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Abstract: In recent years, development in the fields of big data and artificial intelligence has given
rise to interest among scholars in neurocomputing-related applications. Neurocomputing has
relatively widespread applications because it is a critical technology in numerous fields. However,
most studies on neurocomputing have focused on improving related algorithms or application
fields; they have failed to highlight the main technology hotspots and development trends from a
comprehensive viewpoint. To fill the research gap, this study adopts a new viewpoint and employs
technological fields as its main subject. Neurocomputing patents are subjected to network analysis
to construct a neurocomputing technology hotspot. The results reveal that the neurocomputing
technology hotspots are algorithms, methods or devices for reading or recognizing printed or written
characters or patterns, and digital storage characterized by the use of particular electric or magnetic
storage elements. Furthermore, the technology hotspots are discovered to not be clustered around
particular fields but, rather, are multidisciplinary. The applications that combine neurocomputing
with digital storage are currently undergoing the most extensive development. Finally, patentee
analysis reveal that neurocomputing technology is mainly being developed by information technology
corporations, thereby indicating the market development potential of neurocomputing technology.
This study constructs a technology hotspot network model to elucidate the trend in development of
neurocomputing technology, and the findings may serve as a reference for industries planning to
promote emerging technologies.
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1. Introduction

Neurocomputing originally referred to hardware that mimics neuroscience structures to create
models of the nervous system [1]. This concept is further extended to computing systems that operate
using bioinspired computing models, including neural networks [2] and deep-learning networks [3].
In recent years, widespread research on neurocomputing technology has been driven by the rapid
development of cognitive learning applications and the limited computing power of the Von Neumann
architecture. In addition, the exponential development of big data and artificial intelligence (AI) has
challenged the data processing speed and scalability of conventional computing systems. A report
by PwC indicated that new computing technologies and the Internet of Everything are indispensable
technologies in the march toward the fourth industrial revolution [4]. A Deloitte report even directly
stated that companies’ use of technologies related to neurocomputing, such as machine learning, is
conducive to observing changes in customer population statistics [5]. Between 2019 and 2024, the
fastest growing area in smart machine technology, namely neurocomputing, will grow at a 22.2%
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compound annual growth rate (CAGR) [6]. The changing face of Big Science is posing a crucial
challenge to scholars. Critical topics include how human brain functions and consciousness can be
recreated on supercomputers. Therefore, the development of technological platforms in the field of
neurocomputing warrants further attention [7].

Research has mostly focused on improving neurocomputing methods [8–10] or application
fields [11–13], whereas the hotspot fields required for the sustainable development of neurocomputing
technology have been overlooked. In other words, research has not explained the current situations and
positions of specific technological fields on a technology map or identified technology hotspots from
a comprehensive perspective. Furthermore, development of neurocomputing technology involves
numerous technological fields [2,14,15], and such technology has limitless development potential.
A hotspot refers to a study repeatedly cited in other different studies [16]. Namely, if one study
frequently appears in other studies, it is a hotspot study. In the present study, the concept described
by Mukherjee et al. [16] is used. A technology hotspot is defined as a technological field present in
various patent documents. In other words, if multiple patents belong to the same technological field,
then that field is a technology hotspot. The Cooperative Patent Classification (CPC) structure was used
in this study to define a technological field. Research has indicated that, under most circumstances,
the CPC structure is more detailed than that of the International Patent Classification (IPC) [17].
Namely, compared with IPC, CPC is a classification system with more detailed classifications and more
additional texts.

Frost and Sullivan selected the top 50 emerging technologies from hundreds of technologies
classified within nine technology clusters; their selections were based on industry adoption rate,
internet protocol activity, funding, market potential, and whether the technology had the highest score
on the global technology innovation index [18]. Convolutional neural network technology, a subset
of the neurocomputing field, requires precise automatic processing, and numerous industries have
been attracted to using the technology and investing in relevant research. Because neurocomputing
offers limitless future business opportunities, defining the hotspots in the field is crucial. Research
universities and operators yearn to determine the optimal resource allocation; namely, into which
technological fields they should invest funding or their research workforce. To fill in the research
gap, this study conducts technology hotspot network analysis to determine the current development
conditions and positioning of particular technologies and to highlight the hotspot technological fields.

