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Abstract: Providing adequate public rental housing (PRH) of a decent quality at a desirable location
is a major challenge in many cities. Often, a prominent opponent of PRH development is its host
community, driven by a belief that PRH depreciates nearby property values. While this is a persistent
issue in many cities around the world, this study proposed a new approach to assessing the impact
of PRH on nearby property value. This study utilized a machine learning technique called long
short-term memory (LSTM) to construct a set of housing price prediction models based on 547,740
apartment transaction records from the city of Busan, South Korea. A set of apartment characteristics
and proximity measures to PRH were included in the modeling process. Four geographic boundaries
were analyzed: The entire region of Busan, all neighborhoods of PRH, the neighborhoods of PRH
in the “favorable,” and the “less favorable” local housing market. The study produced accurate and
reliable price predictions, which indicated that the proximity to PRH has a meaningful impact on
nearby housing prices both at the city and the neighborhood level. The approach taken by the study
can facilitate improved decision making for future PRH policies and programs.

Keywords: public rental housing; housing market analysis; price forecasting; long short-term memory

1. Introduction

Housing is an essential human need that shapes the well-being of all citizens. As most cities around
the world are faced with the overwhelming burden of housing costs, establishing housing affordability
is a core policy objective in many countries [1]. The rising housing and rental price in urban areas
are especially burdensome for the vulnerable sector, as it restricts low-income families from accessing
the decent quality of housing, healthcare, education, and other urban services. Affordable rental
housing policy is a promising solution to alleviate the housing cost burden in cities, as various types of
public rental housing (PRH) policies are encouraged around the world [1,2]. Consequently, a number
of innovative policies and strategies are being introduced, and the opportunities of PRH as a building
block of sustainable urban development is rapidly growing [3–6]. PRH provisions and policies
are connected to ecological, economic, and social aspects of sustainability [7]. While the ecological
aspect of sustainability relies on the single-building assessment with a focus on a building’s life cycle
and performance, the economic and social aspects of sustainability focus on the connection between
buildings and people as well as the surrounding environment [8]. The role of community is emphasized
in sustainable development, as it is closely related to the life of urban residents, and at the same time,
it is the root of some social problems [6,8].
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Adequate PRH provisions and policies promote the livelihood and well-being of a community
by providing a healthy mix of housing options and allowing all citizens to access a decent quality of
housing, health care, education, and other urban services. They also contribute to achieving sustainable
urban development by protecting communities from urban issues such as social inequalities. However,
providing good PRH of a decent quality at a desirable location is an endemic problem in many cities
around the world. In Korea, where this study takes place, the level of housing costs in a household
budget of 15% indicates that housing affordability is not a severe problem. However, the quality of
housing for low-income groups is poor, and the supply of PRH stock is deficient [9,10]. Along with
the overheating housing market in city centers, it is no surprise that the burden of housing costs is
in a steep incline, and the need for PRH is growing.

Despite the need for decent PRH stock in desirable locations, a new supply of housing complexes
for low-income families often presents conflicts with the surrounding communities. The conflict mainly
involves the belief that PRH depreciates the value of nearby properties. This widespread perception,
along with the fear of an increase in crime and a concentration of poverty, has created a “not in my
back yard” (NIMBY) attitude toward PRH projects, and other forms of affordable housing projects
in many cities [11–14].

While this is a continuous phenomenon in many cities, including some of the densest cities
in Korea, a vast amount of literature in housing studies have suggested that the effect of affordable
housing on surrounding property values is very complex. Notably, the effect can go in either direction,
depending on a number of different factors, including the physical and social attributes of affordable
housing and their host neighborhoods [15,16]. Traditionally, housing price studies approached the issue
with a hedonic pricing method and other forms of multiple regression analyses. However, they often
suffered from issues including nonlinearity, heteroscedasticity, spatial dependency, and a selection of
independent variables in modeling housing prices [17,18]. It is also critical to reflect on changing local
housing markets over time, which often poses difficulties under the provisions of traditional statistical
methods such as serial autocorrelation [19].

In the recent wave of utilizing artificial intelligence in various data science applications, some
of the machine learning algorithms were presented as feasible alternatives in creating housing price
models [20,21]. As they are explained further in the rest of this paper, these algorithms are capable of
mimicking the patterns of data without any constraints of functional form, assumption, or data structure,
thus providing greater flexibility in understanding the complex nature of a regional housing market.
A body of housing price literature has demonstrated the robustness of these models [17,22–24]. For this
paper, the advantages of utilizing a machine learning technique can provide a refined understanding
of the effect of PRH based on the improved predictive power of housing price models.

The purpose of the study is to investigate the dynamic relationship between PRH and surrounding
property values in consideration of various determinants of property prices. The study uses 547,740
apartment sales data over 167 months from January 2006 to November 2019 that were recorded
in Busan, South Korea. While there are different types of PRH in Korea, the build-to-rent type of
PRH was chosen as the subject of this study as they are the most widely provided type of residence.
By employing a machine learning technique called long short-term memory (LSTM), which is a branch
of the recurrent neural network (RNN), the study was able to construct a housing price prediction
model with improved performance. The neural network not only considers the sequence of housing
prices over time to make predictions but also accounts for six apartment characteristics that affect
the price. This includes the structural attributes such as the lot size and building age, as well as
the attributes that represent the price variations such as the monthly transaction volume and the brand
of apartment complexes. In order to assess the impact of PRH in proximity, the model also includes
three proximity measures regarding PRH: Two accounting for the nearest PRH residence; and one for
all PRH units in proximity.

In the model building process, the study expanded the model in steps by introducing additional
sets of variables into the learning process. The performance at each step was evaluated to find



Sustainability 2020, 12, 7520 3 of 25

the “construct” of variables with the most predictive power. The process was applied to produce
a model for the entire region of Busan and the neighborhoods of PRH to observe the differences
in patterns in housing prices. In addition, we split our sample in proximity to PRH into two, based
on the changes in their local housing markets determined by the average increase in apartment prices.
Accordingly, two models were produced: The neighborhoods of PRH located in the “favorable” local
housing market, and those in the “less favorable” local housing market.

Ultimately, the study was designed to focus on answering the following questions:

1. Do proximity measures direct toward PRH increase the predictive power of regional housing prices?
2. Are there any differences in trends between the regional housing prices and the ones in proximity

to PRH?
3. For the apartments that are located in proximity to PRH, are there any differences in trends if they

are located in the neighborhood with a more “favorable” local housing market?
4. Does LSTM produce improved predictive power than the traditional multivariate time series model?

The findings from the study can provide a comprehensive understanding of the impact of PRH
based on the regional and local trends of housing prices. This study can contribute to the literature
in two ways: By providing another set of empirical evidence on the machine learning algorithms’
applicability in housing price prediction; and by addressing a social concern related to housing
policy—in our case, the effect of PRH, based on the use of advanced prediction method. Finally,
the information drawn from the model can also be used to foresee the community benefits and assist
in making policy decisions concerning PRH.

