service, and users can use cloud manufacturing services based on a
pay-as-you-go mode [2]. Under the paradigm of cloud manufacturing, enterprises encapsulate their
manufacturing resources into cloud manufacturing services with standard information description,
namely, virtualization of manufacturing resources [1,2]. Then, the manufacturing services are published
on a cloud manufacturing platform. Once a user submits the request for a manufacturing task, the cloud
platform performs service discovery, service matching, and service selection and scheduling such
that the user requirements for QoS (Quality of Service) like cost and due date are satisfied. A vast
number of studies on cloud manufacturing have been carried out during recent years [3,4] on issues
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like service discovery [5–7], service matching [8–10], and service selection and scheduling [11–13].
Among these, the service selection and scheduling problem, which is the problem of assigning
candidate cloud manufacturing services to each subtask and scheduling them with specified start and
end times, is most challenging in cloud manufacturing [4]. Owing to various QoS requirements for
user tasks, such as cost, due date, and reliability, service selection and scheduling is a multi-objective
optimization problem; generally, in most studies, a simple additive weighting (SAW) method is used
to convert a multi-objective optimization problem to a single objective one [14,15]. Researchers have
proposed a variety of QoS like makespan, cost, reliability of service, and pass rate in specifying their
optimization objectives. However, existing research on cloud manufacturing rarely considers the
sustainability of cloud manufacturing, especially environmental impacts of cloud manufacturing
services [16]. Consequently, there exists a significant gap between cloud manufacturing and sustainable
manufacturing. In this paper, we propose a multi-objective optimization approach for optimally
selecting and scheduling cloud manufacturing services according to task requirement from a user
and with consideration of environmental impacts, i.e., greenhouse gas emissions and water resource,
in cloud manufacturing services. We further consider the carbon cap (i.e., limitation) regulation [17,18],
one of main policies to reduce CO2 emissions under the United Nations Framework Convention on
Climate Change (UNFCCC) and the Paris Agreement, in the optimization model as a hard constraint
that restricts the total carbon emissions for all selected cloud manufacturing services so that they
cannot exceed the specified amount of CO2 emissions. Unlike existing studies that use a simple
additive weighting to solve multi-objective optimization, we further develop an exact method to obtain
the Pareto-optimal front by using the ε-constraint method [19] without a pre-determined weight for
each objective.

Our contributions are three-fold. Firstly, carbon emissions by both manufacturing services and
transportation activities between the services are taken into account when optimally assigning cloud
services to subtasks, subject to the carbon cap regulation. As far as we know, few studies address
the carbon emissions in cloud manufacturing within the framework of the carbon cap regulation.
Secondly, minimization of water resources when configuring cloud manufacturing tasks is another
contribution. Typical manufacturing processes for cloud services have to consume a lot of water during
handling, cleansing, and lubricating activities. To make cloud manufacturing sustainable, taking into
account water resources during manufacturing tasks is indispensable. Finally, all previous researches
regarding cloud manufacturing either assume pre-determined weights for each objective or make
an effort to derive a near Pareto front for the multi-objective optimization using heuristic algorithms
such as NSGA-II. In contrast, we can obtain an exact Pareto-optimal front by means of the developed
ε-constraint method, thereby ensuring rigorous decisions for decision makers.

The paper is organized as follows. Section 2 reviews related work. In Section 3, the service selections
and scheduling problem in cloud manufacturing in relation to carbon emissions and sustainability
considerations is described, and a multi-objective mixed-integer programming model is built. Section 4
addresses the ε-constraint method algorithm for solving the multi-objective optimization model. A case
study on automobile cloud manufacturing is used to illustrate the effectiveness of the presented
approach. Numerical experiments are conducted to compare the presented approach and the simple
additive weighting method. Finally, Section 6 summarizes conclusions and future research directions.

2. Literature Review

The studies on cloud manufacturing mainly include service discovery, service matching,
and service selection and scheduling. Below, the literatures about the three aspects are elaborated.
For a comprehensive review, readers can be referred to the literatures in [3,14].

Due to a vast number of enterprises involved in a cloud manufacturing platform, a mechanism of
dynamically discovering the encapsulated services is needed to match the services with the submitted
subtasks. Although there is ambiguity between service discovery and service matching and the two
terms are used interchangeably in some literature, we distinguish the two. Service discovery is the means
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of dynamically discovering the cloud manufacturing services in terms of the functions that a subtask
requires, whereas service matching means matching a service to a subtask in terms of non-function
attributes. To discover the cloud manufacturing services dynamically, formal representation of functions
and inputs and outputs of services are requisite, considering various slight variations in the information
representation provided by various services. A knowledge representation such as ontology acts as
one of the main means to formalize the functions and inputs and outputs of a service. Wang et al.
(2014) proposed a modeling framework of cloud manufacturing tasks using ontology to formally
express the classification of the manufacturing tasks and modeling requirements [5]. Zhang et al. (2016)
implemented a proactive service discovery by using OWL (Ontology Web Language) to represent
function attributes of services [6]. With regard to service matching, it aims to find suitable services from
the discovered candidate service with the same functions by comparing their non-functional attributes,
such as product quality and delivery time. Li et al. (2019) developed a two-side matching model for
non-function attributes of services such as product quality and supply capacity using dual hesitant
fuzzy sets [8]. Tao et al. (2009) presented a framework for integrating service search and service
matching by considering similarity degrees between services and subtasks. The similarity degree is
calculated by summing the basic similarities in function, input and output, and other non-functional
attributes [9]. Liu and Chen (2019) proposed an approach to recommending cloud manufacturing
services by clustering and similarity-based recommending. The similarity degree takes into account
both task similarity and QoS similarity [10].

