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Abstract: In this study, collision-related data were collected on the I-880 freeway of California in the
United States from 2006 to 2011. Our objective was to study the collision probability of different
collision types and severities in different traffic states. The traffic states were divided by the traditional
level of service (LOS) method. Various Bayesian conditional logit models have been established to
analyze the relationship between the collision probability of different collision patterns and LOSs.
The results showed that LOS A had the best safety performance associated with all of the collision
types and severities, LOS C had the worst safety performance associated with hit object collisions,
LOS D had the worst safety performance associated with sideswipe collisions and rear end collisions,
and LOS F had the worst safety performance associated with injury collisions. The five-stage Bayesian
random parameter sequential logit model was established to quantify the effects of different variables
on the collision probability of various collision types and severities. In addition to LOS, the visibility,
road surface, weather, ramp, and number of lanes had significant effects on different collision types
and severities.

Keywords: freeway; safety; LOS; collision types and severities; conditional logit models; Bayesian
approach; sequential logit model

1. Introduction

With the widespread use of freeway traffic surveillance systems, researchers have started using
high-resolution dynamic traffic flow data to identify traffic conditions before collision occurrences.
Numerous studies have developed real-time collision probability models for estimating the relative
probability of collisions, given dynamic traffic flow data [1–5]. These studies have generally used a
case-controlled study design structure, in which the traffic conditions before collisions were considered
collision cases, while those under collision-free conditions were considered control cases. With the
case-controlled dataset, researchers have developed real-time collision probability models to analyze the
relationship between the probability of a collision and the traffic-related variables, including geometric
design factors, environment factors, traffic flow factors, crash characteristic factors, driver behavior
factors, and control strategy factors on a freeway.

Numerous researchers have studied the spatio-temporal evolution of traffic flows by dividing the
traffic flows into different states. However, relatively few studies have investigated the collision types
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under different traffic conditions. Thus, it is necessary to explore the collision mechanism of different
types and severities in various traffic flow states. In previous studies, it has been proven that there is a
significant difference in safety performance for different collision types and severities in various traffic
flow states [6–8].

In this study, the traffic flow is separated into six states by level of service (LOS). The main purpose
is to identify the relationship between the LOS and different collision types and severities, and explore
how contributing factors affect collision risks for different types and severities. The collision-related data
were collected on the I-880 freeway of California in the United States from 2006 to 2011. The Bayesian
conditional logit models have been established to analyze the statistical relationship between the
collision probability of different collision patterns and LOSs. The five-stage Bayesian random parameter
sequential logit model was established to quantify the effects of various variables on the collision
probability of different types and severities. This research can help traffic management personnel
better understand which LOS is more dangerous for different collision types and severities and realize
the contributing factors of different collision types and severities in different LOSs. The results can be
applied to reduce the collision probability of different types and severities in different LOSs.

2. Literature Review

Although most studies have explored the collision mechanism without considering the traffic
flow states [1–5], some researchers analyzed the collision types and severities in different traffic flow
states. In early studies, Golob et al. separated the traffic flow into various states. The researchers
indicated that the traffic flow states with high densities could increase the probability of property
damage only and multi-vehicle collisions, while the traffic flow states with low densities could increase
the probability of single-vehicle and injury collisions [6]. Subsequently, Golob et al. separated the
traffic flow into eight states and analyzed the relationship between collision types and traffic states.
The results indicated that there is a significant difference in collision characteristics associated with
various traffic states. However, there is insufficient qualitative analysis of the contributing factors in
various traffic states [7].