2. Background

2.1. Public Rental Housing (PRH) Provisions in Korea

PRH is a type of subsidized housing provision that can provide low-income families without
homeownership access to affordable rental housing options. Thanks to advancements in construction
technology and the management of public housing, PRH has become an effective method for supplying
a large number of rental units in good condition. Consequently, it is one of the major modes through
which affordable housing is supplied in many countries, including Korea. Statistics indicate that
the PRH stock has been gradually increasing over the past decade, and the mode of supply is
diversifying. As of 2017, PRH accounted for approximately 7% of the entire housing stock [25]. While
it can be developed and managed by both the public and private sectors, government-subsidized PRH
is much more prevalent, taking up nearly 87% of all types [26].

There are different types of PRH provisions designed with different tenant eligibility, and they
are provided in three channels: Build-to-rent, buy-to-rent, and rent-to-rent. The procedure used
to select qualified tenants differs by program. For build-to-rent PRH, the government and private
developers acquire and develop the land, build rental housing, manage them, and rent them to eligible
tenants. In buy-to-rent PRH, the government or certified contractors purchase housing units, manage
them, and rent them to qualified tenants. For the rent-to-rent type of PRH, the government provides
a portion of rent or deposit to eligible tenants. Monthly income is a general criterion, with additional
point-based criteria such as the number of family members and children, the time during which they
have not been homeowners, and the time during which they have held a subscription deposit account.
While most programs prioritize vulnerable groups, including extremely-low income families, homeless
families, and social security recipients, some programs are designed to prioritize certain groups such
as newlyweds, college students, senior citizens with low incomes, and young adults with short work
experience. Table 1 presents information regarding different types of PRH, including the mode of
supply and tenant eligibility.
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Table 1. Type of public rental housing (PRH) in Korea.

Type * Tenant Income Quintile ** Rent *** Unit Size Total Supply

Build-to-rent

Permanent rental
(permanent or

50-year contract)

Extremely low-income
household, social/medical

security recipients, disabled

1st
(less than 50%) ~30% less than 40 m2 307,115

Citizens’ rental
(30-year contract) Low-income household 2nd to 4th

(70–100%) 60%–80% less than 85m2

(mostly less than 60 m2)
509,248

Rent-to-own
(5/10-year contract)

Low-income household,
newlywed, multiple

children, senior dependent

3rd to 5th
(100–120%) ~90% less than 85 m2 223,412

‘Haengbok’ rental
Low-income household,

college student, newlywed,
young adults

2nd to 5th
(80–100%) 60%–80% less than 45 m2 2041

Buy-to-rent Low-income household 1st to 2nd
(below 50%) ~30% less than 85 m2 92,004

Rent-to-rent Low-income household 1st to 2nd
(below 50%) ~30% less than 85 m2 165,764

Data source: Ministry of Land, Infrastructure, and Transport, 2018. * Region-specific programs and discontinued
programs are excluded. The maximum allowed rental period is presented in the parentheses. ** Respective income
criteria are provided in the parentheses. The percentage indicates the percent average monthly income of urban
employers of a region. *** The rent indicates the approximate percentage of average monthly rent in the regional
housing market.

The majority of PRH in Korea is the build-to-rent type, which accounts for more than 80% of
the total supply. As of 2017, the percentage of apartment housing in all housing types was nearly 51%,
making it the dominant housing type. While the number is continuously growing, build-to-rent units
are almost entirely apartment or multi-family residential units. In contrast, very few single-family
detached housing units remain in the buy-to-rent and rent-to-rent types. The units have four size
categories: Less than 40 m2, 40 m2 to 60 m2, 60 m2 to 85 m2, and 85 m2 and larger. Across all PRH
programs, units with an area less than 60 m2 are the most common (87%), prioritizing individuals
or families with smaller households and lower incomes [27]. Most of the build-to-rent type PRH
are planned with a 5-, 10-, 30-, and 50-year rental contract. After the contract, the units can be sold
in the private market. The rent-to-own type, which has a rental period of 5 to 10 years, gives priority to
the tenant for purchase.

Although it has been reported that some older housing, especially the permanent rental housing
built in the 90s, requires repairs for essential elements such as water supply, electricity, and heating,
the majority of the PRH residents are satisfied with the quality of their housing and neighborhood [28].
A typical build-to-rent PRH is a large-scale apartment complex, which often faces difficulties in land
acquisition, especially near urban centers where prices are high and developable land is scarce.
Such challenges have forced the construction of PRH to move to the outskirts of cities into areas with
less employment and amenity options. Recent efforts toward downscaling the projects and the use of
publicly-owned land have allowed PRH to be located closer to urban centers. However, this often
faces the opposition of nearby residents who fear the depreciation of local housing prices and negative
impacts on neighborhood quality [29].

2.2. The Effect of PRH on Real Estate

The relationship between affordable housing and surrounding property values is very complicated,
and a number of previous studies have presented multifaceted approaches using a large amount
of housing sales data with rigorous methodologies in many cities worldwide. While there is
a variety of affordable housing types and programs, our literature review focuses on the studies that
used the government-manufactured or subsidized apartments, which are similar to the PRHs used
in this study.

Some of the earliest affordable housing studies have suffered from some limitations, including
the proper delineating of neighborhood boundaries, controlling a proper determinant of housing
values, acquiring enough sample sizes, and accounting for different types/programs of affordable
housing. Although the studies lacked methodological rigor, they appeared to agree that affordable
housing does not have a detrimental effect on nearby housing values [30]. A wave of studies that
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followed those earlier studies were advanced ones with the capability to handle a large amount of real
estate sales data and more sophisticated methodologies such as hedonic price estimations. While some
studies still did not find any significant relationship between affordable housing and nearby property
values [31–33], others began to find significant effects under different scenarios with more detailed
characterizations of affordable housing, programs, and neighborhoods.

Case Studies: The Effect of PRH on Real Estate

A study that was conducted in the American cities of Portland, Seattle, and Cleveland found
that affordable housing under the Low Income Housing Tax Credit (LIHTC) program had a positive
effect on nearby property values in the immediate neighborhood. However, in the case of Cleveland,
the effect gradually decreased as the size of the LIHTC housing complexes increased and became
negative after a critical point [34]. Similar results were also observed in a Korean study, as the increase
in the size of rental housing complexes had a negative effect on surrounding housing prices [35].