After service discovery and matching is finished, a number of legitimate cloud manufacturing
services are available, and they differ in QoS requirements such as costs, prices, and time. Consequently,
how to select the services, assign the services to the subtasks, and schedule them in a timely manner
to satisfy the QoS requirements of user tasks becomes a challenging problem [4]. Due to the fact
that a cloud manufacturing task (i.e., a user) generally has various service requirements like due
date, cost, reliability, and reputation, service selecting and scheduling is regarded as a multi-objective
optimization problem in which it is impossible to achieve all optimal results simultaneously in multiple
objectives, and an improvement in one objective may lead to the deterioration in another objective.
To solve the multi-objective problem, the main methods in existing studies include the simple additive
weighting (SAW) method [11] and meta-heuristics algorithms, like the genetic algorithm (GA) [20] and
ant colony optimization (ACO) [21]. The studies mainly differ in the chosen criteria for measuring
QoS, like cost, time, reputation, energy usage, and pass rate. Akbaripour employed SAW to solve
the multi-objective manufacturing service selection problem with a pre-determined weight for each
objective, and an exact mathematical programming solver GAMS was used to obtain optimal results [11].
Aghamohammadzadeh et al. (2019) presented an approach to composing and selecting cloud service
providers in a cloud manufacturing environment by using cloud-entropy, an index for measuring the
complexity of the composed cloud services, and other objectives like cost and time [20]. They solved
the multi-objective optimization model using Non-dominated sorting genetic algorithm II (NSGA_II).
Li et al. (2018) considered multi-task scheduling in cloud manufacturing services by optimizing
multiple objectives including makespan, time, and quality of service such that the dependencies among
subtasks of a task were observed [22]. Moreover, both ACO and NSGA_II were employed to solve the
multi-objective model, and the experiments showed that ACO can obtain a more diverse set of Pareto
solution, thus offering more selection alternatives for customers. Zhang et al. (2019) constructed a
comprehensive cloud manufacturing platform for injection molding, and the optimal service selections
were derived using GA [23].

However, logistics and transportation as important activities in cloud manufacturing are ignored
in the literature until recently [4,11,14]. Lartigau et al. (2015) proposed to take into account the
transportation activities between physical locations of cloud services when composing a cloud
manufacturing task [21]. Liu et al. (2016) proposed a multi-task cloud manufacturing model for
assigning multiple tasks to cloud manufacturing services including logistic time by satisfying the QoS
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requirements for tasks [24]. Zhou et al. (2020) investigated a logistics scheduling problem for cloud
services to reduce the average delivery time from manufacturers to customers [25].

It becomes gradually recognized that cloud manufacturing should increase its sustainability
by reducing its environmental impacts, reducing its waste, and reusing and recycling renewable
resources [16]. Nevertheless, there exist a significant gap between cloud manufacturing and sustainable
manufacturing. The only paper considering carbon emissions in cloud manufacturing is that by
He et al. (2019) [26]. Our study is different from their studies, which only address carbon emissions
in manufacturing activities, because we further take into account carbon emissions in transportation
activities between cloud manufacturing services, namely carbon footprint from manufacturing to
transportation. Moreover, we give a hard carbon emission cap, i.e., carbon cap regulation, for total
carbon emissions when selecting, composing, and scheduling cloud manufacturing services. The reason
is that an increasing number of countries around the world have imposed carbon emission regulations
like carbon caps and carbon taxes [17] since the Paris Agreement. Therefore, it is instructive to
consider carbon regulations in the studies on cloud manufacturing. To keep cloud manufacturing
environmentally friendly and sustainable, minimization of water resource usage in cloud manufacturing
tasks is taken into account in our study.

3. Problem Description

A cloud manufacturing framework consists of a central cloud manufacturing platform, small and
medium-sized enterprises (SMEs) offering various cloud manufacturing services, and manufacturing
task requests from users, as shown in Figure 1. An enterprise encapsulates its manufacturing services or
capabilities, registers them to the cloud manufacturing platform, and then publishes them. All registered
and published services are put into the service pool managed by the platform. Once a user submits its
manufacturing task to the platform, the task is decomposed into a set of the subtasks with precedence
relations. The platform is responsible for discovering and matching candidate manufacturing services
for the corresponding subtasks. Then, the services are selected from the candidate service set and
assigned to the subtasks. The start and end time of each subtask are determined and scheduled
according to the user’s required due date. It is assumed that a task has been decomposed into
the subtasks and that services can be discovered and matched in accordance with the well-known
method mentioned in the literature. Therefore, our study only focuses on the service selection and
scheduling problem.
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Suppose a manufacturing task TA is submitted to the cloud manufacturing platform and is
decomposed into a set of the subtasks STi (i = 1, 2, · · · , I), namely, TA = {ST1, ST2, · · · , STi, · · · }.
An enterprise SME j ( j = 1, 2, · · · , J) can provide several cloud manufacturing services
MS =

