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Abstract: Recently, urban agglomerations have become the main platform of China’s economic
development. As one of those, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) has an
important strategic position in national blueprints. Its amazing achievement is inseparable from
reliable and resilient transportation networks. With the aim of improving the sustainability of the
GBA, this paper presents a novel view of vulnerability and resilience of integrated transportation
networks within an urban agglomeration. According to complex network theory, the integrated
transportation network model of the GBA was established. Various scenarios were considered to
improve the overall level of defensive ability, including random failures, targeted attacks and natural
hazards. Vulnerability and resilience assessment models were developed to investigate the influences
on the whole network. Finally, a simulation analysis was conducted on the GBA to examine the
variations in network performance when faced with different attack scenarios. The results indicate
that the transportation network of the GBA is more vulnerable and has less resilience to targeted
attacks, while natural hazards had little influence on the performance, to a certain extent. Moreover,
the betweenness recovery strategy seemed to be the best choice for every attack scenario.
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1. Introduction

Since urban agglomeration appeared in a top-level policy blueprint of China in 2006, it has shown
a favorable trend. Since then, this ambitious plan has facilitated 19 urban agglomerations, leading
China into a new stage of economic development. As one of those, the Greater Bay Area (GBA)
is not only the heart of China’s growth dynamic, but also a core of global cooperation. The GBA
consists of the nine municipalities of Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan,
Zhongshan, Jiangmen and Zhaoqing in Guangdong Province, as well as two special administrative
regions including Hong Kong and Macao, covering a total area of 56000 square kilometers. At the end
of 2019, the total population reached over 72 million, the GDP was USD 1679.5 billion and GDP per
capita was USD 23371 [1].

A reliable transportation system is a necessary condition and driving force to support high-quality
and sustainable development, especially for the GBA. However, transportation networks face a constant
barrage of external stresses or threats that challenge their operation. They must deal with the frequent
occurrence of random breakdowns and unexpected events such as terrorist attacks. Therefore, several
attempts have been made to study the vulnerability and resilience of transportation networks [2,3].

The concept of vulnerability was proposed by the geographer Timmerman in 1981 [4], and has
been widely extended to ecology, economics and other fields [5–7]. A lot of scholars believe that
vulnerability of transportation is closely related to the sensitivity to disturbance [8,9]. Much of the
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current literature on transportation vulnerability pays particular attention to random failures and
deliberate attacks [10–14]. However, there has been a lack of quantitative analysis of transportation
vulnerability under natural disasters, leading to a large scale failure of infrastructure [15,16].

As for resilience, it was defined by Holling, an ecologist, to characterize the ability of a system
to absorb various changes [17]. Bruneau et al. created the “4R” framework (robustness, redundancy,
resourcefulness and rapidity) to represent resilience [18]. Similarly, Ouyang et al. proposed a
three-stage framework to analyze the resilience of infrastructure, and different evaluation indicators
were used in the stages [19]. Although these frameworks are simple and clear, they cannot provide
targeted judgment and improvement measures. With the progress of complex network theory [20,21],
the network-based modeling method is gradually rising in the field of transportation resilience, which
shows more details related to time and enhances the understanding of resilience under a variety of
attacks [22,23].

In general, these two concepts are used to describe the changes in a disturbed system. Vulnerability
analyses focus on the sensitivity of a system to interference and the propagation of the impact in the
network, while the resilience analyses are focused on the ability to maintain or restore balance [24,25].
Meanwhile, the majority of studies applied complex network theory to assess these two characteristics
of various transportation systems at the topological level [26–29].

Although quite a number of studies have been carried out on the vulnerability and resilience
of a single mode of transportation (road [30,31], railway [11,16,22] and air [32,33]), there have been
limited empirical investigations into integrated transportation systems. As one of the few studies,
Chen and Miller-Hooks quantified the resilience of an intermodal freight transport network [34].
In fact, people usually travel by more than one mode of transportation, particularly within urban
agglomerations. Different from cities, urban agglomerations encounter difficulties of multi-level traffic
demand, containing various modes and spanning multiple cities [35]. Hence, there is a need to evaluate
the vulnerability and resilience of integrated transportation systems within an urban agglomeration to
guarantee security and achieve sustainability.

To sum up, there is a lack of in-depth studies on vulnerability and resilience of integrated
transportation systems. Furthermore, natural hazards are mostly regarded as a part of random failure
or simply ignored in the existing research; however, regional characteristics will be overlooked in
this case. Thus, the main aim of this study is to measure vulnerability and resilience of an integrated
transportation network within an urban agglomeration. To address the gaps mentioned above,
several scenarios including random failures, targeted attacks and natural hazards are considered and
simulated in the integrated transportation network. This study provides new insights into emergency
management and sustainable development of urban agglomerations.