Another study conducted in Seattle presented somewhat similar results for LIHTC residences;
the effects were spatially heterogeneous, and the positive spillover effect was associated with the land use
and socioeconomic characteristics of the sub-regions examined in the study [19]. This result aligned with
studies of other LIHTC cases, which found that developments located in low-income neighborhoods
consistently had a positive effect on the property values of their host neighborhoods [36–38]. In contrast,
Koschinsky [19] also found that Section 8 housing units, especially in larger concentrations, consistently
had negative effects in wealthier regions. Overall, mixed results are often presented regarding the effect
of the income status of hosting neighborhoods, though the effects tend to be relatively small [39,40].

Proximity is another variable of interest, as previous studies have applied different proximity
measures and found significant effects. The proximity measures in housing price studies often refer
to neighborhood boundaries or walkable distances typically ranging from 400 m to 1 km. Generally,
the proximity effect is most successfully captured in a half-mile radius—or approximately 800 m, up
to 1 km [36,41]. This is also applicable in Busan, the location of this study, as the proximity effects of
housing prices can extend as far as 1 km [42]. In terms of the impact of affordable housing, the effect
was observed in more immediate neighborhoods as close as 300 m to 400 m [34,39].

According to our review of affordable housing literature, the effect of PRH is expected to
be minute—if it exists—and likely to associate with some of the physical factors of PRH and
the socioeconomic factors related to host neighborhoods. Based on the studies, one can expect
that the concentration of subsidized housing and larger complexes are likely to assert a negative impact
on nearby property values. It is also important to note that the lack of compatibility in the quality of
PRH with their host neighborhoods is also likely to bring about a detrimental effect. These factors are
commonly stated as being important by scholars in affordable housing studies as well as by advocates
of affordable housing policies [30,32,38,43–45].

2.3. Application of Advanced Valuation Methods

The hedonic price method is the most widely used property valuation method based on the premise
that the price is determined by internal characteristics, such as the structural attributes of housing,
and external factors, such as the locational attributes of housing. The advantage of the method
is that it isolates the impact of a good’s constituent characteristics on its market price [46].
The method is especially useful for the valuation of external factors associated with housing, including
environmental goods, urban amenities, and neighborhood characteristics [42,47,48]. Despite its
usefulness, the approach has been criticized due to its stringent assumptions in regards to the selection
of functional forms and potential factors explaining price relationships, market disequilibrium,
and segmentation [49,50]. In response, hedonic pricing has evolved to reflect on the complex and
dynamic nature of the housing market. Various measures have been taken—in terms of data mining
and modeling techniques—to overcome the limitations and to expand the capability of hedonic
pricing. Consequently, several modified forms of regression-based methods and hybrid methods
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were introduced in the valuation procedures, including the spatial analysis methods, autoregressive
integrated moving average models (ARIMA), and artificial neural networks (ANN).

The recent advancement of spatial datasets and tools, such as the geographic information system
(GIS), has allowed for the implementation of GIS-based spatial analytic methods in housing price studies.
One of the prominent applications of spatial analytics in housing price studies is the geographically
weighted regression (GWR), which is a nonparametric weighted local regression technique that
recognizes the spatial correlation of the observations [51]. When integrated with spatiotemporal data,
the method is advantageous in characterizing the spatial heterogeneity and nonstationarity of housing
prices, concerning potential price determinants at various spatial scales [52,53].

With respect to the analysis of time-series data, the autoregressive integrated moving average
(ARIMA) model is one of the most popular methods in housing price studies. Mainly used in price
forecasting, ARIMA models are quite flexible in that they can be used to model different types of
time series such as the autoregressive (AR), moving average (MA), or the combination of AR and MA
(ARMA) series. Despite the simplicity and flexibility, the major drawback of ARIMA is the presumed
linear form of the model, which makes it inadequate for representing real-world problems. It is also
unsuitable for making long term predictions, especially with a series with one or more turning
points [54]. A vector autoregressive (VAR) model has advantages over ARIMA as it can incorporate
multiple time series in a single model. VAR models generalize the univariate AR model by allowing
for more than one evolving variable [55]. The efficiency and predictive power of VAR forecasting are
well established in economic and financial studies.

One of the most recent applications in the advanced valuation method is the evolutionary
polynomial regression (EPR) model, which combines the power of the genetic algorithm with numerical
regression to develop symbolic models. It is based on the evolutionary computation algorithms that
aim to search for the polynomial structure and a set of explanatory vectors that best represents a system
through continuous iteration. The methodology is advantageous in that it is capable of returning
an explicit model expression for the relationship without requiring a pre-defined functional form and
variables [51,56].

2.3.1. Application of Machine Learning

The artificial neural network (ANN) is suited to provide the flexibility needed in modeling housing
prices [17,57]. The input and output parameters are identical to those in the hedonic pricing method;
however, ANN is both nonlinear and nonparametric in that it does not require a specific functional
form or assumptions in characterizing the price relationship. Accordingly, there are three primary
components within ANN, which can be referred to as layers: The input layer, hidden layer, and output
layer. Each layer consists of nodes, which are connected with the nodes in the adjacent layers, as shown
in Figure 1. The hidden layer serves two functions: Applying weights to the inputs and transforming
to the outputs through activation functions. This framework allows for the “learning” of data patterns
through continuous iterations of feeding inputs to match outputs to compose the best fitting functional
form of the relationship, which will develop the final predictions. The ANN’s applicability in real
estate valuation has significantly improved with the recent progress in computing power as well as
the availability of large housing sales data. Compared with the early application of the ANN in real
estate valuation [58,59], the extensions of the model were developed with the capability to handle
more complex logic by introducing additional layers and advanced algorithms.
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Figure 1. Operational map of artificial neural network (ANN).

The RNN is one of the extensions of ANN that is better suited for handling time series data as
it assigns the processes in time step [60,61]. Because of the construction of ANN, which involves
treating each item of data as an independent entity, it is not capable of accommodating the hierarchy
and scale of time-dependent variables [62]. While the network of the RNN is seemingly similar to that
of the ANN, the nodes in the hidden layer(s) of the RNN have the capability of memorizing the outputs
from the previous time step in a space called the “hidden state,” enabling more suitable learning
processes for time series data [63,64]. Another advancement is the backpropagation algorithm, which
allows for the efficient training of a multilayer network such as the RNN. In short, backpropagation
is the process of computing the gradient of the loss function and the “backward passing” of errors
to update the weights used in learning processes. However, the gradient can vanish by becoming
too small to matter; moreover, it can also explode by becoming too big for our viewpoint over long
time windows caused by the continuous matrix multiplication in backpropagation [65]. The issue of
exploding gradients can be reduced by the rescaling of the gradient within given boundaries. However,
the issue of vanishing gradients is more complicated as it could become and remain as zero, which
would diminish the learning processes.