{
MS j1, MS j2, · · · , MS jk, · · ·

}
where MS jk represents kth manufacturing service by the jth

enterprise. The transportation activities and between SMEs are considered, and there exist several
transportation modes m (m = 1, 2, . . . .) for transporting a product from one service site to another
site. For example, land transportation and air transportation have different transportation costs and
per-unit carbon emissions. Although air transportation has relatively higher transportation costs
and carbon emissions when compared to land transportation, it offers much shorter transportation
time. The carbon footprint from manufacturing to transportation is also taken into account. It is
required by the user that the total carbon emissions for the configured cloud services cannot exceed
the carbon allowance ecap, which is specified according to an annual plan for total carbon amount for
this enterprise. The aim of this study is to select and assign the cloud manufacturing services to the
subtasks with the multiple objectives of minimizing total cost, carbon emissions, and water usage.

4. Cloud Manufacturing Service Selection and Scheduling Model and Solution Method

4.1. Assumptions

(1) The task has been decomposed into the subtasks.
(2) Service discovery and matching has been carried out beforehand.
(3) A subtask cannot be interrupted once it begins to execute.
(4) Carbon cap (i.e., limitation) is known and given by the user according to a yearly planning for the

reduction of CO2 emissions.
(5) Each cloud manufacturing service provides its environment and resource data in its

service description, such as CO2 emissions in manufacturing activities and water usage in
production processes.

(6) We focus on discrete cloud manufacturing tasks where CO2 emissions by electricity account for
most of greenhouse gas emissions, although in continuous cloud manufacturing such as biomass
products, other greenhouse gases such as NO2 and Sulfur dioxide should be dealt with.

4.2. Notations

SCi jk Service cost of service MS jk, if assigned to subtask STi;
STi jk Service time of service MS jk, if assigned to subtask STi;
Qi jk Service quality of service MS jk, if assigned to subtask STi;
WAi jk Amount of water used by service MS jk, if assigned to subtask STi;
PCi jk Setup cost of service MS jk, if assigned to subtask STi;
emi jk Unit carbons emission of manufacturing activities by MS jk, if assigned to subtask STi;
etm Unit carbons emission by transportation activity using transportation mode m;
ecap Maximum carbon emission cap;
CTm Unit transportation cost using transportation mode m;
BAT Batch of manufacturing;
Dist jp Geographical distance between enterprise j and enterprise p;
QAmin Minimum acceptable quality level specified by the user;
Wi Weight of a semi-finish product for subtask STi;

TTm
ijk,lpk′

Transportation time between service MS jk of subtask i and MSpk′ of subtask l; using
transportation mode m;

SOT jk Beginning time for time window of cloud service MS jk;
EOT jk End time for time window of cloud service MS jk;
TD Due date for a cloud manufacturing task;
xi jk =1, if subtask i is assigned to cloud manufacturing service MS jk; = 0, otherwise;

ym
ijk,lpk′

=1, if transportation model m is selected for the transportation between service MS jk of
subtask i and MSpk′ of subtask l;

Ti Start time of subtask STi.
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4.3. Model Formulation

4.3.1. Decision Variables

Three types of decisions needs to be made in the service selection and scheduling problem in
cloud manufacturing. The variable xi jk represents task assignment decisions and is defined as:

xi jk =

{
1, i f subtask i is assigned to cloud manu f acturing service MS jk
0, Otherwise

(1)

The logistic decisions for transportation means are denoted by the variable ym
ijk,lpk′ which is defined

as follows:

ym
ijk,lpk′ =


1, i f transportation model m is selected f or shippping between

service MS jk o f subtask i and service MSpk′ o f subtask l
0, Otherwise

(2)

The scheduling decisions determine the start time of each subtask such that the delivery date can
be met. The variable Ti defines the start time of each subtask in the problem, namely,

Ti ≥ 0 (3)

4.3.2. Objectives

(1) Total cost

The total cost consists of service costs, setup costs of cloud manufacturing services,
and transportation costs between two consecutive manufacturing services. The service cost and
setup cost of a cloud manufacturing service is formulated as:

SCi jkBAT + PCi jk

where SCi jk and PCi jk represent service cost and setup cost of cloud manufacturing service MS jk,
respectively, and BAT is batch of the manufacturing. The transportation cost between two consecutive
manufacturing services MS jk and MSpk′ is calculated as:

Dist jpCTmWiym
ijk,lpk′

where Dist jp, CTm, and Wi are the geographical distance between enterprise j and enterprise p,
unit transportation cost, weight of transported semi-product or product for subtask i, respectively.
ym

ijk,lpk′ denotes transportation model m is selected for shipment between service MS jk of subtask i and
MSpk′ of subtask l. Therefore, the total cost (TOC) in cloud manufacturing is formulated as:

TOC =
∑

i

∑
j

∑
k

(
SCi jkBAT + PCi jk

)
xi jk +

∑
i

∑
(i,l)∈PR

∑
m

Dist jpCTmWiym
ijk,lpk′ (4)

where PR is the set of a pair of subtasks with immediate precedence relations.