2. Materials and Methods

2.1. Network Construction

The map in Figure 1 shows the distribution of transportation facilities (7 airports, 89 rail stations
and 252 passenger depots) in the GBA. In this study, AutoNavi, a widely used map service provider in
China, is selected to provide information. Under the complex network theory, the topology structure
of each urban agglomeration is extracted by an undirected graph G(N, E) including a node set N and a
link set E ⊆ N × N, as shown in Figure 2. The network construction rules are as follows:

1. Each passenger depot, railway station and airport in the urban agglomeration is treated as a node.
If they are so close that their distance (<500 m) can be ignored, they are regarded as one node in
the comprehensive transportation network.

2. The link is formed if there are transport services between nodes. Specifically, there are direct
flights between airports, direct railway lines between railway stations and highways between
passenger depots and others.

3. The network model of urban agglomeration is an undirected network.
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Figure 1. The distribution of transportation facilities in the Greater Bay Area (GBA).

Figure 2. The topology networks of the GBA.

2.2. General Properties

As for the network, the topological properties can be reflected by the network centrality. Several
widely applied indicators are adopted to give an insight into the GBA, including the number of nodes
and links, the average degree (the average number of links connected with the node) and the average
betweenness (the average number of shortest paths that pass through the node). Table 1 presents more
details about the indicators. The average degree of the GBA shows that each node has connections
with four adjacent transportation stations. As for the relative low density, it indicates that nodes are
relatively sparsely connected.

Table 1. Topological properties of the GBA.

Networks Number of Nodes Number of
Links

Average
Degree

Average
Betweenness Density

GBA 348 1408 4.05 1250.05 0.012



Sustainability 2020, 12, 7410 4 of 14

2.3. Scenario Generation

2.3.1. Attack Scenarios

The transportation network simulation usually encounters two types of attacks: random attack
(RA) and targeted attack (TA) [36,37]. The former represents the widespread disruption of service
caused by technical operations, passenger behaviors, etc. The latter considers deliberate destruction
such as terrorist attacks. In this situation, destroying nodes based on a descending sequence of degree
or betweenness is often applied [38]. Moreover, another failure mode, natural hazard, which has
obvious regional characteristics, always lacks attention.

In this paper, vulnerability and resilience through four scenarios will be explored: random attack
(RA), degree attack (DA), betweenness attack (BA) and natural hazard (NH). Random attack may
cause the failure of several nodes with a random probability, so it is simulated by 200 random sequence
attacks, and the average value is taken. As for targeted attacks, terrorists have a strong desire to launch
attacks in big cities, which will undoubtedly damage the stable development, international image
and investment environment. In addition, it is difficult to arrest terrorists in regions with convenient
transportation and dense populations; hence, two scenarios for targeted attack based on a sequence of
degree and betweenness were considered. There is little doubt about the two indicators according to
the previous studies [37,38]. The simulation is conducted by deleting nodes from the GBA network
according to the degree and betweenness.

An analysis of the impact of natural hazards entails the representation of the associated patterns.
According to United Nations International Strategy for Disaster Reduction (UNISDR), floods were
the most frequent type of disaster, which make up a relatively significant share (43%) of all recorded
disaster events from 1998–2017 [39]. Therefore, floods are the main focus in this paper. A natural hazard
scenario was generated using 24-h precipitation in 2019 of 17 meteorological observation stations in
Guangdong Province, Hong Kong and Macao, obtained from the China Meteorological Data Service
Center. The China Meteorological Administration defines “torrential rain” as rain that accumulates
50 mm or more in 24 h. Torrential rain days in 2019 of each node were calculated by the inverse
distance interpolation method in ArcGIS to represent the susceptibility of natural disasters, as shown
in Figure 3. The simulation was conducted by deleting nodes from the GBA network according to
the sequence of torrential rain days. In addition, floods can be triggered by different natural and
anthropogenic phenomena. Limited by the data, this article adopts a simple model to generate natural
hazard scenarios, which could be improved if detailed geographical information is available.