Following the limitation of the RNN, the LSTM was introduced to mitigate the issue of the vanishing
gradient [66]. LSTM is a cell that modifies the “hidden state” in the RNN by adding a “cell state”
that can selectively remember the past. The process starts with three inputs into the LSTM cell: The
new input value at time t, xt; the “previously memorized” cell state from the previous time step,
Ct−1; and the output from the previous time step, ht−1. The values follow the arrows and go through
the operations as shown in Figure 2. The operations occur at three “gates” in order to regulate the flow
of information through the LSTM: The forget gate (ft), input gate (it), and output gate (ot). There are
two activation functions at the gates, the first of which is the sigmoid function, denoted as ‘σ’ that
outputs a value between 1 and 0 to govern a value to flow or not to flow through the gates. Then there
is the hyperbolic tangent function denoted as “tanh,” which outputs a value between −1 and 1, which
gives weightage to the presentation of their relative importance. “W” and “b” represent the weightage
and bias for the respective gate.

At the forget gate, the sigmoid function decides which value should be discarded—or
“forgotten”—by examining the value from the previous hidden state and the new input as calculated
in Equation (1). At the input gate, the sigmoid function determines how to update the cell state
by transforming values to between 0 and 1, as presented in Equation (2). The sigmoid output of
the input gate is multiplied with the potential cell state value, Ct’, which is calculated with Equation (4).
The product is then added to the previous cell state value factored by the output of the forget gate
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to produce the new cell state value, Ct, calculated as Equation (5). At the output gate, calculated
as Equation (3), the sigmoid function determines how the hidden state value should be updated.
The sigmoid output of the output gate is multiplied with the tanh output of the new cell state value
to decide which hidden state value should be carried, as presented in Equation (6). Finally, the new
cell state and the new hidden state are carried onto the next time step. In series, the neural network
is capable of selectively remembering patterns for long durations of time until it is needed, making
it effective in handling long and short temporal dependence in sequence prediction modeling [67].

ft = σ
(
W f × [ht−1, xt] + b f

)
(1)

it = σ(Wi × [ht−1, xt] + bi) (2)

ot = σ(Wo × [ht−1, xt] + bo) (3)

C′t = tanh(WC × [ht−1, xt] + bi) (4)

Ct = ft ×Ct−1 + it ×C′t (5)

ht = ot × tanh(Ct) (6)

Figure 2. Operational map of long short-term memory (LSTM) cell.

2.3.2. Case Studies: Application of Advanced Valuation Method

The ability of machine learning algorithms has been extensively utilized to predict future events
in various disciplines, including finance, business, economics, and engineering. The application
in analyzing housing price is relatively new compared to those disciplines, and it has recently been
gaining much attention in analyzing housing markets in many cities worldwide. This section refers to
those studies that specifically utilized the LSTM.

Chen (2017) compared the predictive power between time series models using a single variable
in the housing prices from January 2004 to September 2016 in the Chinese cities of Beijing, Shanghai,
Guangzhou, and Shenzhen. The study compared the performance of various housing price prediction
models, including the autoregressive integrated moving average (ARIMA), simple RNN, and a set of
LSTMs with different structures. Although it was a brief study and had limitations, including data
shortage and inability to consider regional variations of housing prices, it revealed that the simple
LSTM outperforms the others.

In a study conducted in Turkey [23], a comparative analysis was performed between ARIMA,
LSTM, and the hybrid model that combines the two methods. The results showed that the hybrid
model is the best—based on the mean absolute percentage error and the mean squared error—claiming
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that the consideration of both linear and nonlinear components in housing price predictions is
essential. Although the results indicate that the hybrid model performs better, the authors agreed that
the predictive power of the models is very similar. Similar to the study conducted by Chen (2017),
neural network algorithms are superior over traditional algorithms such as ARIMA. The study also
was not able to control for the regional variation of housing prices due to the use of countrywide sales
data. Furthermore, it is suspected that adjusting hyper-parameters in the analysis could improve
the results, such as increasing the number of training epochs, cells, and hidden layers.

A study conducted in Seoul, South Korea [68] investigated the performance of simple RNN and
LSTM in predicting apartment price indexes. All sales data for medium and large-sized apartments
between January 2006 and October 2017 were used in the analysis with six macroeconomic indicators
to reflect the temporal variations of the housing market. The results found conflicting results, showing
higher predictive power of a vector autoregressive (VAR) model over LSTM. However, the validity
of comparisons to a VAR is limited because it is difficult to identify the price relationship with
each variable.

The practicality and efficiency of using LSTM in housing price predictions are evidently appealing,
but further improvement in the quality of LSTM applications should be investigated. The necessary
improvements include better specification of hyper-parameters, acquiring sufficient data, the inclusion
of factors associated with housing price variations, and the employment of efficient comparative
models. While only a handful of studies have taken this approach, the application of a neural network
such as the LSTM can go beyond the role of housing price prediction, as it can be utilized to address
the issues related to housing policies [22].

3. Experiment

3.1. Research Design and Data

The primary purpose of this study is to investigate the effect of PRH on the nearby housing
prices using the LSTM method. Consequently, this research is designed to construct the housing price
prediction model for the city of Busan, South Korea, where it can examine the changes in housing
prices due to the proximity effect of the PRH. The model builds upon all of the apartment sales
data for 167 months that occurred between January 2006 and November 2019, which includes
547,740 transactions at 2024 apartment complexes.

Among the different types of PRH, this study examines build-to-rent housing because it is much
more common, more affordable in general, and larger in scale. Buy-to-rent and rent-to-rent units are
geographically dispersed over different housing types, making them less likely to influence nearby
housing prices. It is also important to note that build-to-rent housing is generally developed with
amenities, neighborhood commercial units, and some infrastructure improvements in the vicinity,
making it more influential in its host neighborhood. Hence, a total of 70 PRH complexes have been
selected for the analysis in this study. Figure 3 shows the density map of apartment sales data, which
is overlaid with the locations of the PRH units subjected to the analysis.

For better performance of the model, the model also considers two sets of independent variables:
Six apartment characteristics that are known to affect housing price, and three proximity measures
to PRH.

Six apartment characteristics were selected based on the findings from previous studies. They are
total area, floor level, building age, the total number of households in the complex, monthly transaction
volume per complex, and whether or not it is a top 10 apartment brand. According to the studies
conducted in Busan, the ranking of constructors by performance is a significant factor in apartment
prices [42,69].
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Figure 3. Study area and sample locations.

Three proximity measures to PRH consist of two measures that correspond to the nearest PRH
complex, and one measure that corresponds to the comprehensive exposure to PRH units in proximity.
This measure combines the extent of the size and distance to all PRH units located within 1 km of each
apartment complex. The cutoff distance in defining proximity is set at 1 km based on the evidence that
the proximity effect of housing price extends up to 1 km in Busan [42]. The variables used in the study
are presented in Table 2, along with the description and data source.

Table 2. Variable description.