Recently, Li et al. found that the speed-related variables can significantly affect the collision
probability of different traffic flow states on a freeway. According to the speeds upstream and
downstream of a crash, the traffic flow is separated into four states: back of queue, congested traffic,
front of queue, and free flow. The results showed that the variation of speeds could increase the
probability of a collision in free flow conditions, while the coefficient of speed variation could increase
the probability of a collision in back of queue and congested traffic [8]. Subsequently, Li et al. found
that there was a significant relationship between rear end collisions and the magnitude of lengthwise
traffic variations, while sideswipe collisions were significantly related to the traffic variation between
adjacent lanes on a freeway [9]. Wang et al. analyzed the short-term variation and spatial–temporal
characteristics of traffic flow by sideswipe collisions. The results implied that the occurance of sideswipe
collisions was significantly related to occupancy, average flow, and speed variance [10]. Kwak et al.
defined the traffic flow states by uncongested and congested conditions. The results indicated that
there was a significant difference of collision probability by different traffic states and road types [11].
Xu et al. applied four traffic states defined by four-phase traffic theory. The preliminary analysis
showed that collision probability, as well as collision severities and types, were significantly affected
by traffic flow states. Nonlinear canonical correlation analysis was applied to analyze the collision
mechanism. The results showed that the contributing factors leading to the occurance of collisions
were significantly different for varying traffic flow states [12]. Xu et al. developed collision probability
models to explore the relationship between the probability of collisions and various traffic states
separated by the three-phase traffic theory. The study implied that some transitional states were more
dangerous than free flow, such as the transitional state from synchronized flow to free flow and the
transitional state from wide moving jams to synchronized flow [13].
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Numerous studies have focused on how traffic flow operates in different traffic states. The evolution
of traffic dynamics on freeways is complex, and the formation of various traffic flow states is influenced
by a set of factors. Therefore, traffic flow is classified into different states, typically based on traffic
flow characteristics such as speed, flow rate, and density. Hall et al. separated the traffic flow into
three states [14]. Wu separated the traffic flow into four states [15]. Kerner divided the traffic flow
into three phases [16]. In this study, LOS is applied to separate the traffic states, which is one of the
common methods for identifying traffic states. In LOS theory, traffic flow is separated into six states,
according to density [17].

3. Data Sources

Crash data, environment data, geometric design data, and traffic flow data were collected from
the I-880 freeway in California, United States between 2006 and 2011. The freeway is 34 miles in length
and located between the cities of Oakland and San Jose. There are 119 loop detector stations and three
weather stations along the freeway.

A total of 9919 collisions were reported and used for further data analysis. For every collision,
to avoid the uncertainty of occurrence time, the collision-related data were collected from 5 min to
10 min before the occurrence time of the reported collision. In previous studies, this method has been
proven to be effective [4,13]. Previous studies suggested that the statistical power is negligible by
using a control-to-case ratio beyond 4:1 [13]. Thus, a control-to-case ratio of 4:1 was used in this study.
For each collision case, the authors randomly selected four paired observations of the non-collision
traffic data on the basis of three matching factors, including the time, the location, and the weather [13].
For example, collision No. 67 occurred at post-mile 3.95 at 15:00 on 9 November 2009. Traffic data
taken at the nearest detector station from 2:50 p.m. to 2:55 p.m. on 9 November 2009 were included
in the collision cases as an observation. Then, the paired collision-free traffic data taken at the same
loop detector station during the same period on four randomly selected collision-free days in the same
weather conditions were used as four observations in the non-collision cases. In this study, the severity
of collision was divided into injury or fatal collisions and property damage only (PDO) collisions.

As shown in Table 1, the boundary values of density at different LOSs are presented. In this study,
according to the LOS on the freeway, the traffic flow states were divided into six states. In addition,
the statistical results in Table 2 show that the number of different collision types and severities in
various LOSs are quite different.

Table 1. Boundary values of density at different levels of service (LOSs).

LOS Boundary Value of Density (Vehicle/km/Lane)

LOS A ≤18
LOS B 18–29
LOS C 29–42
LOS D 42–56
LOS E 56–72
LOS F >72

Table 2. The number of collisions by different types and severities.

LOS Hit Object Collision Sideswipe Collision Rear end Collision Injury Collision Total

LOS A 1364 1888 4634 2386 8326
LOS B 54 139 593 199 811
LOS C 31 82 381 130 505
LOS D 5 28 134 43 169
LOS E 6 6 34 13 47
LOS F 6 13 37 19 61
Total 1466 2156 5813 2790 9919
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4. Methods

In this study, the Bayesian conditional logit model was built to analyze the relative safety
performance of different collision types and severities without considering other traffic-related factors
in different LOSs. A five-stage Bayesian random parameter sequential logit model was applied to
quantify the effects of various variables on the collision probability of different types and severities.