This study focuses on neurocomputing technology networks and employs patent analysis
to construct a neurocomputing technology network model. Because patents are the most direct
form of evaluation of innovation output, they serve as an indicator of trends in technological
development [19–21]. Patent analysis methods are suitable for exploring technology transfer
topics [22–24] and evaluating the performance of industry–academia technology collaborations [25,26].
Thus, patent information is the most direct evaluation indicator for technological development. The
present study employs patent information to identify the trends in technological development and the
critical fields in neurocomputing technology.

This study differs from other studies discussing the aspects and applications of neurocomputing
technology because it focuses on neurocomputing technology hotspots, constructs a technology hotspot
network model, and analyzes technological development trends. The technology hotspot network
model uses networks to analyze the connections between different technology classification nodes to
identify hotspot technologies. The principle is that one patent may be involved in multiple technological
fields (technology nodes), and different patents may include overlapping technological fields. Therefore,
similar to the relations among social members in a social network, a patent technological network
comprises the relations among technology nodes. In addition, the network can be studied using
social network analysis [27]. The findings of this study can serve as a reference for both academia
and industry.
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2. Literature Review

2.1. Current Development of Neurocomputing Technology

Neurocomputing is a set of bioinspired computing paradigms and can be employed to solve
certain problems in science and engineering, such as forecasting, pattern recognition, optimization, and
identification of nonlinear systems. Neurocomputing applications learn through training processes and
are divided into artificial neural networks (ANNs) and spiking neural networks (SNNs). Conventional
ANNs are inspired by natural neural systems such as the brain. The human brain, for instance,
consists of approximately 1011 neurons with more than 6 × 1013 interconnections [28]. In general,
computing is performed by neurons in a parallel and dispersed manner. This enables the human brain
to demonstrate learning, recall, and generalization through sample or data training [29].

SNNs are a special class of ANNs in which communications occur through sequences of spikes [30].
First-generation ANNs comprise McCulloch–Pitts neurons, which can only obtain digital outputs; by
contrast, in second-generation networks, neurons communicate continuously [28]. An SNN is a binary
information transmission network. Neurons transmit pulses to subsequent neurons after receiving
pulse signals that exceed a threshold potential. Neurons that have yet to receive pulses remain in the
resting state. SNNs are thus highly tolerant of errors noise. Studies have revealed that the computing
accuracy of synapses and neurons influences the final results of computations. Therefore, SNNs can be
employed to solve problems for which only approximate answers are required, thereby conserving
resources [31]. Scholars have also discovered that the computing costs of neural networks can be
reduced using compression and sparse methods [32].

Neurocomputing has diverse applications and is used in numerous fields, including visual
perception systems [33], communications [34], energy [35,36], and medicine [37]. The related literature
is presented in Table 1. Neurocomputing topics include vision, signal and pattern processing, learning,
neurodynamics, associative memory, and network hardware [38]. The rapid development of AI has
caused greater demands for computational speed and resources. Neurocomputing networks can
contain a large amount of information and imitate the brain’s information processing. Therefore,
industrial sectors worldwide highly value the development potential of neurocomputing technology
and are allocating considerable resources to its development. The present study uses neurocomputing
as its analysis subject and employs patent analysis to reveal the hotspots in the field of neurocomputing.
Subsequently, these hotspot fields are explored by conducting network analysis. The analysis methods
are explained in the following.

Table 1. Related literature on neurocomputing.

Sectors Source Year Findings

Visual perception
systems Ge and Yu [33] 2019 Simulation of visual cognitive process can enhance the

cognitive ability of machine vision.

Fu et al. [39] 2019

Computational modeling of these motion detectors has
not only been providing effective solutions to artificial

intelligence, but has also beenbenefiting the
understanding of complicated biological visual

systems.

Communications Ye et al. [34] 2019
Researchers developed a novel decentralized resource

allocation mechanism for vehicle-to-vehicle (V2V)
communications based on deep reinforcement learning

Li and Li [40] 2020
This study proposes a simple cognitive radio scenario
consisting of only one primary user and one secondary

user.
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Table 1. Cont.

Sectors Source Year Findings

Energy Cao et al. [35] 2015

Spiking neural networks (SNN)-based architectures
have shown great potential as a solution for realizing

ultra-low power consumption using spike-based
neuromorphic hardware.

Galindo Sanchez and
Nunez-Yanez [36] 2017

This paper presents a high-performance architecture
for spiking neural networks that optimizes data

precision and streaming of configuration data stored in
main memory.