(2) Total carbon emissions

The total carbon emissions in cloud manufacturing include the CO2 emissions in manufacturing
services and those in transportation activities between them. The CO2 emissions of a manufacturing
service MS jk in processing, cutting, and forming material can be calculated as:

emi jkBATxi jk
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where emi jk represents per-unit carbons emission for manufacturing activities MS jk performing subtask
i, and BAT is the batch of manufacturing. The CO2 emissions by transportation activity between two
manufacturing services are formulated as:

Dist jpetmWiym
jkpk′

where etm represent per-unit carbons emissions by transportation activity with transportation mode m.
Consequently, the total carbon emissions (TCE) are calculated as:

TCE =
∑

i

∑
j

∑
k

emi jkBATxi jk +
∑

i

∑
( jk,pk′)∈PR

∑
m

Dist jpetmWiym
ijk,lpk′ (5)

(3) Water resource

The manufacturing processes within a cloud manufacturing services need to consume a lot of
water in processing, lubricating, and cooling activities. The total amount of water usage (TAW) in cloud
manufacturing amounts to:

TAW =
∑

i

∑
j

∑
k

WAi jkBATxi jk (6)

where WAi jk denotes the amount of water consumed by service MS jk to perform subtask i.

(4) Multi-objective optimization

With the three objective expressions for total cost, total carbon emissions, and total water usage,
the multi-objective optimization for sustainable cloud manufacturing can be formulated as:

Minimize f1 : TOC
Minimize f2 : TCE

Minimize f3 : TAW

Before conducting multi-objective optimization, some constraints need to be considered in
this study.

4.3.3. Constraints

(1) Subtask assignment constraint

A subtask is only assigned to a cloud manufacturing service to carry out the manufacturing task.
The assignment constraints are formulated as follows:

J∑
j=1

K∑
k=1

xi jk = 1 ∀i (7)

(2) Precedence constraint

The tasks with the precedence relations must be scheduled such that a succeeding task can only
be executed if all its proceeding tasks have been finished and the corresponding semi-finished product
has been shipped. The precedence constraint is described as:

Tp − Ti ≥

J∑
j=1

K∑
k=1

xi jkSTi jk ++

J∑
j=1

K∑
k=1

∑
m

TTm
ijk,pj′k′ y

m
ijk,pj′k′ ∀p, ∀i ∈ PRE(p) (8)

where STi jk is the service time of service MS jk w.r.t. subtask STi and PRE is the set of all preceding task
of the task p.
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(3) Time window constraint

We consider in this study that a cloud manufacturing service can specify its service time window
by the start and end time of the service to avoid waiting and time conflicts between customers, owing
to the fact that a cloud service could serve multiple customers. Consequently, a subtask can only be
assigned to a service if its start time and finish time fall in the time window. The constraints can be
represented as:

J∑
j=1

K∑
k=1

SOT jkxi jk ≤ Ti ∀i (9)

Ti +

J∑
j

K∑
k

STi jkxi jk ≤

J∑
j=1

K∑
k=1

EOT jkxi jk ∀i (10)

where SOTi jk and EOT jk are the start time and end time of a time window by cloud service MS jk.

(4) Service quality constraint

Service quality is calculated by considering average pass rate for the selected cloud manufacturing
services. It should satisfy the minimal pass rate specified by a user task.

1
N

N∑
i=1

J∑
j=1

K∑
k=1

Qi jkxi jk ≥ QAmin (11)

where Qi jk is the service quality of service MS jk w.r.t. subtask STi.

(5) Due date constraint

The finish time of the final subtask must satisfy the delivery time of a user task. The constraint is
elaborated as follows:

TN +

J∑
j

K∑
k

STN jkxi jk ≤ Tmax (12)

where TN represents the start time of the final subtask. Tmax is the due date for the submitted user task.

(6) Carbon cap regulation

The carbon cap regulation enforces that the total amount of CO2 emission must not exceed a
specified carbon allowance. The constraint is described as follows:

TCE ≤ ecap (13)

(7) Budget constraint

The service cost of composite services can be less than or equal to the budget specified by a user
task. The budget constraint is formulated as:

TOC ≤ Cmax (14)

(8) Logical constraint

Generally there exist logical constraints between decision variables. The logical constraints
between transportation decisions and subtask assignment decisions should be imposed to ensure
that a transportation mode can only be selected if the corresponding services are assigned to the two
consecutive subtasks.

M∑
m=1

ym
ijk,lpk′ = xi jkxlpk′ ∀(i, l) ∈ PR, ∀ j∀p∀k



Sustainability 2020, 12, 7733 9 of 19

Due to the non-linear term, i.e., multiplication of two decision variables, in this formula,
a linearization technique must be adopted in this study to ensure that mathematical programming
can be used to solve the mathematical model. An auxiliary binary variable zrkk′ is introduced and
defined below.

zr = xi jkxlpk′ (15)

zr ≤ xi jk (16)

zr ≤ xlpk′ (17)

zr ≤ xi jk + xlpk′ − 1 (18)

zr ∈ {0, 1} (19)

M∑
m=1

ym
ijk,lpk′ = zr (20)

4.3.4. Multi-Objective Optimization Model

With decision variables and constraints defined above, the multi-objective optimization model for
service selection and scheduling in cloud manufacturing is formulated as:

(MO− SSS) :
Minimize f1 : TOC
Minimize f2 : TCE

Minimize f3 : TAW
s.t.