4.1. Bayesian Conditional Logit Model

In previous studies, the conditional logit model has already been used to analyze the safety
performance of different traffic states [18,19]. The calculation method has been written as follows:

yi jk ∼ Bernoulli(pi jk) (1)

P(yitk) =
1{

1 + exp
[
−αi +

∑K
k=1 βkxi jk

]} (2)

where xijk is the kth unmatched factor for the jth sample or control in the ith matched sample. Therefore,
X = {xijk} consists of all samples, and all matched samples are controlled. The value of i is from 1
to I. The value of j is from 1 to J. The value of k is from 1 to K. I denotes the number of matched
samples; J represents the number of controls in every matched sample; and K represents the number of
contributing factors. αi is the effect of matching factors on the probability of collision occurance for each
matched sample; βk represents the estimated value of contributing factors; and xk is the unmatched
contributing factors.

To account for the selection bias introduced by the matched case–control design, a conditional
likelihood needed to be developed. The conditional probability that the first vector of the explanatory
variables xi0 in the ith matched set corresponds to the case, conditional on xi0, xi1, . . . , xiJ being the
vectors of explanatory variables in the ith matched set, is given as

Pc
i =

exp
(∑K

k=1 βkxi0k
)

exp
(∑K

k=1 βkxi0k
)
+

J∑
j=1

exp
(∑K

k=1 βkxi jk
) (3)

Thus, the likelihood function of the conditional logit can be written as [15]

f (Y|β) =
I∏

i=1
f (yi0 = 1|β) =

I∏
i=1

Pc
i

= exp

 I∑
i=1

K∑
k=1

(βkxi0k) −
I∑

i=1
log

 J∑
j=0

exp
(

K∑
k=1

βkxi jk

)
 (4)

The Bayesian inference method has been applied for this model using Markov Chain Monte Carlo
(MCMC) methods, because there is a significant advantage of this method in that all parameters in the
model have a prior distribution. The posterior distribution of parameters has been expressed as

f
(
β
∣∣∣Y)

=
f (Y, β)
f (Y)

=
f (Y|β)π(β)∫

f (Y, β)dβ
∝ f (Y|β)π(β) (5)

where f (β |Y) is a posterior joint probability distribution (JPD) associate with parameter β, based on
data set Y; f(Y, β) is a JPD associate with parameter β and data set Y; f(Y|β) denotes the probability
conditional associated with parameter β; and π(β) is a prior distribution associated with parameter β.
The non-informative prior distribution in this method has been written as

β ∼ Normal(0K, 106IK) (6)
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where 0K represents a K × 1 vector of zeros and IK represents a K × K matrix. Finally, the posterior JPD
f (β |Y) has been written as

f
(
β
∣∣∣Y)
∝ f (Y|β)π(β) =

I∏
i=1

f (yi0 = 1|β) ×
K∏

k=1
N

(
βk

∣∣∣µk,
∑

k

)
∝ exp

 I∑
i=1

K∑
k=1

(βkxi0k) −
N∑

i=1
log

 J∑
j=0

exp
(

K∑
k=1

βkxi jk

)− 1
2

K∑
k=1

(βk)
2

106

 (7)

4.2. Bayesian Random Parameter Sequential Logit Model

In previous studies, the ordered logit model was one of the popular methods used to analyze
collision severities. However, there are some limitations of this method for analyzing collision severities
as follows:

1. There is a hypothesis of this method that the parameter estimates of different collision types and
severities are the same [20,21]. However, compared to the ordered logit model, the sequential
logit model can explain the difference of various contributing factors across different collision
types and severities [20,21].

2. In addition, the sequential logit model explains the correlation of collision probability between
different collision types and severities [22,23]. The expressions of collision probability by different
collision types and severities have been calculated by Equations (8) through (13), respectively.