Medicine Lin et al. [37] 2016

This survey makes an overview of the most recent
applications on the neural networks for

computer-aided medical diagnosis (CAMD) over the
past decade.

López-García et al. [41] 2020

This paper presents pre-train convolutional neural
network architectures for survival prediction on a
subset composed of thousands of gene-expression

samples from thirty-one tumor types.

2.2. Technology Hotspot Network Analysis

Recent studies have used network analysis methods to explore the development of particular
technologies [21,42,43], revealing the framework and scope of knowledge in the field [44,45]
or employing patent analysis to determine the current conditions of technology transfer and
cooperation [23,24,46]. Furthermore, network analysis can accurately identify the transfer channels
and evolution of information technology. Patent analysis provides objective and accurate information,
including the number of patents, approval year, and technology type [47]. Therefore, patent data
analysis can meaningfully reveal the development of particular technologies. The present study
employs network analysis to investigate the connectivity and co-occurrence between technology
nodes. The technology node classification method proposed in Rodríguez-Salvador et al. [45] and
Jürgens and Herrero-Solana [48] is used. By adopting a pre-existing and mature patent classification
framework as its foundation, this study employs technology hotspot network analysis to identify the
key players within the neurocomputing field, the neurocomputing hotspot fields, and the trends in
neurocomputing development.

3. Research Design

3.1. Search Strategy and Data Source

Because the US patent system is generally representative of international technology and the
United States is the largest commercial trading market, this study uses data from the United States
Patent and Trademark Office (USPTO). Inventors commonly also apply for patents in the United States
when applying for patents in other countries. Therefore, the USPTO database is commonly used to
evaluate innovative activities worldwide [42,43,49]. The patents included in this study are limited to
US patents announced between January 1990 and December 2019. According to research by Dehghani
and Dangelico [50], the Derwent database is suitable. A precise search tool, namely, Derwent Smart
Search, is employed for patent searching. The tool was designed by hundreds of experts who, after
reading the officially announced patent data recorded in the Derwent database, translated, rewrote
key abstracts, edited errors, and normalized the information on the patentee before uploading the
rewritten and normalized data into the database. The search tool is used by inserting keywords
established through manual reading and information organization. The search criteria of this study
are as follows: (SSTO/neurocomputing) AND (SSTO/neural network). SSTO refers to Derwent Smart
Search. In addition, patents in the CPC G06N3 class were targeted in this study. The most frequent
G06N3 co-classifications were observed to track their development over time. In 2013, the USPTO
and the European Patent Office jointly developed the CPC system. Kim and Bae [17] argued that CPC
is a more detailed technology classification system than IPC. Therefore, this study employs the CPC
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system as the analysis framework. Finally, patents with US origins, which are purely domestic, were
excluded to observe patents by patentees from countries outside the United States. In addition, the
publication numbers of utility patents were used as the only identifiers for each patent to remove
duplicate patents. A total of 635 patents were retrieved.

3.2. Technology Hotspot Analysis

Researchers have commonly used the network-centric analytic approach to reveal the hotspots
within a network [51,52]. Because patents may be subordinated to numerous CPC categories, categories
that share more patents have greater technological interrelatedness. Therefore, this study constructs
a technology network comprising patents (internodes) between each CPC category (node). The key
nodes situated in the center of the technology network are technology hotspots and nodes that have
received the most interest. Social capital theory holds that the importance of each network node
is determined by its centrality [53]. By adopting this theory, the present study reveals technology
hotspots by calculating the network centrality of each node. The network centrality evaluation method
is further explained as follows.

3.2.1. Degree Centrality

The neighborhood of a node is the nodes that are closest to it. The nodal degree of a node is the
number of neighborhoods of that node and represents the number of relational lines that connect to the
node. Degree of centrality is used to evaluate the core fields within the network. Nodes with a greater
degree of centrality have more connections with other nodes within the network. Network nodes with
a high degree of centrality serve as critical transition points and thus represent hotspots [54].

Cd(i) =
∑

j

m ji (1)

If nodes i and j are connected, m ji = 1.