Contraints (7) − (20)
xi jk, ym

ijk,lpk′ = 0, 1

Ti ≥ 0

(21)

where the objectives TOC, TCE, and TAW represent total cost, total carbon emissions, and total amount
of water usage, respectively, as defined in Equations (4)–(6).

4.4. Solution Algorithm for Multi-Objective Optimization

The aim of multi-objective optimization is to obtain Pareto-optimal solutions for the concerned
problem, owing to the nonexistence of a solution that has all optimal values in every objective for the
minimization problem. A Pareto-optimal solution set is defined to be the set of all non-dominated
solutions. A solution x is called non-dominated (for minimization problem), if it satisfies the
following inequalities:

∀y fi(x) ≤ fi(y) ∀i ∈ {1, 2, . . . , o1} and ∃ j ∈ {1, 2, . . . , o2}, f j(x) < f j(y)

where fi(x) is the ith objective function to be optimized. In other words, a solution is a non-dominated
one if it is not much worse in all objectives and has one better value in at least one objective than all
other solutions.

There exist several limited studies on cloud manufacturing which apply a pre-determined additive
weighting method (SAW) for multi-objective optimization. The advantage of the Pareto-optimal based
method is that decision makers can dynamically make optimal polices according to the real situation
without a pre-determined weight. In this study, we employ the ε-constraint method [19] to obtain exact
Pareto-optimal solutions, which differs from NSGA-II with approximate Pareto-optimal methods.

In the ε-constraint method, one of multiple objectives is selected as the main objective to be
optimized, and other objectives are transformed into the constraints with corresponding ε as the upper
bounds of the constraints. As a consequence, a multiple objective optimization problem can be handled
by iteratively solving a serial of single-objective optimization problems by varying the values of ε such
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that the optimal Pareto-front can be derived. With the ε-constraint method, the model (MO− SSS)
for service selection and scheduling in this study can be converted to a single objective optimization
problem with other objectives moving down to constraints. The transformed model is formulated as
the model MO− SSS(ε):

MO− SSS(ε) :
Minimize f1 : TOC

s.t.
f2 = TCE ≤ ε2

f3 = TAW ≤ ε3

Contraints (7) − (20)
xi jk, ym

ijk,lpk′ = 0, 1

Ti ≥ 0

(22)

where the optimized objective is f1, i.e., total cost, and the objectives f2 and f3, i.e., total carbon emissions
and water resource, are converted as corresponding constraints with specified upper bounds ε1 and ε2,
respectively. By varying the values of ε1 and ε2 according to a step size, a serial of single-objective
optimization problems can be solved, and thus the optimal Pareto front can be obtained.

To determine the range of the value of ε2 and ε3, the ideal points and nadir points of the objectives
f2 and f3 should be obtained, and they correspond to the minimal values and maximal values of f2
and f3, respectively. The ideal points of f1, f2 and f3, i.e., f I

1, f I
2 and f I

3, can be derived by solving the
following linear programming problems:

(M1) : f I
1 = Minimize TOC

s.t.
Contraints (7) − (20)

(M2) : f I
2 = Minimize TCE

s.t.
Contraints (7) − (20)

(M3) : f I
3 = Minimize TAW

s.t.
Contraints (7) − (20)

Similarly, by adding the constraints restricting other objectives equal to their ideal points,
the nadir points of f2 and f3, i.e., f N

2 and f N
3 , can be obtained by solving the following linear

programming problems:
(N1) : f N

1 = Minimize TOC
s.t.

f2 = f I
2

f3 = f I
3

Contraints (7) − (20)
(N2) : f N

2 = Minimize TCE
s.t.

f1 = f I
1

f3 = f I
3

Contraints (7) − (20)
(N3) : f N

3 = Minimize TAW
s.t.

f1 = f I
1

f2 = f I
2

Contraints (7) − (20)
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Based on the solutions above, we can obtain the range of ε2 taking values, namely, the interval
[ f I

2, f N
2 ]. Similarly, the range of ε3, i.e., [ f I

3, f N
3 ], can be determined. The complete ε-constraint

algorithm for solving service selection and scheduling in cloud manufacturing is described as follows
(Algorithm 1):

Algorithm 1. The ε-constraint algorithm for solving multi-objective optimization

Step 1. Obtain the ideal points of the objectives f2 and f3 by solving the models M1-M3.
Step 2. Obtain the nadir points of the objectives f2 and f3 by solving the models N1-N3.
Step 3. Set the step size ∆ as an initial value. Initialize the set of Pareto-optimal set Ω = φ.
Step 4. While ε2 ≤ f N

2
Add Constraint f2 = TCE ≤ ε2 to model MO− SSS;

While ε3 ≤ f N
3

Add constraints f3 = TAW ≤ ε3;
Solve the model MO− SSS(ε) and obtain f1(ε), f2(ε), f3(ε);

Add the triple tuple ( f1(ε), f2(ε), f3(ε)) to the set Ω;
Update ε3 ← ε3 + ∆ ;

End
Update ε2 ← ε2 + ∆ ;

End
Step 5. Output the Pareto-optimal set Ω.