3. Moreover, collisions were affected by various traffic-related factors [24–26]. Thus, there is an
unobserved heterogeneity in the sequential logit model [27–29]. The contributing factors in
this study can not explain all of the variance in collision types and severities. The unobserved
heterogeneity in models can result in inconsistent and biased estimation [30–32]. To overcome
the limitation of unobserved heterogeneity in the sequential logit model, random parameters
were applied in this study.

Therefore, the five-stage Bayesian random parameters sequential logit model was applied to
calculate the collision probability of different severities and types. As shown in Figure 1, four Bayesian
random parameters binary logit models were built from Stage 1 to Stage 2. Subsequently, three
Bayesian random parameters binary logit models were built at the Stage 5. These Bayesian random
parameters binary logit models formed the whole five-stage Bayesian random parameters sequential
logit model.

Figure 1. The framework of the five-stage sequential logit model.
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Specifically, the Stage 1 model calculated the collision probability (PCollision) without considering
different collision types and severities. The Stage 2 model calculated the probability of a hit object
collision (PCollision×PHO) without considering collision severities. The Stage 3 model calculated the
probability of a sideswipe collision (PCollision×(1-PHO) ×PSW) without considering collision severities.
The Stage 4 model calculated the probability of a rear end collision (PCollision×(1-PHO) ×(1-PSW) ×PRE)
without considering collision severities. Finally, three collision severity models were established at
Stage 5. The injury probability of a hit object collision is PHO_I, the injury probability of a sideswipe
collision is PSW_I, and the injury probability of a rear end collision is PRE_I. Finally, the absolute
probability of collision by different types and severities have been given as follows:

P(Hit object collision with injury) = P(Collision)
× P(Hit object collision|Collision) × P(injury collision|Hit object collision) = PCollision × PHO × PHO_I

(8)

P(Hit object collision without injury) = P(Collision) × P(Hit object collision | Collision)
× P(PDO collision | Hit object collision) = PCollision × PHO × (1 − PHO_I)

(9)

P(Sideswipe collision with injury) = P(Collision) × P(Non-Hit object collision
| Collision) × P(Sideswipe collision | Non-Hit object collision) × P(injury collision

| Sideswipe collision) = PCollision×(1 − PHO) × PSW × PSW_I

(10)

P(Sideswipe collision without injury) = P(Collision) × P(Non-Hit object
collision|Collision) × P(Sideswipe collision|Non-Hit object collision) × P(PDO

collision|Sideswipe collision) = PCollision × (1 − PHO) × PSW×(1 − PSW_I)
(11)

P(Rear end collision with injury) = P(Collision) × P(Non-Hit object collision|Collision)
× P(Non-Sideswipe collision|Non-Hit object collision) × P(Rear end collision|Non-

Sideswipe collision) × P(injury collision|Rear end collision) = PCollision × (1−PHO) × (1−PSW)
× PRE × PRE_I

(12)

P(Rear end collision without injury) = P(Collision) × P(Non-Hit object
collision|Collision) × P(Non-Sideswipe collision|Non-Hit object collision) × P(Rear end
collision|Non-Sideswipe collision) × P(PDO collision|Rear end collision) = PCollision ×

(1−PHO) × (1−PSW) × PRE × (1−PRE_I)

(13)

The specification of the basic Bayesian random parameters binary logit model has already been
introduced in previous studies [33,34].

5. Results and Discussion

To analyze the relative safety performance of various collision types and severities between different
LOSs, the Bayesian conditional logit model was used in Section 5.1. In the Bayesian conditional logit
models, only LOSs were regarded as candidate variables without considering other variables.

To quantify the effects of various variables on the collision probability of different collision types
and severities in various LOSs, the five-stage Bayesian random parameter sequential logit model was
applied in Section 5.2. In addition to LOS variables, five other candidate variables were also considered
in the five-stage Bayesian random parameter sequential logit model.