Variable Description Source

Apartment Price Monthly average transaction price per m2 for each
APT complex

MOLIT (Ministry of Land, Infrastructure, and Transport)
Apartment real transaction price open system

Transaction volume Total number of transactions made for each APT
complex per month

MOLIT (Ministry of Land, Infrastructure and Transport)
Apartment real transaction price open system

Total area Total lot area for each APT complex MOLIT (Ministry of Land, Infrastructure and Transport)
Building Administration System

Floor Maximum number of floors MOLIT (Ministry of Land, Infrastructure and Transport)
Building Administration System

Age Building age of APT complex at the time of
transaction

MOLIT (Ministry of Land, Infrastructure and Transport)
Apartment real transaction price open system

Household Total number of households MOLIT (Ministry of Land, Infrastructure and Transport)
Building Administration System

Brand 1: Top 10 APT brands determined by
the performance of constructor

MOLIT (Ministry of Land, Infrastructure and Transport)
Building Administration System

Distance to PRH Distance to the nearest PRH Produced in GIS software
(ArcGIS 10.3.1)

Household in PRH Total number of households in the nearest PRH Produced in GIS software
(ArcGIS 10.3.1)

Exposure to PRH
comprehensive exposure to PRH(s) within 1 km∑ total number of households

distance

Produced in GIS software with Python
(ArcGIS 10.3.1)

In an ANN, such as LSTM, the weight of each independent variable that affects the dependent
variable constantly varies within the hidden layer, so it does not produce coefficients as found
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in regression analysis. On the other hand, it is possible to identify the relative importance of variables
by comparing the change in the predictive power of a model when variables are added. Through this
approach, it is possible to select a set of independent variables that produces the best prediction model,
which is optimized for the housing market in Busan. Following the additive scheme of model building,
four prediction models, which are referred to as “constructs” to avoid confusion with the final models
of the study, are presented in Table 3.

Construct 1: The most basic price prediction model constructed with the sequence of housing prices.
Construct 2: The apartment characteristics are added to Construct 1. Considering that apartment

characteristics are known to be strong determinants of the price, it is likely that
the predictive power will increase as they are added in the model. Thus, the change
in predictive power will be able to determine the relative importance of apartment
characteristics on housing prices.

Construct 3: Two of the proximity measures to the nearest PRH are added to Construct 2. If the addition
of those variables increases the predictive power from Construct 2, then it suggests that
the distance and size of the nearest PRH have a meaningful effect on housing prices.

Construct 4: The comprehensive measure of exposure to PRH within 1 km is added to Construct 3.
If the addition of the variable increases the predictive power from the best performing
model in the previous stage, then it suggests that the exposure to closer and larger PRH
has a meaningful effect on housing prices.

Table 3. Model building scheme.

Construct 1 Construct 2 Construct 3 Construct 4

Apartment Price O O O O

Apartment Characteristics
Transaction volume

Total area
Floor
Age

Household
Brand

O
O
O
O
O
O

O
O
O
O
O
O

O
O
O
O
O
O

Proximity to PRH(s)
Distance to PRH

Household in PRH
Exposure to PRH

O
O

O
O
O

The best “construct” was applied to produce the final models using the neural network, as presented
in the following descriptions.

Model 1. This model is subjected to the entire region of Busan. Herein, the housing price prediction
model at the city level can be referred to as the regional model, which represents the regional
housing market.

Model 2. This model is subjected to the neighborhoods (or areas within 1 km) of PRH. The housing
price prediction model at the neighborhood level can be referred to as the local model, which
represents the local housing market.

Model 3. This model is subjected to the neighborhoods of PRH units that are located in the “favorable”
local housing markets, where the average change in housing price is above that of Busan,
which is based on the transaction data used in this study. The observed price trends of
the neighborhoods in Busan that have “favorable” local housing markets are also included
for comparison.

Model 4. This model is subjected to the neighborhoods of PRH units that are located in the less
favorable local housing markets, where the average change in housing price is below that
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of Busan, based on the transaction data used in this study. The observed price trend of all
neighborhoods in Busan that have “less favorable” local housing markets is also included
for comparison.

3.2. Specification of Long Short-Term Memory (LSTM)

In the modeling of housing prices using LSTM, this study used Tensorflow, a Python-based
open-source software that is widely used—especially in the application of multilayered neural networks.
The overall mechanism of the LSTM cell in an RNN is discussed in the previous section (see Section 2.3);
the details regarding the implementation of LSTM are presented here.

In order to maximize the performance of the model, the neural network needs to be optimized for
the research questions and data. This can be done by selecting suitable hyper-parameters, or ways to
set up for the learning processes to make valid predictions. However, there is not a rule of thumb for
optimizing neural networks, and it is very difficult to put relative importance on one over another [70].
Thus, the optimization process relied on fine-tuning our network by testing various trials of different
combinations of hyper-parameters; moreover, the overall performance determined by the root mean
square error (RMSE) was evaluated. The starting point of the optimization was determined based on
various sources ranging from the previous housing price literature to the related information archived
from the Internet.

Prior to the trials, 70% of the data for training and 30% for validation were assigned. The exponential
linear unit (ELU) in the rectified linear unit (ReLU) family was chosen as the activation function between
LSTM layers. It is one of the most commonly used activation functions in neural networks—including
RNN. Furthermore, it is known to outperform both sigmoid and hyperbolic tangent functions in terms
of computational efficiency, and it also can handle a vanishing gradient issue [71]. We employed the He
initialization method, which is similar to the Xavier method, yet it is known to provide a controlled
initialization—hence, the faster and more efficient gradient descent [72]. We confirmed the suitability
of the activation function and the initialization method by observing the weight variation of each layer
along with ensuring that the distribution does not lean toward 0 and 1. A dropout value of 0.5, the batch
size of 1, and the learning rate of 0.001 were used to allow for more rigorous learning processes as it can
obtain larger data for model validation with a higher number of batches used for learning. The Adam
optimizer was used in the study because it is computationally efficient, does not suffer any major
decrease in accuracy, and has a relatively wide range of successful learning rates [73]. The number of
epochs was determined to be 5000, which was done by identifying the “elbow” on the learning curve,
where the slope of the RMSE changes. In all of our cases, it occurred near the epoch of 5000.

While the abovementioned hyper-parameters stay fixed for the model-building processes,
we adjusted the number of cell units, hidden layers, and sequence lengths to acquire the best performing
network. It was given that those parameters are considered to impact the performance of networks
more than the others. The number of cell units and hidden layers tested were determined based
on the previous cases from various sources with fairly similar data sizes. Considering the commonly
discussed cycle of housing prices, we tested the four sequence lengths of 12, 6, 3, and 1 to reflect
the annual, semiannual, quarterly, and monthly patterns of housing price variations. Accordingly,
we considered the combinations of the hyper-parameters for Models 1 through 4 and evaluated
the performances by observing the minimum RMSE, as presented in Table 4.