3.2.2. Eigenvector Centrality

Eigenvector centrality measures the influence of a node in a network and determines whether
the selected node is connected to numerous other nodes and whether those nodes are themselves
connected to other nodes. Therefore, the centrality of the selected node determines the centrality of its
neighborhoods. If the selected node is connected to nodes with high centrality, the selected node also
has high centrality. Thus, the connections between neighborhoods are valued differently. Eigenvector
centrality is calculated by assigning relative scores to all nodes in the network with the underlying
idea that connections to high-scoring nodes should contribute more to the influence of the node than
connections to low-scoring nodes [55]. Eigenvector centrality indicates the relative importance of a
node and thus highlights the hotspots in the technology network.

Ce(i) = λ−1
n∑

j=1

ai jCe( j) (2)

where Ce(i) is the eigenvector centrality of node i, ai j is the node that enters the adjacency matrix A, and
λ is the maximum eigenvector value of the adjacency matrix, which is generally a common number.

Within the equation, the eigenvector centrality of the selected node is computed using a linear
function in which the centrality of a single node is represented by the linear combination of the
centrality of all other nodes [56].
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3.2.3. Betweenness Centrality

Betweenness centrality means that some nodes in the network must rely on other nodes to connect
with other nodes in the network. It can measure the importance of one node in data transmission. Nodes
with higher betweenness centrality indicate that a technology has a crucial position in the network.

Cb(i) =
n∑

i, j,k

d jk(i)/d jk (3)

In Equation (3), d jk represents the number of shortest paths from node j to node k, and d jk(i)
represents the number of shortest paths that must pass through node i from node j to node k.

4. Empirical Study

4.1. Patent Search Results

Before technology network analysis is performed, the researchers analyze the patent search results
to acquire initial understanding. Table 2 displays the 10 most common neurocomputing technology
categories in the fourth hierarchical classification level of the CPC.

Table 2. Ten most common neurocomputing technology categories in the fourth hierarchical
classification level of the Cooperative Patent Classification (CPC).

Rank CPC Code Number Number of Occurrences Percentage

1 G06N3 635 40.60%
2 G06K9 81 5.18%
3 G06F9 62 3.96%
4 G06F7 50 3.20%
5 G11C11 50 3.20%
6 G06F17 44 2.81%
7 G11C13 32 2.05%
8 G06F15 31 1.98%
9 G06N20 31 1.98%
10 G06T1 20 1.28%

This study analyzes the distribution of 162 neurocomputing technologies within the fourth
hierarchical classification level of the CPC. In this study, the patents in the CPC G06N3 class were
targeted, and the most frequent co-classifications of G06N3 were observed. Therefore, G06N3 was the
primary technology. Table 2 indicates that neurocomputing technologies are mainly clustered around
G06N3, G06K9, G06F9, G06F7, and G11C11. Each CPC category is defined in Appendix A.

According to the aforementioned analysis, the development of neurocomputing technology has
focused on computer systems based on biological models (G06N3), methods or arrangements for
reading or recognizing printed or written characters or for recognizing patterns (G06K9), arrangements
for program control (G06F9), methods or arrangements for processing data by operating upon the
order or content of the data handled (G06F7), and digital stores characterized by the use of particular
electric or magnetic storage elements (G11C11). Table 3 presents the results of analysis of the 10 most
prolific patentees. IBM (Armonk, NY, USA), which had the most patents, is devoted to developing AI,
including the Neural Network Synthesizer (NeuNetS). NeuNetS can automatically synthesize and
define neural networks and thus can be employed to accelerate the development of deep-learning
network models. NeuNetS can optimize the processing speed or preciseness of a model and provide
timely surveillance of the model construction and training process. The most prolific patentees after
IBM (Armonk, NY, USA) are Google Inc. (Mountain View, CA, USA) and Intel Corporation (Santa
Clara, US), technology giants that focus on developing AI and the Internet of Things (IoT) and endeavor
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to integrate artificial IoT solutions for consumers, enterprises, and industries across a wide variety of
industries [57].

Table 3. Most prolific patentees.

Rank Patentee Number of Patents Percentage

1 International Business Machines
Corporation 158 24.20%

2 Google Inc. 46 7.04%
3 Intel Corporation 44 6.74%
4 Brain Corporation 24 3.68%
5 Via Alliance Semiconductor Co., Ltd. 23 3.52%
6 Motorola, Inc. 20 3.06%
7 Samsung Electronics Co., Ltd. 19 2.91%
8 Mitsubishi Denki Kabushiki Kaisha 18 2.76%
9 Hitachi, Ltd. 14 2.14%

10 Kabushiki Kaisha Toshiba 11 1.68%

Note: For some of the American companies’ patents, the patent application was proposed by a foreign subsidiary
and was certified.