As described above, the algorithm begins with obtaining ideal points and nadir points of each
objective, respectively. The step size ∆ should be set and initialized. When ε2 and ε3 are less than
or equal to their nadir values (i.e., upper bounds for the minimization problem), new constraints,
i.e., ε-constraints, are added and thus the model MO − SSS(ε) is derived. By solving this model,
its optimal objective f1(ε) can be obtained and the expressions f2(ε), f3(ε) can be calculated. A triple
tuple ( f1(ε), f2(ε), f3(ε)) is added to the Pareto-optimal set Ω. Then the step size is updated and the
process iterates until the corresponding condition does not hold. Finally, the Pareto-optimal set Ω,
i.e., Pareto front, is derived.

5. Computational Experiments and Results

5.1. Case Study for a Small Example

To verify the effectiveness of the suggested models and solution algorithms, the production
of automobile engine parts including valve (VAL), Exhaust Gas Re-circulation (EGR) passage,
crankcase (CRK), gear housing (GHS), and oil pan (OIP) from reference [27] is used an example.
The manufacturing task is decomposed into five subtasks. Overall, the task has a sequential structure.
SMEs offer cloud manufacturing services for performing corresponding subtasks. It is possible that a
subtask may be performed by the services of several SMEs with differentiated QoS, and a SME offers
several cloud manufacturing services for different subtasks. Table 1 shows the data about SMEs and their
cloud services, including the manufacturing cost, time, pass rate, CO2 emissions, water usage, and time
windows of each service. As shown in the table, 13 enterprises can offer one or two cloud manufacturing
services with specified service data for corresponding subtasks. For example, SME3 offers two cloud
manufacturing services for the subtasks EGR and GHS, respectively. The geographical distances
between enterprises are shown in Table A1 (see Appendix A). Other parameters for the manufacturing
example include cost budget, delivery deadline, quality level, and carbon emission factors and are
listed in Table 2. Two kinds of transportation models, i.e., m = 2, such as land and air transportation
are assumed in the example.

With the data as an input, the multi-objective model for cloud manufacturing, i.e., MO− SSS(ε)
in (22), is solved using the ε-constraints method, and the model is programmed in Cplex C++ 12.7.0
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with the computational time 817.69 s. The optimization results, including all Pareto-optimal solutions,
are shown in Table 3. For example, the solution R4 indicates that the objective values for cost,
carbon emissions, and water usage are 265,341, 14,683.7, and 1212, respectively, if the five subtasks
are assigned to SME7, SME3, SME4, SME13, and SME12, respectively, and the transportation mode
2 is selected from SME7 to SME3, and mode 1 is used for shipping between other SMEs. There are
18 non-dominated solutions, as shown in Table 3, and decision makers can select one of the solutions
as their decisions according to their preference with regards to economic, environmental, and water
resources. One can selects the solution R1 if the minimal cost is preferably considered, whereas the
solution R7 should be adopted if the decision makers focus on the least CO2 emissions for cloud
manufacturing. Figure 2 graphically displays the scheduling results for the two candidate solutions,
namely solution R1 with the minimal cost and solution R7 with the least CO2 emissions.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 19 
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Table 1. Service providers and their cloud manufacturing services for the example case.

SME Time Windows
Manufacturing Cost(RMB)/Manufacturing Time/Pass Rate/Carbon Emissions(kgCO2-e)/Water Usage (ton) for Five Subtasks

VAL EGR CRK GHS OIP

SME1 [20,100] 506/34/0.80/41.39/3.35
SME2 [0,80] 161/20/0.81/21.4/1.81 1165/22/0.98/31.07/4.14
SME3 [30,150] 561/24/0.89/30.82/2.5 311/30/0.87/45.03/4.61
SME4 [60,100] 1120/28/0.95/34.96/4.69
SME5 [10,150] 917/32/0.83/54.32/6.42 76/12/0.89/10.59/0.27
SME6 [30,120] 532/31/0.82/35.66/3.5 67/17/0.85/13.59/0.45
SME7 [0,50] 176/17/0.87/16.55/1.07 416/16/0.96/28.02/3.37
SME8 [30,80] 1138/25/0.97/33.96/4.5 77/11/0.91/11.53/0.25
SME 9 [10,60] 585/20/0.92/30.81/2.17 75/14/0.88/13.23/0.31

SME 10 [30,100] 172/19/0.83/17.52/1.34 352/20/0.90/40.73/3.92
SME 11 [0,150] 116/28/0.80/23.31/2.05 1007/30/0.87/43.28/5.78 55/25/0.80/15.64/0.57
SME12 [0,120] 139/24/0.82/22.68/1.96 63/20/0.84/14.75/0.49
SME13 [50,120] 387/18/0.93/35.74/3.59
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Table 2. Parameters for clouding manufacturing task in the example.

Parameters Values

Cmax 300,000
Tmax 150

QAmin 0.90
BAT 100
Wi {1.2, 5.0, 20.0, 30.0, 1.0}

TCm(m = 1, 2) {0.0069, 0.0104}
TEm(m = 1, 2) {0.0006, 0.0008}

Table 3. Optimal service selections.