Table 4. Hyper-parameter optimization trials.

Hyper-Parameters

#Cell Unit #Hidden Layer Sequence Length

3/5/7 3/5 1/3/6/12
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Despite the robustness of neural networks presented in previous studies, the performance of
the networks is greatly influenced by a set of hyper-parameters, or the specifications of a network’s
structure, function, learning process, etc. A practical way to ensure the level of performance is to test
the performance of neural network against the outcome of a traditional time series analysis. Some of
the applicable methodologies include the autoregressive moving average (ARMA), autoregressive
integrated moving average (ARIMA), vector autoregression (VAR) and its extensions. In this study,
the VAR model was selected as a comparative model because it allowed for more than one evolving
variables and showed to have the best forecasting results [68,74]. The VAR model was applied to
Model 1 and Model 2.

VAR model is a stochastic process model that identifies linear interdependencies among multiple
time series. It is an extension of the univariate autoregression model to multivariate time series data
that consists of a system of relationships in which each housing price is explained by its own lags as
well as the lags of other variables [55]. Prior to the modeling of time series using VAR, it is important
to ensure the stationarity of the times series data to prevent the risk of spurious regression. In the case
of nonstationarity, necessary data transformation, or differencing, is needed prior to the analysis [75].
The stationarity of time series can be tested with the presence of unit root. The augmented Dickey–Fuller
(ADF) test was employed to determine the presence of unit root in our data. The results of the tests
revealed that each housing price series is integrated of order one, I (1), and thus the first difference
of housing price is stationary. Upon transformation, the ADF test confirmed that all variables were
significant at the 5% level. For the selection of optimal lag length in VAR, several lag lengths were tested
so that the residuals do not have a serial correlation. Relying on the Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC), both Model 1 and Model 2 were analyzed with the lag
length of one (the results for ADF test and VAR specification can be provided upon request). Similar to
the approach taken with LSTM, four constructs were tested and evaluated using the RMSE.

4. Results and Discussion

4.1. Analysis of the Data

In this study, data from a total of 157,740 apartment sales were gathered over a period of 167 months
from January 2006 to November 2019 in Busan, Korea. These data were used to investigate the impact
of PRH on nearby housing prices. In this study, a neural network—the RNN-LSTM—was used to
construct a set of housing prediction models that represent the regional and local housing markets
with a focus on identifying differences in trends of housing prices by their proximity to PRH. A set of
apartment characteristics and proximity measures were used in the sequence prediction of housing
prices, which can act as a set of control variables in explaining price trends. The descriptive statistics of
the variables used in this study are presented in Table 5.

Although it is not a significant difference, the average transaction price of apartments
in the proximity of PRH is slightly higher than that of the entire city. The average monthly
transaction volume of PRH neighborhoods is slightly less than that of the entire city. Among
PRH neighborhoods, the transaction volume was lower in the “favorable” local housing market and
higher in the “less favorable” market. Observing the floor and age variables, the apartment complexes
applied in the models are quite similar in height and building age. Compared to Models 2 and 4,
the total number of households in Model 3 is smaller, while the total lot area is larger. This implies
that the apartments in the neighborhoods of PRH in the “favorable” local housing market have larger
unit sizes or larger on-site facilities and amenities. This is also supported by the higher value of
the apartment brand variable in Model 3, as the apartments built by prominent apartment builders are
known to provide higher-quality on-site facilities and amenities such as park space, neighborhood
commercial sites, and parking lots [42].
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Table 5. Descriptive statistics.

Model 1 Model 2 Model 3 Model 4

Variable Unit Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

Apt. Price 10,000 KRW/m2 263.27 (73.18) 266.87 (73.76) 292.47 (89.29) 259.31 (69.25)
Trans. vol. sales/mo. 76.05 (7.97) 68.16 (7.18) 61.58 (19.74) 69.76 (6.07)
Total area 1,000m2 118.41 (11.89) 98.81 (10.51) 114.99 (35.86) 94.27 (6.84)

Floor #of floors 21.00 (0.79) 21.40 (0.91) 21.25 (2.67) 21.38 (0.75)
Age years 14.74 (2.77) 14.38 (2.66) 14.13 (2.32) 14.50 (2.87)

Household # of households 950.99 (67.51) 885.16 (82.25) 783.75 (162.86) 911.71 (89.91)
Brand dummy 0.10 (0.03) 0.11 (0.03) 0.18 (0.07) 0.09 (0.02)

Dist. to PRH m 1571.36 (78.1) 571.30 (17.75) 595.05 (40.78) 565.21 (17.77)
Household in PRH #of households 633.87 (37.59) 789.52 (58.35) 454.16 (96.02) 878.20 (59.90)
Exposure to PRH number 0.29 (0.22) 0.64 (0.44) 0.25 (0.07) 0.74 (0.56)

For the apartments located in Busan, the average distance to the nearest PRH is approximately
1.5 km. For the apartments located in the neighborhoods of PRH, the distance to the nearest PRH
complex is similar, the size of the complex and the exposure variable revealed some differences for
Models 3 and 4. The statistics indicate that the average number of households in the PRH complexes
in Model 3 is significantly less than that of the other models, meaning that the PRH complexes
in the “favorable” neighborhood are smaller than in the other geographic boundaries used in the study.
Furthermore, the average of exposure variable in Model 4 is significantly larger than that of Model 3,
meaning that the PRH complexes are more concentrated in “less-favorable” neighborhoods.

Overall, the statistics showed that the models representing different geographic boundaries
correspond to different spatial characteristics in terms of prices, apartment characteristics, and PRH
characteristics. The differences between Models 3 and 4 are notable, showing that apartment complexes
located in neighborhoods with “less favorable” local housing markets are smaller in lot size, have more
households, and are less likely to be built by prominent apartment constructors. The PRH complexes
located in “favorable” neighborhoods are larger in size and are likely to be in clusters. This aligns
with the limitations of the build-to-rent type of PRH discussed in Section 2.1, that large-scale PRH
complexes are likely to be located in areas with lower land value. The following analyses examine
the effect of PRH variables more comprehensively by testing the effect of PRH variables in the price
prediction model in each geographic boundary and comparing the predicted trend to the observations.

Next, the Moran index (Moran’s I) for each variable was calculated to assess the spatial pattern of
the variables, as presented in Table 6.

Table 6. Moran’s I for Busan, Korea.

Variable Apt. Price Trans. Vol. Total Area Floor Age Household Brand Distance to
PRH Scale of PRH

Moran’s I * 0.892 0.117 0.115 0.162 0.246 0.139 0.589 0.761 0.704

* All variables were significant at the 1% level (p < 0.01).