Figure 3. Torrential rain days of nodes in the GBA.
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2.3.2. Recovery Scenarios

As time goes on, external interference gradually disappears, and different recovery strategies are
used to improve the performance of the network. The important nodes are usually chosen to recover
first due to their key roles in the national economy and security, and government may also adopt the
principle of which is attacked first and which recovers first. At the same time, it is possible that the
recovery sequence is arranged in a random order because of different restoration capability. In this
paper, three recovery scenarios are simulated for degree attack and betweenness attack, i.e., recovering
nodes randomly (RR) or in a descending sequence of degree (DR) or betweenness (BR). In addition,
a sequential recovery mode (SR) is added for random attack and natural hazard; that is, the nodes
which fail first recover first.

2.4. Vulnerability Assessment

Two common indicators are selected to assess vulnerability [10,22,40,41]. Under each attack
scenario, these two indicators will be calculated in the process.

1. Proportion of initial efficiency (Pie):

Pie =
E
E0

(1)

E =
2

N(N − 1)

∑
i, j

1
di j

(2)

The efficiency E is defined as the average value of the inverse of the shortest path distance as
shown in Equation (2). N indicates the total number of nodes, dij represents the shortest path between
nodes i and j and E0 denotes the efficiency of initial state. Pie indicates the ability of maintaining
original status; a higher Pie reflects the greater connectivity and the invulnerability of the network.

2. Largest connected subgraph (LCS):

LCS =
Nmax

N
(3)

Under the deletions of nodes, several subgraphs will be yielded from the original connected
graph. Among them, the one having the most connected nodes is defined as the largest connected
subgraph [37]. As shown in Equation (3), LCS is measured by the ratio of the number of nodes in the
largest connected subgraph and the number of nodes in the original network.

2.5. Resilience Assessment

As mentioned above, many scholars have studied the definition and characteristics of resilience.
In this paper, resilience of transportation networks is used to describe the restore ability under an
attack. When encountering a disturbance, the system performance will decrease and gradually restore
to a stable state, as shown in Figure 4 (modified by [42]).

R =

∫ tn

ta
P(t)dt

P0 · (tn − ta)
(4)

The system performance P(t) experiences maintenance, absorption, restoration and new
maintenance stages represented by a solid black line. P0 represents the system performance at
t0, after the disturbance at ta, P(t) begins to decrease until it reaches the lowest point at tr. Through
effective measures, P(t) is restored to a new maintenance stage at tn. In this process, the proportion
of the area under the P(t) function from ta to tn is defined as the system resilience, as shown in
Equation (4) [18,42–44]. tn represents the time to a new maintenance stage and ta denotes the time of
disruption. In order to keep pace with vulnerability, the proportion of initial efficiency and largest
connected subgraph are chosen to represent the system performance. More concretely, the system
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performance is 1 in maintenance and new maintenance stages, while it varies between 0 and 1 during
absorption and restoration stages.

Two cases in which the restoration stage starts at the time of 25% and 50% of node failure are
assumed and calculated, respectively, which is intended to compare the impact on the choice of
recovery strategies.

Figure 4. Transportation network resilience diagrams.

3. Results and Discussion

3.1. Vulnerability Assessment of the GBA

The top 10 transportation stations of degree attack (DA), betweenness attack (BA) and natural
hazard (NH) rankings are shown in Table 2. Meanwhile, the results of random attack were the average
of 200 random sequence attacks, hence the rankings were not listed.

Table 2. The top 10 transportation stations of different failure scenarios.

No. Stations under DA Stations under BA Stations under NH

1 Guangzhou east railway station Qingsheng railway station Hengshan passenger depot
2 Guangzhou railway station Guangzhou south railway station Enping passenger depot
3 Zengcheng licheng passenger depot Humenbei railway station Enping railway station
4 Foshan gaoming passenger depot Foshan west railway station Conghua passenger depot
5 Huadu beixing passenger depot Guangzhou railway station Hong Kong international airport
6 Shenzhen west railway station Guangzhou east railway station Lvtian passenger depot
7 Shenzhen longhua passenger depot Guangmingcheng railway station Guangzhou timian passenger depot
8 Guangmingcheng railway station Sanshui south railway station Tashan passenger depot
9 Shenzhen railway station Shenzhen north railway station Guangzhou baiyun international airport
10 Foshan railway station Dongguan east railway station Taishan passenger depot

As shown in Figures 5 and 6, proportion of initial efficiency and largest connected subgraph of the
GBA presented different change patterns under random attack (RA), degree attack (DA), betweenness
attack (BA) and natural hazard (NH). As a whole, the drop rates of degree attack and betweenness
attack were far faster than natural hazard and random attack, which indicated that the GBA was more
vulnerable to targeted attack.
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Figure 5. Variations in efficiency in four attack scenarios.

Figure 6. Variations in largest connected subgraph in four attack scenarios.