5.1. Safety Performance of LOS by Different Collision Types and Severities

According to the LOS on the freeway, the Bayesian conditional logit model was used to analyze
the relative safety performance of different collision types and severities without considering other
traffic-related factors in different LOSs. There are five indicator variables in this model, including LOS B,
LOS C, LOS D, LOS E, and LOS F. LOS A was considered as the reference level. Therefore, the purpose
of this section is to explore the relative safety performance between LOS A and other LOSs. Other traffic
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flow variables were not included in this model, because LOSs were highly correlated with the traffic
flow variables [34].

The process of MCMC chains for this model was composed of a total of 10,000 iterations,
4000 burn-in iterations, and three parallel MCMC chains for Bayesian inference [30,31]. The results of
the Bayesian conditional logit models are shown in Table 3. The results show that LOSs significantly
affect the collision probability for different types and severities. The 95% credible interval for each
parameter in Table 3 indicates that the LOSs significantly affect the collision probability of different
types and severities. The odds ratio for each variable was used to quantify the safety performance of
each LOS.

Table 3. The results of Bayesian conditional logit models.

Variables Mean MC Error 2.50% 97.50% Odds Ratio

Hit Object Collision
LOS B 1.057 0.202 0.656 1.454 2.878
LOS C 1.463 0.262 0.937 1.956 4.319
LOS D 1.040 0.668 −0.373 2.256 2.829
LOS E 1.183 0.604 −0.043 2.331 3.264
LOS F 1.023 1.121 −1.142 3.270 2.782

LOS A *

Sideswipe Collision
LOS B 1.141 0.126 0.898 1.379 3.130
LOS C 1.470 0.157 1.174 1.784 4.349
LOS D 1.985 0.287 1.443 2.547 7.279
LOS E 0.484 0.655 −0.908 1.668 1.623
LOS F 0.737 0.821 −0.983 2.290 2.090

LOS A *

Rear end Collision
LOS B 1.385 0.065 1.264 1.515 3.995
LOS C 1.797 0.085 1.628 1.963 6.032
LOS D 1.957 0.136 1.69 2.223 7.078
LOS E 1.623 0.242 1.153 2.089 5.053
LOS F 1.757 0.353 1.078 2.448 5.795

LOS A *

Injury Collision
LOS B 1.345 0.102 1.148 1.541 3.838
LOS C 1.594 0.132 1.329 1.857 4.923
LOS D 1.699 0.216 1.273 2.118 5.468
LOS E 1.251 0.372 0.497 1.977 3.494
LOS F 1.808 0.527 0.78 2.828 6.098

LOS A *

* denotes the reference level.

Specifically, as shown in Table 3 for hit object collisions, the results suggest that the odds ratios
of LOS B and LOS C were significantly greater than LOS A, and the odds ratios of LOS D, LOS E,
and LOS F were not significantly greater than LOS A. Accordingly, LOS A was the safest traffic state
according to the lowest hit object collision probability. However, LOS C had the highest hit object
collision likelihood and was 3.319 times higher than LOS A. The hit object collision probability of LOS
B was 1.878 times higher than LOS A, but lower than LOS C. In previous studies, the results indicated
that a hit object collision was more likely to occur in traffic flow states with low density [6,7]. In this
study, LOS C had a higher density than LOS A and LOS B. Thus, LOS C was the most dangerous for
hit object collisions in all LOSs. The analysis of LOS C can also be applied to the results of LOS B.

The results of sideswipe collisions are shown in Table 3. Three odds ratios were significantly
greater than LOS A, including LOS B, LOS C, and LOS D. Two odds ratios were not significantly greater
than LOS A, including LOS E and LOS F. The highest sideswipe collision probability was for LOS D,
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followed by LOS C and LOS B. LOS A had the lowest sideswipe collision probability. Specifically,
the sideswipe collision probability of LOS B was 2.130 times higher than LOS A, the sideswipe collision
probability of LOS C was 3.349 times higher than LOS A, and the sideswipe collision probability
of LOS D was 6.279 times higher than LOS A. LOS D had the highest density, followed by LOS C,
LOS B, and LOS A. There were more and more lane-changing behaviors in traffic flow with the density
increasing. More lane-changing behaviors can increase the risk of a sideswipe collision [16]. Thus,
the highest sideswipe collision probability was for LOS D, followed by LOS C, LOS B, and LOS A.