According to the result, the apartment price, brand, and the two proximity variables showed
spatial autocorrelation, while other variables showed no correlation. The average transaction price for
the apartments was revealed to have high spatial autocorrelation, which was not surprising, given that
it is commonly found in real estate prices [42,76]. Considering that the apartments built by prominent
constructors are more expensive, the spatial clustering of top-brand apartments aligned with our
expectations. The average transaction volume is randomly dispersed, meaning that the number of sales
does not have any spatial pattern in Busan. Similarly, the attributes of apartment complexes, including
the total lot size, number of floors, building age, and the total number of households, are randomly
dispersed throughout the city. Based on the moderate to the high level of spatial autocorrelation
found in the proximity variables, the clustering pattern of PRH complexes exists, both in their location
and size.
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4.2. Model Production

As the performance of machine learning algorithms is greatly influenced by hyper-parameters that
specify the network’s structure, function, learning process, etc., the selection of parameters optimized
for data and research objectives is important. We relied on the trial-and-evaluations of different
combinations of hyper-parameters and variables in our model-building process, which featured three
sets of hyper-parameters and four “constructs” of variables. As a result, the optimized construct
was obtained in terms of the hyper-parameters and independent variables that produced a price
prediction model with the most predictive power for the entire region of Busan (Model 1) and for
the neighborhoods of PRHs (Model 2). A set of hyper-parameters selected for Model 1 and Model 2
are presented in Tables 7 and 8, respectively.

Table 7. Optimization results for Model 1.

Construct 1 Construct 2 Construct 3 Construct 4

Hyper-parameters

Fixed

Learning / Validation = 70/30
Activation function = ELU

Initialization = He
Optimizer = Adam

Batch size = 1
Learning rate = 0.001

Dropout rate = 0.5
# of epochs = 5000

# of cell unit 3 7 7 7

# of hidden layer 3 3 5 3

Sequence length 1 1 1 1

RMSE
LSTM 0.0563 0.0328 0.0317 0.0338

VAR 0.0849 0.0703 0.0548 0.0658

Table 8. Optimization results for Model 2.

Construct 1 Construct 2 Construct 3 Construct 4

Hyper-parameters

Fixed

Learning / Validation = 70/30
Activation function = ELU

Initialization = He
Optimizer = Adam

Batch size = 1
Learning rate = 0.001

Dropout rate = 0.5
# of epochs = 5000

# of cell unit 3 5 7 5

# of hidden layer 3 3 5 5

Sequence length 1 1 1 1

RMSE
LSTM 0.0670 0.0594 0.0573 0.0407

VAR 0.0796 0.0815 0.0626 0.0494

For Model 1, Construct 3 showed the most predictive power with an RMSE value of 0.0317.
Notably, this construct included two variables regarding the nearest PRH, which suggests that those
variables have a meaningful effect on predicting housing prices in Busan.

Model 2, which represents the local housing market of the neighborhoods of PRH, showed that
Construct 4 produced the most predictive power, with an RMSE value of 0.0407. Given that Construct 4
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included all three proximity variables of PRH, this result indicates that the variables are more relevant
in the neighborhoods of PRH than in the greater Busan region.

Regarding the use of VAR, the RMSE value of 0.0548 revealed that Construct 3 produced the most
predictive power for Model 1. Similarly, the RMSE value of 0.0494 revealed that Construct 4 produced
the most predictive power for Model 2. While the selection of a model construct was the same as
the LSTM, the LSTM results showed better performance in all cases. Nonetheless, VAR results were
also shown to have good predictability.

4.3. Analysis Results of the Proximity Effect of PRH

A total of four price prediction models were produced using the LSTM optimized for the city as
well as the PRH neighborhoods. As specified, 30% of the data were used for prediction, which equates
to 50 months. The graphical representation of each prediction is presented. The RMSE values indicate
the performance of each final model, as presented in Table 9.

Table 9. Performance of final prediction models.

Subject RMSE

Model 1
(construct 3) APT prices for the entire city 0.0317

(0.0548) *

Model 2
(construct 4) APT prices for the neighborhoods of PRH 0.0407

(0.0494) *

Model 3
(construct 4) APT prices for the neighborhoods of PRH located in “favorable” local housing market 0.0490

Model 4
(construct 4) APT prices for the neighborhoods of PRH located in “less favorable” local housing market 0.0489

* The values in parenthesis indicate the RMSE values of the predictions according to the VAR model.

Figure 4 presents the results of Model 1. Comparing the RMSE value of 0.0317 to 0.0548, the LSTM
model achieved a lower error rate than the VAR model. The graphical representations show that
the trend breaks and the segment slopes in the predictions resemble those of the observations very
well. In the case of the VAR model, it can be observed that the predicted slopes often conflict with
the observed slopes. Further, the VAR predictions often deviate at the high and low points, meaning
that the model tends to overestimate the prices following the inclining price trend and underestimate
following the declining price trend.

Figure 5 presents the results of Model 2. Again, the LSTM model (RMSE = 0.0407) achieved
better predictive power than the VAR model (RMSE = 0.0494). This is also supported by the graphical
representation, as the predicted trend using LSTM is more stable around the observed trend than that
of the VAR. Compared to the LSTM model, the predicted trend using VAR showed sharper drops
at the low points, meaning that the model tends to underestimate the prices following the declining
price trend.

The results showed that price trends in PRH neighborhoods are more turbulent than those of
the city overall. This was expected, given that the neighborhood-level models have smaller sample
sizes. Regardless, our price prediction models showed good performance when both the city and PRH
neighborhoods were concerned. On the other hand, it was not expected to find that the predictive
power of the regional model was higher than that of the local model, even though the proximity
variables were determined to have meaningful effects in our modeling processes.
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Figure 4. Model 1—Apartment price predictions for the entire city.

Figure 5. Model 2—Apartment price predictions for PRH neighborhoods.

While Model 1 and Model 2 provided some general information on housing price trends in Busan
and PRH neighborhoods, the study identified the need for closer observations at the neighborhood
level. Further examination of PRH neighborhoods showed that some of the characteristics, including
the average housing price and monthly transaction volume, are quite different by neighborhood.
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In particular, it was apparent that most of the newer PRH complexes are located along newly
constructed apartment complexes or in recently developed new town projects that often featured
a simultaneous construction of multiple apartment complexes. Consequently, the local housing market
in those neighborhoods was suspected to be unstable, with a rising trend. It was also found that
many of the larger PRHs in our sample were older and were located in areas in which older and
cheaper apartments are concentrated. As the PRH neighborhoods were split into two groups based
on the average price changes in the housing market over the study period, it was possible to confirm
that the price trends, both in prediction and observation, were distinctly different.

Figure 6 presents the results of Model 3. This model was subjected to the neighborhoods of PRH
located in the “favorable” local housing market, where the average change in the apartment prices was
above the average of the city. As expected, the price variation was much more turbulent than the other
cases considered.