Solutions (f1, f2, f3)
Cloud Services and Transportation

Selections for Subtasks
VAL-EGR-CRK-GHS-OLP

R1 (256,583, 15,069.8, 1266) SE7-(1)-SE9-(1)-SE11-(1)-SE13-(1)-SE5
R2 (260,477, 14,279.4, 1187) SE7-(1)-SE9-(1)-SE4-(1)-SE13-(1)-SE11
R3 (265,333, 14,542.4, 1179) SE7-(1)-SE9-(1)-SE4-(1)-SE13-(1)-SE12
R4 (265,341, 14,683.7, 1212) SE7-(2)-SE3-(1)-SE4-(1)-SE13-(1)-SE12
R5 (265,974, 14,467.1, 1168) SE7-(2)-SE9-(1)-SE8-(1)-SE13-(1)-SE11
R6 (266,458, 15,004.7, 1220) SE7-(2)-SE1-(2)-SE2-(1)-SE13-(1)-SE5
R7 (268,137, 14,121.6, 1132) SE7-(2)-SE9-(1)-SE2-(1)-SE13-(1)-SE11
R8 (268,994, 14,892.4, 1212) SE7-(1)-SE3-(1)-SE4-(2)-SE13-(1)-SE12
R9 (269,403, 14,915.8, 1212) SE7-(2)-SE3-(1)-SE4-(2)-SE13-(1)-SE12

R10 (269,480, 14,198.3, 1132) SE7-(1)-SE9-(2)-SE2-(1)-SE13-(1)-SE11
R11 (271,039, 15,009.3, 1212) SE7-(2)-SE3-(1)-SE4-(1)-SE13-(2)-SE12
R12 (272,993, 14,384.6, 1124) SE7-(2)-SE9-(1)-SE2-(1)-SE13-(1)-SE12
R13 (274,334, 14,810.0, 1190) SE7-(2)-SE3-(1)-SE4-(2)-SE13-(1)-SE5
R14 (277,925, 14,278.8, 1102) SE7-(2)-SE9-(1)-SE2-(1)-SE13-(1)-SE5
R15 (279,267, 14,355.5, 1102) SE7-(1)-SE9-(2)-SE2-(1)-SE13-(1)-SE5
R16 (284,636, 14,802.4, 1135) SE7-(1)-SE3-(2)-SE2-(2)-SE13-(1)-SE5
R17 (284,803, 14,671.8, 1102) SE7-(2)-SE9-(2)-SE2-(2)-SE13-(1)-SE5
R18 (286,774, 14,784.5, 1102) SE7-(1)-SE9-(2)-SE2-(1)-SE13-(2)-SE5

5.2. Comparison with the Weighted Sum Approach

To investigate with the effectiveness of the presented approach, the ε-constraints method is
compared with simple additive weighting (SAW) approach. SAW is to assign a weight to each objective
such that a multi-objective optimization problem can be converted into a single objective one. For cloud
manufacturing, multi-objective optimization for service selection and scheduling with SAW approach
is represented below.

(MO− SAW) :
Minimize w1 f ′1 + w2 f ′2 + w3 f ′3

s.t.
Contraints (7) − (20)

xi jk, ym
ijk,lpk′ = 0, 1

Ti ≥ 0

(23)

where f ′1 , f ′2 , f ′3 are the normalized objectives for cost, carbon emissions, and water usage, respectively.

They are defined as f ′f =
fr− f min

r
f max
r − f min

r
(r = 1, 2, 3) where f min

r and f max
r are minimal and maximal values

of the objective fr, respectively. w1, w2, and w3 are corresponding weights for these three objectives.
The decision variables are the same with the model in (21).

The process of solving the multi-objective optimization model by the simple additive weighting
(SAW) method is depicted in Figure 3. The process begins with the initialization of the weights,
i.e., w1 = w2 = 0, w3 = 1. During each iteration, the weights are updated by increasing or decreasing a
step size and the model is then solved by the commercial solver Cplex 12.7.0. The optimal solution is
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added to the Pareto set. When one of weights is larger than 1, the process ends and the Pareto-optimal
set is obtained. For the small cloud manufacturing example mentioned above, the Pareto-optimal
solutions by SAW with equal step size of weights are listed in Table 4. The coverage ratio is defined
as Nw/Nε, where Nw is the number of the Pareto-optimal solutions by SAW and Nε is that of the
Pareto-optimal solutions by the ε-constraints method. As shown in the table, the Pareto-optimal
solutions by SAW can only obtain seven solutions, i.e., (R1, R2, R7, R8, R11, R14, R18). By contrast,
the ε-constraints method can derive all 18 solution from R1 to R18, which have been shown in Table 3.
The maximal coverage ratio achieves its maximal value of 38.89% even if step size of the weights
becomes smaller than 0.01. Figure 4 graphically shows all Pareto fronts, i.e., Pareto-optimal points,
by both the ε-constraints and SAW. Obviously, the ε-constraint approach finds all eighteen solutions
and SAW can obtain only seven solutions of these solutions. Therefore, the ε-constraints method can
achieve more Pareto-optimal points and more diverse Pareto distributions than the simple weighted
sum approach.
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Figure 3. Multi-objective optimization by simple weighted sum (SAW).

Table 4. Pareto-optimal solutions by simple additive weighting (SAW).