In the Bayesian conditional logit model for rear end collisions, the results showed that there were
some significant differences in different LOSs. All other LOSs were more dangerous than LOS A for
rear end collisions. The highest rear end collision probability was for LOS D, followed by LOS C,
LOS F, LOS E, and LOS B. Specifically, the rear end collision probability of LOS B was 2.995 times
higher than LOS A, the rear end collision probability of LOS C was 5.032 times higher than LOS A,
the rear end collision probability of LOS D was 6.078 times higher than LOS A, the rear end collision
probability of LOS E was 4.053 times higher than LOS A, and the rear end collision probability of
LOS F was 4.795 times higher than LOS A. The reason why LOS D had the highest rear end collision
probability is similar to the sideswipe collisions above. In addition, although LOS E and LOS F had
higher densities than LOS D, there was less space in LOS E and LOS F for vehicles to change lanes.
Thus, LOS D had the highest rear end collision probability. Although LOS C was still in free flow,
some transitional states from free flow to congested flow started to emerge with sudden reductions in
speed. This is the reason why LOS C had the second-highest rear end collision probability.

As shown in Table 3, the estimation results of the Bayesian conditional logit model for injury
collisions show that the LOS significantly affected the probability of injury collision occurrences. LOS F
had the highest injury collision probability, followed by LOS D, LOS C, LOS B, and LOS E. Specifically,
the injury collision probability of LOS B was 2.838 times higher than LOS A, the injury collision
probability of LOS C was 3.923 times higher than LOS A, the injury collision probability of LOS D was
4.468 times higher than LOS A, the injury collision probability of LOS E was 2.494 times higher than
LOS A, and the injury collision probability of LOS F was 5.098 times higher than LOS A. It has been
proven that a higher density can lead to injury collisions [6,7]. Thus, LOS F had the highest injury
collision probability. In LOS D and LOS C, more transitional states from free flow to congested flow
started to emerge with sudden reductions in speed. Due to LOS D having a higher density than LOS C,
LOS D had the second-highest injury collision probability, followed by LOS C.

5.2. The Sequential Logit Model for Collision Types and Severities

The five-stage Bayesian random parameter sequential logit model was established to quantify
the relationship between LOS and collision probability by different types and severities. Specifically,
Section 5.2.1 was used to explore the relationship between LOS and collision types. In this section,
Stage 1 is used to predict the collision likelihood. Stages 2–4 are used to predict the hit object collision
probability, sideswipe collision probability, and rear end collision probability, respectively. Section 5.2.2
was used to explore the relationship between LOS and collision severities. In this section, Stage 5 is
used to predict the injury probability for different collision types. To avoid the correlation between
traffic flow variables and LOS, only LOS was considered in the models. In addition to LOS, as shown
in Table 4, five other candidate variables including visibility, road surface, weather, ramp, and number
of lanes were also taken into consideration at every stage. The simulation method of this section is
similar to that of Section 4.1.
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Table 4. Candidate variables.

Candidate Variables Explanation

Vi Visibility (mile)
We 1 = worse weather conditions; 0 = normal weather conditions;
Rs 1 = worse road surface; 0 = normal road surface
Ra 1 = ramp segment; 0 = non-ramp segment
Nl Number of lanes

LOS A 1 = LOS A; 0 = otherwise
LOS B 1 = LOS B; 0 = otherwise
LOS C 1 = LOS C; 0 = otherwise
LOS D 1 = LOS D; 0 = otherwise
LOS E 1 = LOS E; 0 = otherwise
LOS F 1 = LOS F; 0 = otherwise

5.2.1. Sequential Model for Collision Types

Table 5 presents the results of the collision probability for different types, from Stage 1 to Stage
4. As shown at Stage 1, low visibility significantly increases collision probability. LOS A has a
random negative coefficient, indicating that the collision probability decreases in LOS A. In previous
studies, it has been proven that free flow has the best safety performance [15] because the driver has
sufficient time to adopt emergency measures in LOS A, with less flow and more space. LOS C has
a positive correlation effect on the collision probability. Although vehicles are still in free flow in
LOS C, the space between vehicles becomes smaller than in LOS A and LOS B. In previous studies,
it has been demonstrated that more drivers will take advantage of higher speeds under uncongested
conditions [35,36]. Thus, higher speed and smaller space can lead to less response time for drivers to
take emergency measures.