4.2. Technology Hotspot Network Analysis

This study uses the fourth hierarchical classification level of the CPC as a foundation for identifying
patent technology hotspots. Figure 1 displays the technology hotspot network model, and Table 4 lists
the CPC codes of each hotspot.

Figure 1. Neurocomputing technology network in the fourth hierarchical classification level of the CPC.
Node size represents the number of nodes that are connected to the node. Line thickness represents the
connectivity strength between each node and thus the number of shared patents. For simplicity, the
figure only displays the nodes that are connected to more than 10 other nodes.
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Table 4. CPC codes of the five largest neurocomputing technology hotspots.

CPC Degree
Centrality CPC Eigenvector

Centrality CPC Betweenness
Centrality

G06N3 162 G06N3 0.480 G06N3 10,576.56
G06N20 45 G06N20 0.210 G06K9 330.873
G06K9 44 G06F9 0.206 G06N20 309.304
G06F9 36 G06K9 0.197 G11C11 165.425

G11C11 36 G06F17 0.182 G06F9 124.946

Table 4 indicates that G06N3, G06N20, G06K9, G06F9, and G11C11 were ranked within the top
five in two or more of the three centrality indexes. Thus, within neurocomputing technology hotspots,
the main technologies are computer systems based on biological models (G06N3), machine learning
(G06N20), methods or arrangements for reading or recognizing printed or written characters or patterns
(e.g., fingerprints; G06K9), arrangements for program control, e.g., control units (G06F9), and digital
stores characterized by the use of particular electric or magnetic storage elements (G11C11).

4.3. Postanalysis: History of Neurocomputing Technology Hotspots and Clustering Analysis

This study conducts further analysis on the history of G06N3, G06N20, G06K9, G06F9, and G11C11
to understand the trend in neurocomputing technology. The analysis results are displayed in Figure 2.

Figure 2. History of neurocomputing technology hotspots. The bars represent the ratios of the numbers
of patents in a particular year among all patents. The lines represent the number of patents.

Figure 2 suggests that, before 2010, development within neurocomputing was mainly focused
on G06N3; the development of mathematical models. After 2010, neurocomputing applications were
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employed in other fields. This is particularly evident after 2014. In addition, the development of
G11C11, namely neurocomputing applications in digital-store-related technologies, warrants attention.
This development was caused by increasing demand for storage in big data computing, in which
digital memory storage applications play a critical role. The relative development of G11C11-related
technologies and patents has thus increased in recent years. For the distribution of ratios, a larger ratio
of G06K9 patents, compared with patents in other technological fields, was approved before 2014. This
indicates that neurocomputing has a longer history of application in pattern recognition (G06K9).

Research has indicated that patent clustering analysis in network analysis can provide management
implications [58]. In this study, clustering analysis was conducted with factionalization to obtain more
information. The results are presented in Table 5.

Table 5. Cluster Interpretations.

Cluster Main CPC Classes in the Cluster Interpretation

1 G05B13, G06G7, G16H50, G02F1

Adaptive control systems and interdisciplinary
applications, such as optics and information and
communications technology (ICT) specially adapted
for medical diagnosis

2 G11C7, G11C11, G11C13, H01L21, H01L27 Digital storage elements and semiconductor devices
3 G06K9, G06T2207, G06T5, Y10S901, B25J9 Recognizing patterns, image analysis, and robots

4 G06F7, G06F9, G06F15, G06F17, G06N3,
G06N20, G06T1

Electric digital data processing and specific
computational models

Factions is an algorithm that can be used to search for the optimal method of assigning actors in
factions with a total of four small groups. The E–I index was −0.437, and the negative value indicated
that the degree of segmentation among clusters was high. In addition, the correct final proportion was
0.780, which indicated that the clustering results already had favorable fit values. Table 5 indicates
that patents for neurocomputing technology are distributed in several major clusters, including
interdisciplinary applications such as optics and medical information communications technology
(ICT), digital storage equipment and semiconductors, pattern recognition and robot development, and
specific computational models.