In efficiency measurement, degree attack and betweenness attack had almost the same downward
trend, which made much more serious impacts than the other two attack scenarios. After the deletion
of the eighth nodes of degree attack, Guangmingcheng railway station, the efficiency dropped to
around 80% of the original state in an instant. When 10% of the nodes (equivalent to 35 transportation
stations) were destroyed under degree attack or betweenness attack, the network efficiency decreased
to nearly 50% of the initial value. This is a rather remarkable outcome that the curve of natural hazard
was observed to drop most slowly. This result may be explained by the fact that the central region of
the GBA had relatively close connections and rarely experienced torrential rain, while southwestern
and northern parts of the GBA were relatively sparsely connected and prone to natural hazards as
shown in Figure 3.

In the largest connected subgraph measurement, stepped decrease trends were obvious under
degree attack and betweenness attack. When the attack reached 6% of the nodes (equivalent to
21 transportation stations), the drop rate of betweenness attack was significantly faster than degree
attack. With continual disruptions, the LCS reduced to less than half after 15% of the nodes of degree
attack failed. However, under the deletion of 20% of nodes of betweenness attack, the performance
could still maintain more than 50%. These results indicated that the GBA was more vulnerable to the
betweenness attack in the case of a small number of node failures. Furthermore, after the deletion
of the 18th and 53rd nodes of degree attack, Shenzhen Fukuda and Guangzhou Dongpu passenger
depots, sudden drops of the performance of the GBA emerged. Similarly, the failure of the 21st and



Sustainability 2020, 12, 7410 8 of 14

79th nodes of betweenness attack, Heshan and Xintang passenger depots, also led to an abrupt descent.
The results indicated that some small stations may play a great role in the continuous attack. Likewise,
the natural hazard had little influence on the performance, to a certain extent.

3.2. Resilience Assessment of the GBA

The requirement to enhance resilience has become more urgent in the wake of increasingly
frequent natural disasters and terrorism. Considering that the government may adopt various recovery
sequences to rebuild homelands and ensure production and life, the resilience assessment of the GBA
was conducted to seek a proper strategy. In the following figures, the step implied node attack or
recovery. For example, as shown in Figures 7 and 8, the 87th step indicated that 25% of total nodes
(equivalent to 87 transportation stations) failed. After that, the recovery strategies began to work.

Figure 7. Variations in efficiency in attack scenarios and recovery scenarios with the restoration stage
starting at 25% of total disruptions: (a) degree attack (DA); (b) betweenness attack (BA); (c) natural
hazard (NH); (d) random attack (RA).

Results in Figure 7 reveal the variations of the efficiency under different attacks and recovery
scenarios with the restoration stage starting at 25% of total disruptions. There was no doubt that the
recovery based on degree and betweenness had faster recovery rates than others. Betweenness had
little advantage over degree under degree attack, while there was no significant difference in other
attack scenarios.

As can be seen from Figure 8, they presented a similar phenomenon to Figure 7. Under degree
attack and betweenness attack, recovery based on degree and betweenness had faster recovery rates
than others. However, there seemed to be little difference in the effect among various recovery strategies
under natural hazard and random attack. These results are likely to be related to the severity that
networks suffered. Natural hazard reduced the GBA performance to the lowest value of 0.74. RA was
0.75, while DA was 0.17 and BA was 0.22.
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Figure 8. Variations in largest connected subgraph in attack scenarios and recovery scenarios with the
restoration stage starting at 25% of total disruptions: (a) degree attack (DA); (b) betweenness attack
(BA); (c) natural hazard (NH); (d) random attack (RA).

According to the resilience assessment, as shown in Figure 9, the following results can be
drawn. Under two types of measurement, resilience values were different, but the basic trends were
similar. For every attack scenario, the betweenness recovery strategy seemed to be the most effective,
because the earlier recovered nodes hold up the connectivity of the whole network. Among different
attack scenarios, the GBA presented poor resilience due to targeted attacks, mainly due to the large
performance loss. Meanwhile, the GBA had approximately the same resilience under natural hazard
and random attacks.

Figure 9. Resilience of the GBA with the restoration stage starting at 25% of total disruptions:
(a) efficiency measurement; (b) largest connected subgraph measurement.
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As for the resilience of the GBA in the context of further attacks, Figures 10 and 11 show the
variations of Pie and LCS with the restoration stage starting at 50% of total disruptions. Similar to
the previous case, the recovery rates of degree and betweenness were faster than others. In addition,
betweenness recovery presented slightly stronger effects than degree recovery under DA. However,
unlike the case of 25% nodes failure, a slight advantage of recovering sequentially over randomly under
natural hazard was observed. A possible explanation for this is that the sequential recovery strategy
could add points effectively in the remaining network by forming large connected networks instead of
several small-sized networks, which enhanced the performance quickly. Meanwhile, this phenomenon
can be observed more clearly for the case of more serious damage.