Table 5. Results of sequential model from Stage 1 to Stage 4.

Variables Mean MC Error 2.50% Median 97.50%

Stage 1
Vi −0.111 0.014 −0.136 −0.126 −0.001

LOS A −0.017 0.003 −0.025 −0.018 0.000
LOS C 0.049 0.009 0.013 0.051 0.082

Stage 2
Nl −0.146 0.008 −0.196 −0.150 −0.073
Vi −0.153 0.002 −0.163 −0.155 −0.141
Rs 0.264 0.023 0.008 0.287 0.458

LOS B −0.211 0.020 −0.414 −0.169 −0.049
LOS C −0.279 0.023 −0.390 −0.335 −0.016
LOS D −0.622 0.061 −1.078 −0.539 −0.054

Stage 3
Nl −0.033 0.002 −0.061 −0.031 −0.017
Ra −0.255 0.041 −0.655 −0.135 −0.001
Vi −0.106 0.002 −0.119 −0.107 −0.087

LOS A −0.045 0.002 −0.059 −0.046 −0.015
LOS B −0.137 0.015 −0.241 −0.164 −0.033
LOS C −0.272 0.019 −0.398 −0.301 −0.019
LOS D −0.469 0.056 −0.908 −0.614 −0.010

Stage 4
Nl 0.170 0.005 0.097 0.181 0.198
Vi 0.196 0.003 0.151 0.199 0.208
Rs 0.158 0.013 0.029 0.165 0.268

LOS A 0.030 0.003 0.005 0.029 0.059
LOS C 0.201 0.022 0.086 0.136 0.372
LOS D 0.126 0.011 0.011 0.109 0.261
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As shown in Table 5, the hit object collision probability was calculated for Stage 2. This model has
six significant variables, as shown in Table 5, including number of lanes, visibility, road surface, LOS B,
LOS C, and LOS D. The results indicated that the hit object collision probability increases with less
lanes, low visibility, and a worse road surface. Specifically for these reasons, less lanes can lead to less
space between vehicles. Low visibility can result in less response time for drivers to take emergency
measures. Vehicles need longer braking distances in worse road surface conditions. In addition, the hit
object collision probability decreases in LOS B, LOS C, and LOS D.

The Stage 3 model was established to predict the likelihood of a sideswipe collision. This model
has seven significant variables, as shown in Table 5, including number of lanes, visibility, ramp, LOS A,
LOS B, LOS C, and LOS D. Number of lanes, visibility and ramp have random negative coefficients,
indicating that the sideswipe collision probability increases with less lanes, low visibility, and non-ramp
conditions. In LOS A, LOS B, LOS C, and LOS D situations, the sideswipe collision probability
decreases. The results indicated that low occupancy can decrease the sideswipe collision probability
because there is more space for drivers to take emergency measures in low occupancy conditions.

The Stage 4 model was established to predict rear end collision likelihood. This model has six
significant variables, as shown in Table 5, including number of lanes, visibility, road surface, LOS A,
LOS C, and LOS D. More lanes, high visibility, and a worse road surface have positive effects on rear
end collision probability. For LOS A, LOS C, and LOS D, the rear end collision probability increases.

5.2.2. Sequential Model for Collision Severities by Different Types

Table 6 presents the results of the probability of collision severities by different types at Stage 5.
It was found that there are significant differences in the contributing factors of the estimation results.

Table 6. Results of sequential model for Stage 5.