5. Conclusions

5.1. Discussion

This study employs network analysis to explore hotspots in the field of neurocomputing
technology. The empirical research results indicate that rather than concentrating on a particular field,
innovators have focused on algorithms, machine learning, methods or devices for recognizing patterns,
arrangements for program control, and electric- or magnetic-based digital storage. This indicates
that neurocomputing is a field of multidisciplinary technological development. In addition, through
network analysis and by comparing the most frequent co-classifications of G06N3, we learned that
G06N3, G06K9, G06F9, and G11C11 ranked in the top five in the network and co-classification analyses.
However, although G06N20 was ranked among the top five in the network analysis, its frequency
did not reach the top five in the co-classification analysis. Therefore, through network analysis, we
gained the additional insight that, although machine learning (G06N60) exhibited a relatively low
frequency in patents, in the overall technology network, the technology nodes it connected were
diverse and exhibited characteristics of interdisciplinary application. For example, the degree centrality
of G06N60 demonstrated that it was connected to many nodes. Eigenvector centrality showed whether
G06N20 was connected to nodes with high centrality. Betweenness centrality revealed that G06N20
occupied critical channels in network communication, reflecting the degree to which connections
among technology sets rely on G06N20. Patentee analysis further revealed that IBM (Armonk, NY, US)
and Qualcomm Inc. (San Diego, CA, USA) obtained the most patents in the study period. Therefore,
development in the field of neurocomputing is mainly being conducted by technology giants that are
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developing AI and the IoT, and neurocomputing technology has the potential for development in
future markets. Driven by anticipated market profit, private-sector corporations have begun active
research and development of neurocomputing technology while planning to introduce commercial
neurocomputing technology applications to the market in the near future.

This study also reveals that, in addition to G06N3 (computer systems based on biological models),
G11C11 (digital stores characterized by the use of particular electric or magnetic storage elements) is
also undergoing considerable development. Therefore, applications that combine neurocomputing
technology with digital storage are a hotspot in the future development of big data. Inspired by the
neuron and synaptic mechanism theory of the human brain, scientists have developed AI computing
chips that can provide timely computing to satisfy the demand for smart devices [59]. In 2018, the
AI chip market was valued at US$6638 million. By 2025, it is expected to reach US$91,185 million, a
compound annual growth rate of 45.2% from 2019 to 2025 [60]. Additionally, digital storage technology
for neuromorphic chips, which are components that simulate neuron cells (e.g., memristors) [61], is a
relatively popular neurocomputing field that has attracted considerable attention in recent years. In
addition, from the perspective of causality in technology sequences, in the early period, biological
models (G06N3) with high-technology characteristics were often applied in application fields such
as pattern recognition methods (G06K9). In recent years, technologies and related applications
have appeared that require large amounts of computing, such as machine learning (G06N20) with
high-technology characteristics and neurocomputing applications in digital-store-related technologies
(G11C11) with high-application characteristics. In the aforementioned causality analysis, we learned
that as communications technology and big data have developed, in addition to early applications
in biometric identification, digital storage memory and smart computing have gradually attracted
attention and led to more technological development and relevant applications.

From the theoretical contribution viewpoint, studies conducted in the neurocomputing field have
focused on neurocomputing technology improvements [8–10] or applications [11–13]. However, these
studies failed to highlight the key hotspots, development trends, and network distribution and context
of the neurocomputing field. Neurocomputing is a core technology in numerous technology-related
fields. To fill in the research gap, this study uses a novel perspective to identify the critical fields
in neurocomputing.

5.2. Industrial Implications

This study provides researchers in industry and academia with valuable information and proposes
a technology map of the neurocomputing field. This map highlights the key technology developments
in the neurocomputing field and finds answers to resource allocation problems. This study also reveals
that neurocomputing, combined with digital storage technology, is a hotspot field. In the age of big
data and AI, everyday appliances (e.g., IoT devices, cars, and cellphones) will be connected to the
internet, generating big data and increasing the demand for storage devices with greater capacity
and memory. One possible solution to the digital storage problem is to replace integrated circuits
with neuromorphic computer systems. Such systems comprise numerous nodes, each representing
a neuron. Information is transferred between nodes, with each node demonstrating the ability to
compute data. Neuromorphic computer systems thus have processing-in-memory functionality and
can compute and store information within each “neuron.” This technology involves numerous fields,
including computer information, communications, mathematics, neurobiology, and cognitive science.
Because pilot studies typically require substantial equipment and investment in expert personnel,
industry–academia cooperation should lead the academic field by investing in neurocomputing-related
basic and applied research, establishing goals to develop practical applications, making long-term
investments, and cultivating relevant talent to respond to industry demands for the future age of AI.
Specifically, neural networks are part of the broader field of AI. AI studies can be divided into two
main schools; namely, numerical AI and symbolic AI. Symbolic AI can be considered classical AI,
which primarily manages various problems in human life related to symbols. Currently, numerical
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AI uses data to express a problem, and its development is supported by major technologies such as
machine learning. On the basis of the aforementioned description, cognitive learning applications and
numerical calculations in AI are highly related to pattern recognition, machine learning, and computer
systems based on biological models in neural networks. The technological development of neural
networks is key in AI.