Figure 10. Variations in efficiency in attack scenarios and recovery scenarios with the restoration stage
starting at 50% of total disruptions: (a) degree attack (DA); (b) betweenness attack (BA); (c) natural
hazard (NH); (d) random attack (RA).

Figure 12 illustrates the resilience under the case of half nodes’ failure. Compared to the case of 25%
of total disruptions, the GBA had less resilience which almost decreased to two-thirds. The resilience
value of betweenness recovery for each scenario was larger than other strategies, which indicated that
the superiority of betweenness became increasingly apparent with the aggravating of disturbances.
Moreover, it was apparent from this figure that the network had greater resilience under natural hazard,
which confirmed that the GBA had a relatively strong ability to withstand natural disasters.

Overall, recovery based on degree and betweenness presented better effects than others and
betweenness recovery was slightly more desirable. However, a clear weakness was that the GBA
had the least resilience under random recovery strategy for targeted attacks. With further attacks,
these two trends became more obvious. In fact, these results could provide references for disaster relief
and rehabilitation. The government and planners have roles and responsibilities to identify and lay
out policies and operational strategies following a major or catastrophic disaster. Recovery strategies
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should be designed to ensure that the urban agglomeration was able to take care of its development
needs and was resilient against future disasters.

Figure 11. Variations in largest connected subgraph in attack scenarios and recovery scenarios with the
restoration stage starting at 50% of total disruptions: (a) degree attack (DA); (b) betweenness attack
(BA); (c) natural hazard (NH); (d) random attack (RA).

Figure 12. Resilience of the GBA with the restoration stage starting at 50% of total disruptions:
(a) efficiency measurement; (b) largest connected subgraph measurement.

4. Conclusions

The purpose of this study was to analyze the vulnerability and resilience of the transportation
networks in the GBA. Two characteristics were explored through the simulation of four attack scenarios
(i.e., random attack (RA), degree attack (DA), betweenness attack (BA) and natural hazard (NH)) and
four recovery scenarios (i.e., recovery based on degree (DR), recovery based on betweenness (BR),
random recovery (RR) and sequential recovery (SR)). Previous studies mainly focused on a single
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mode of transportation; hence, this study concentrated on the evaluation of integrated transportation
systems within an urban agglomeration.

Several findings have emerged. The drop rates of degree attack and betweenness attack were
far faster than natural hazard and random attacks, which indicated that the transportation network
of the GBA was more vulnerable to targeted attack, while the natural hazard had a small influence
on the performance, to a certain extent. Moreover, some small stations may contribute a lot to the
invulnerability in the continuous attack. These results could help the government and planners make
preparedness, rescue, care and relief work smoothly and effectively. In order to minimize the impact of
targeted attack, it is necessary to intensify emergency shelters and the equipment of stations with high
degree and betweenness, such as Guangzhou and Foshan railway stations. However, it is worth noting
that the roles of some small stations cannot be ignored, like Shenzhen Fukuda and Heshan passenger
depots, which may abruptly cause network fragmentation.

Under measurements of efficiency and largest connected subgraph, resilience values were different,
but the basic trends were similar. Owing to the effective restoration of connectivity, the betweenness
recovery strategy seemed to be the best choice for every attack scenario. However, a clear weakness was
that the GBA had the least resilience under random recovery strategy for targeted attacks. With further
attacks, these two trends became more obvious. Like vulnerability, the GBA had poor resilience
when faced with targeted attacks, mainly due to the large performance loss. Furthermore, it was
apparent that the GBA had greater resilience under natural hazard, which confirmed that the GBA had
a relatively strong ability to withstand natural disasters. Comparing different recovery times, we found
that the GBA had less resilience which almost decreased to two-thirds in the context of further attacks.
Actually, these results suggest that resilience can be achieved by starting recovery as soon as possible
and selecting an optimal strategy. The government and planners could gain inspiration for disaster
relief and rehabilitation.

This study provided the first comprehensive assessment of vulnerability and resilience of an
integrated transportation network within an urban agglomeration. The findings reported here shed new
light on policies and operational strategies following a major or catastrophic disaster. Greater efforts
are needed to ensure emergency management and sustainable development of urban agglomerations.
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