Variables Mean MC Error 2.50% Median 97.50%

Hit Object Collision
Nl −0.048 0.008 −0.073 −0.057 −0.001
Ra −0.062 0.013 −0.130 −0.059 −0.006
We −0.095 0.012 −0.129 −0.110 −0.029
Vi −0.040 0.003 −0.052 −0.041 −0.016

Sideswipe Collision
Nl −0.055 0.006 −0.068 −0.059 −0.011
Ra −0.079 0.014 −0.168 −0.072 −0.004
Vi −0.100 0.010 −0.120 −0.111 −0.020

LOS D −0.367 0.051 −0.479 −0.431 −0.050
Rear end Collision

Nl −0.073 0.004 −0.102 −0.075 −0.036
We −0.074 0.008 −0.140 −0.068 −0.002
Vi −0.049 0.002 −0.069 −0.050 −0.034
Rs −0.115 0.023 −0.348 −0.067 −0.017

LOS A −0.021 0.002 −0.036 −0.022 −0.003

For hit object collision, the results indicate that four variables can significantly affect the severity
of hit object collisions. All of the significant variables have negative effects on the injury probability of
hit object collisions, specifically few number of lanes, non-ramp segments, normal weather, and low
visibility can increase the injury probability of hit object collisions. The results indicate that higher
speeds in non-ramp segments, normal weather conditions, fewer number of lanes, and less response
time in low-visibility conditions can increase the injury probability of hit object collisions. In addition,
it was found that LOS has no effects on the severity of hit object collisions.

For sideswipe collisions, the results imply that four variables can significantly affect the severity
of sideswipe collisions. Specifically, fewer number of lanes, non-ramp segments, and low visibility can
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increase the injury probability of sideswipe collisions. The results are similar to the hit object collisions
above. Moreover, a PDO sideswipe collision is more likely to occur in LOS D.

For rear end collisions, the results indicate that five variables can significantly affect the severity
of rear end collisions. Specifically, few number of lanes, non-ramp segments, low visibility, and normal
road surfaces can increase the injury probability of rear end collisions. Furthermore, a PDO rear end
collision is more likely to occur in LOS A.

6. Conclusions

In this study, the main purpose was to identify the relationship between LOS and different collision
types and severities, and explore how contributing factors affect collision risks for different types
and severities. The collision-related data were obtained from the I-880 freeway, which is located in
California, United States. The time interval was from 2006 to 2011. The Bayesian conditional logit
model was built to analyze the relative safety performance of different collision types and severities
without considering other traffic-related factors in different LOSs. A five-stage Bayesian random
parameter sequential logit model was applied to quantify the effects of various variables of the collision
probability of different types and severities.

Specifically, as shown in Figure 2, the results of the Bayesian conditional logit models in Table 3
indicate that LOS A is the safest traffic state for different collision types and severities. LOS C has the
worst safety performance associated with hit object collisions, and the hit object collision probability in
LOS C is 3.319 times higher than the one in LOS A. LOS D has the worst safety performance associated
with sideswipe collisions and rear end collisions, the sideswipe collision probability and the rear end
collision probability in LOS D is 6.279 and 6.078 times higher than the one in LOS A. LOS F has the
worst safety performance associated with injury collisions, and the injury collision probability in LOS
F is 5.098 times higher than the one in LOS A, because an injury collision is more likely to occur in
traffic flow states with high occupancy [6,7].

Figure 2. The collision probability of different types and severities in various LOSs.
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The results of the sequential logit model showed that weather variables, road variables, and LOS
had significant effects on different collision types and severities. It was found that fewer lanes and
low visibility can both increase the injury probability of hit object collisions, sideswipe collisions,
and rear end collisions. Ramp segments could decrease the injury probability of hit object collisions
and sideswipe collisions. Normal weather conditions could increase the injury probability of hit object
collisions and rear end collisions. Normal road surfaces could increase the injury probability of rear
end collisions.

This research can help transportation professionals better understand which LOS is more dangerous
for different collision types and severities, and realize the contributing factors of different collision
types and severities in different LOSs. The results can be applied to reduce the collision probability of
different types and severities in different LOSs.

However, there are still some issues that need to be studied in the future. Firstly, more divided
methods of traffic flow states should be adapted, such as three-phase theory. Second, more traffic
variables should be used in the models, such as driver behavior and geometric design. Finally,
the transferability of the models in this study still needs to be verified in the future.
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