Figure 6. Model 3—Apartment price predictions for PRH neighborhoods in the “favorable” local
housing market.

Lastly, Figure 7 presents the results of Model 4, which represents PRH neighborhoods located
in the “less-favorable” local housing market in which the average change in apartment price was below
the average of the city. With an RMSE of 0.0489, the predictive power of the model was found to be
practically the same as Model 3, though the trend is distinctively different. The price trend of Model 4
is much smoother and has fewer jumps or drops compared to the other cases.

Another noteworthy result is that the predicted values are slightly above the observed values
throughout the period, except for the last month. The overall trends of predicted and observed values
match well, although the prediction started to offset upwards at the beginning of the prediction period
and partially recovered toward the end of the prediction period. Additionally, the prices are mostly
higher throughout the prediction compared to the rest of the neighborhoods in the “less-favorable” local
housing market in Busan. This trend is unique in that it presents a unidirectional error of predictions
that were consistent over time. This is likely caused by some unknown factors that were not considered
in the study and which may be unique to those neighborhoods. It is difficult to connect this trend to
the effect of PRH because the duration of the error is unprecedentedly long compared to the other
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models. Similar magnitudes of error were observed in the other models considered in the study, though
they were soon caught up by new predictions. In other words, external factors that were not accounted
for in the learning process of the model must have depreciated the prices for the duration of the gap.

Figure 7. Model 4—Apartment price predictions for the neighborhoods of PRH in the “less favorable”
local housing market.

Overall, the impact of PRH on nearby housing prices is meaningful as the proximity variables
employed in the models were determined to be the factors that improve the performance of predictions.
The variables were determined meaningful in both Model 1 and Model 2, which represented the price
prediction for the entire city and for the PRH neighborhoods, respectively. While both LSTM and
VAR forecasting were effective, the predictions made with the LSTM was more accurate in all models
considered. Figure 8 presents the price predictions constructed in each model.

Given the outstanding accuracy of predictions, the models are capable of making reliable price
predictions for the future. Comparing the predictions in Model 1 and 2, the trend of housing
prices in the PRH neighborhoods is more turbulent than that of the city. In contrast, the overall
trends of the models throughout the prediction period are very similar. The turbulence intensifies
in the PHR neighborhoods located in the “favorable” local housing market. While it is unable to
address the individual effects of the variables on the predictions, the results indicate that forecasting
housing prices in the PHR neighborhoods requires a careful selection of prediction models, especially
when making short-term predictions in the neighborhoods with more turbulence in price trend.
The results from Model 4 indicated that the effect of external factors on the housing prices is more
evident in the PHR neighborhoods located in the “less favorable” local housing market. By comparing
with other models, the overall price prediction in Model 4 remained similar until the end of 2018, when
it started to fall below. Once the drop occurred at the end of 2018, the price trend remained below
the city’s trend by a more considerable margin than ever recorded throughout the study period.
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Figure 8. Comparison of the predictions.

5. Conclusions

In this study, the proximity effect of PRH on housing prices was investigated with four price
prediction models using long short-term memory (LSTM). The models utilized apartment transaction
data over 167 months, along with the potential factors of housing prices. The results produced a set of
price-prediction models for the city and neighborhoods of PRH. Despite the limited interpretation
of the predictions over the pre-existing price data, the merit of the approach taken in this study lies
in its ability to predict housing prices, both in the long and short term, with improved accuracy.
This is meaningful, as it can be used to evaluate and simulate changes in the regional and local
housing markets.

The model building process showed that the proximity measures have a meaningful impact
on housing prices, both for the entire region of the city and PRH neighborhoods. The price trends
in PRH neighborhoods showed some turbulence but did not consistently fall below the city’s trends.
Turbulence intensified for PRH neighborhoods located in the “favorable” housing market, although
the general trend remained similar to that of the city. An exceptional case was presented when PRH
neighborhoods located in the “less favorable” local housing market were considered, as an offsetting
effect was observed between the trends. The results show that the predicted pattern resembled
the observed pattern very well, but with a slight upwards offset for almost the entire period. This result
is meaningful not only because it is unique to the spatial boundary selected, but also because it presented
a unidirectional error of the prediction model that lasted over time. This suggests that the housing
prices in those neighborhoods were likely suppressed by other external factors that were not accounted
for in this study, such as the effect of housing policy, macroeconomic factors, and local housing market
factors. Investigating the drivers of this trend is important because it may hold the key to identifying
the determinants of the local price depreciation, which may be more concerning than the effect of
PRH in proximity. This can be done using the technique employed in the study, by considering



Sustainability 2020, 12, 7520 21 of 25

additional variables such as macroeconomic factors, housing policy factors, and local housing market
factors, and identifying the set of variables that closes the gap. It is also recommended that future
studies take a combined approach by employing additional methodologies such as regression-based
models to identify the individual effects of the variables concerned. This can be useful for detecting
the cross-sectional or longitudinal relationship at certain parts of the price trend in question, such
as the gap observed in Model 4 in this study. The approach can also determine whether or not
the proximity effect is detrimental to nearby housing prices.

The application of machine learning techniques for constructing a housing price model was
outstanding. In this study, the LSTM managed to produce a set of price-prediction models efficiently,
with less margin of error than a traditional time series model. Although the interpretation of the results
was limited in assessing the effects of individual factors, the approach taken produced a set of reliable
forecast models for the city and the PRH neighborhoods.

With respect to the implication of the research, the modeling approach employed in this study
can assist in the decision-making process in the planning, development, and management of PRH
provisions. For the planners, forecasting housing prices in the neighborhoods of PRH can help with
the planning processes of PRH as an informative medium for the public and residents who fear
the construction of PRH. Considering that a significant number of PRH units in Korea are likely to
flow into the private market in the near future, the modeling approach taken in this study can assist
in search of investment opportunities by forecasting the potential profit of the units in the private
market. Additionally, city planners can supplement the evaluation and simulation processes of the PHR
plans to ensure the economic stability and viability of PRH provisions and their host neighborhoods.
With further expansion of the modeling approach, various socioeconomic aspects can be tested to
address urban issues, including the infrastructure/resource deprivation and spatial polarization due
to the deteriorated PRH provisions. The developers of PRH can expand the approach with a more
detailed characterization of PRH complexes and neighborhoods in search of better design and locations
for PRH.

Lastly, the superiority of the machine learning technique in analyzing large time-series data can be
valuable in assessing the impact of various built environment factors, market factors, and the impact of
housing policies over time. This can be useful in understanding the effect of certain housing policy
and market dynamics over time based on big-data, and simulating the response of the housing market.
Its efficiency can also assist in the monitoring of various aspects of PRH to help improve the quality of
living for residents and neighborhoods. Ultimately, this effort can create opportunities for PRH and its
host neighborhood to benefit from each other and construct a healthy and sustainable community.
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