In addition, the patent clustering analysis in this study indicated that most patents for
neurocomputing technology were in optics, ICT and medicine, pattern recognition, and robot
development, as well as in the development of specific computational models. With the development
of the Internet of Things and big data techniques, optical communication and related uses (such
as remote medical diagnosis) are gradually increasing in value. Research by MarketsandMarkets
indicated that the size of the market global optical communication and networking equipment will
be US$18.9 billion in 2020. However, it will grow to US$27.8 billion by 2025, and its CAGR will be
8.0% [62]. In the field of optical communications, a combination of math, programming, and algorithms
related to neurocomputing technology is required. This is also a crucial development direction for
future neurocomputing technologies. In addition, the analysis in this study demonstrated that pattern
recognition and robots are also a key development direction for neurocomputing technology. Generally,
training robots to perform round trajectory tracing is more complicated and difficult compared with
straight-line tracing. The improvement of robot control and signal processing models will become a
main stream of business research in the future.

5.3. Limitations and Future Research Directions

This study exclusively employs patents to investigate trends in technological development.
Although patents reflect the development dynamics of commercial technologies, neurocomputing
development is reflected by numerous different forms in addition to patents, including theses,
technology market reports, and other particular products. However, these forms were not within the
scope of this study, serving as a major limitation. This study is a quantitative study and considers
large-scale and comprehensive neurocomputing technology networks. In an attempt to encompass
wide-ranging research topics, this study could obtain limited insight on each research topic. Future
studies should analyze the content of all patents and evaluate their uniqueness. Finally, this study
exclusively employs the database of the largest commercial trade market in the world, namely the
USPTO database, as the source of patent information due to limited resources and funding. Although
the database used in this study has a certain history and representativeness [42,43,49], future researchers
should include observations and verifications using information obtained from other patent bureaus
(e.g., the Worldwide Patent Statistical Database of the European Patent Office or the database of the
Japan Patent Office) to expand the research scope.
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Appendix A

Table A1. Definition of CPC categories in the fourth hierarchical classification level.

CPC Categories Meaning

B25J9 Program-controlled manipulators

G02F1
Devices or arrangements for the control of the intensity, color, phase, polarization, or
direction of light arriving from an independent light source, e.g., switching, gating, or
modulating; Non-linear optics

G05B13 Adaptive control systems, i.e., systems automatically adjusting themselves to have a
performance that is optimum according to some preassigned criterion

G06F7 Methods or arrangements for processing data by operating upon the order or content of the
data handled

G06F9 Arrangements for program control, e.g., control units
G06F15 Digital computers in general; Data processing equipment in general

G06F17 Digital computing or data processing equipment or methods, specially adapted for specific
functions

G06G7 Devices in which the computing operation is performed by varying electric or magnetic
quantities

G06K9 Methods or arrangements for reading or recognizing printed or written characters or for
recognizing patterns, e.g., fingerprints

G06N3 Computer systems based on biological models
G06N20 Machine learning
G06T1 General purpose image data processing

G06T2207 Indexing scheme for image analysis or image enhancement
G06T5 Image enhancement or restoration
G11C7 Arrangements for writing information into, or reading information out of, a digital store

G11C11 Digital stores characterized by the use of particular electric or magnetic storage elements;
Storage elements thereof

G11C13 Digital stores characterized by the use of storage elements not covered by groups

G16H50 ICT specially adapted for medical diagnosis, medical simulation, or medical data mining;
ICT specially adapted for detecting, monitoring, or modelling epidemics or pandemics

H01L21 Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid
state devices or of parts thereof

H01L27 Devices consisting of a plurality of semiconductor or other solid-state components formed in
or on a common substrate

Y10S901 Robots
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