Step Size (∆w1=∆w2) Solutions Coverage Ratio CPU Time (s)

0.1 R1, R2, R7, R14, R18 27.78% 8.64
0.05 R1, R2, R7, R14, R18 27.78% 28.87
0.01 R1, R2, R7, R8, R11, R14, R18 38.89% 476.69
0.005 R1, R2, R7, R8, R11, R14, R18 38.89% 1764.84
0.001 R1, R2, R7, R8, R11, R14, R18 38.89% 9865.64
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To investigate the effectiveness and efficiency of the presented approach under medium-sized
or larger-sized cases, numerical experiments are conducted to compare the ε-constraint method and
SAW. Each case is denoted by case ID, namely I ∗ J ∗K, where I, J, K represent the numbers of subtasks,
SMEs, and services offered by a SME, respectively. We assume that the number of available cloud
services provided by a SME is the same for all SMEs. By generating the numbers randomly, we can
obtain the same case ID with different case data. Service costs and transportation cost per unit obey
uniform distributions U[50, 1000] and U[0.005, 0.02], respectively. Carbon emissions and water usage
are subject to normal distribution N[10, 48] and N[0.5, 6.5], respectively. For each case, 10 experiments
are randomly generated and the average coverage ratio and computational times are derived based on
the 10 experiments. Table 5 lists the experimental results for the ε-constraint method and SAW with
different scales of cases. The number of subtask varies from 5 to 20, and the number of SMEs takes a
value from 10 to 20. For possible cloud services that a SME could provide, the value varies from 2 to 4
since in reality a SME only focuses one or several core services. It can be seen from the table that the
coverage ratio by SAW is only 24.7~68.4% of that derived by the ε-constraint method, whatever the step
size of weight update is. Consequently, the ε-constraint method can obtain more Pareto-optimal points
than SAW within a reasonable time for most of the cases. However, the computational results cannot
be solved within 3600 s. when the numbers of both subtask and SMEs are equal to or greater than 20.
Therefore, there is a potential improvement in applying multi-objective evolutionary algorithms such
as NSGA-II in solving the large-sized problems.

Table 5. Experimental comparisons between ε-constraint and SAW.

I J K
CPU Time (s) Coverage

ε-Method SAW ∆w=0.05 SAW ∆w=0.01 SAW ∆w=0.05 SAW ∆w=0.01

5 10 2 10.636 17.109 258.573 68.4% 68.4%
5 15 3 22.58 29.444 887.396 37.5% 37.5%
5 20 4 96.823 95.98 3587.88 46.2% 51.3%

10 10 2 9.983 12.943 245.637 37.5% 37.5%
10 15 3 28.872 32.346 960.424 52.6% 60.5%
10 20 4 173.506 156.972 4950.34 35.2% 59.2%
15 10 2 12.399 18.979 336.286 47.6% 57.1%
15 15 3 91.151 98.179 1066.91 27.4% 39.3%
15 20 4 541.17 585.507 4587.88 31.7% 37.6%
20 10 2 40.464 41.887 1134.71 33.3% 43.6%
20 15 3 263.787 267.358 7473.9 27.3% 38.6%
20 20 4 962.17 842.641 - 1 24.7% -

1 The symbol ‘-’ means that the computational results cannot be derived in 3600 s.
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6. Conclusions

For service selection and scheduling in cloud manufacturing, an exact approach for solving
multi-objective optimization is proposed in this study with the consideration of the sustainability
of cloud manufacturing. Especially, the carbon emissions of both cloud manufacturing services and
transportation activities are taken into account in the optimization model. Furthermore, we consider
the decisions on transportation modes since in fact several transportation models such as highway,
land, air transportation, and third-party logistics are available for cloud service enterprises, which has
an effect on the quality of manufacturing services. Additionally, water usage, a large quantity of which
may be consumed in manufacturing processes, is incorporated into the optimization model to keep
cloud manufacturing resource conservative. The multi-objective model is solved with the ε-constraint
approach, which can generate an exact Pareto front for the concerned problem and achieve much
better and diverse Pareto solutions than the simple weighted sum approach. Experimental results
show that it is effective and efficient for small or medium-size problem instances and can solve them in
a reasonable time. Nevertheless, for large-scale problems, applying meta-heuristic algorithms such as
NSGA-II should be addressed in further study.

Another research direction which is worth exploring is the uncertainty in service time and
transportation time of a cloud service when the selection and scheduling in cloud manufacturing
is addressed.
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Appendix A

Table A1. Geographical distances between SMEs.

SME 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 43 1417 215 106 755 743 858 1049 1699 158 1044 686

2 43 0 1460 187 134 727 715 830 1039 1690 201 1034 722

3 1417 1460 0 1357 1432 1818 975 1466 2103 2765 1251 668 778

4 215 187 1357 0 299 633 540 663 929 1579 277 892 580

5 106 134 1432 299 0 852 836 942 1084 1735 175 1080 714

6 755 727 1818 633 852 0 846 447 329 979 900 1176 1065

7 743 715 975 540 836 846 0 511 1134 1796 750 334 354

8 858 830 1466 663 942 447 511 0 702 1351 929 813 854

9 104 1039 2103 929 1084 329 1134 702 0 672 1199 1465 1336

10 169 1690 2765 1579 1735 979 1796 1351 672 0 1850 2127 1986

11 158 201 1251 277 175 900 750 929 1199 1850 0 347 347

12 104 1034 668 892 1080 1176 334 813 1465 2127 347 0 542

13 686 722 778 580 714 1065 354 854 1336 1986 347 542 0
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