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Abstract: With the increasing popularization and competition of electric vehicles (EVs), EV users
often have anxiety on their trip to find better charging stations with less travel distance. An intelligent
charging guidance strategy and two algorithms were proposed to alleviate this problem. First, based on
the next destination of EV users’ trip, the strategy established a dynamic-area model to match charging
stations with users’ travel demand intelligently. In the dynamic area, the Dijkstra algorithm is used to
find the charging station with the shortest trip. Then, the area extension algorithm and the charging
station attribution algorithm were developed to improve the robustness of the dynamic area. The two
algorithms can automatically adjust the area size according to the number of charging stations
in the dynamic area to reduce the number of nodes traversed by the Dijkstra algorithm. Finally,
simulation examples were used to verify the effectiveness of the proposed model and algorithms.
The results showed that the proposed intelligent charging guidance strategy can meet the travel
demand of users. It is a promising technique in smart cities to find better travel trips with less travel
distance and less computed time.
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1. Introduction

In urban travel, using electric vehicles (EVs) as a means of transportation can protect
the environment and save energy, and it has been vigorously promoted by various countries.
Due to the limited battery capacity of EVs and the inadequate infrastructure construction of charging
stations, it is easy to cause the driving range anxiety of EV users during their trips [1,2], then hinder
the penetration of EVs and prevent their large-scale application [3,4]. To alleviate the anxiety of
users, the battery technology and the charging station infrastructure for EVs are critical. However,
it is difficult to achieve a breakthrough in battery cell technology in a short time. Furthermore,
the planning and construction of a perfect charging infrastructure can’t be completed overnight.
The research on EV charging guidance has become the most practical solution at present and the key
to solving the problem of large-scale EV charging in the future. Due to the limited accessibility
of the private charging piles, the users need a public charging station to charge the battery when
the remaining mileage is not enough to reach the destination [5]. A critical problem solved by an EV
charging guidance strategy is how to find a better public charging station when the users initiate a
charging request.

The existing charging guidance strategies of EVs have been mainly studied from the grid system
and the users. The research from the grid system mainly focuses on the aspects of the power grid load
balance [6–8] and efficient energy flow management [9,10] when vehicles connect to the power grid
system. With the goals of optimizing the power grid load and energy balance, the users’ charging
requests are reasonably scheduled to achieve peak load shifting and load balance of the power grid.
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The proposed charging guidance strategies lack the embodiment of the self-interest of EV users, leading
to a reduction in users’ participation in the charging guidance process [11]. The essence of the users’
charging demand is derived from the users’ travel demand, that is, the users initiate the charging
request because the remaining mileage of the EV is not enough to reach the destination smoothly.
Thus, the research on EV charging guidance from the users’ side is more in line with the users’
actual charging demand. Considering the users’ charging demand and even the travel demand will
improve the flexibility of the charging guidance strategy. The flexibility is manifested in matching
users’ different travel demand. Wang et al. [12] designed a geometric charging guidance algorithm to
study the users’ travel demand. Moreover, the algorithm can guide the users to the charging station
corresponding to their travel destination. With the accumulation of relevant data of the user’s charging
behavior, the further analysis of the user’s behavior through a data-driven method is conducive to
the diversification of charging strategies. Jin et al. [5] and Moritz et al. [13] combined users’ data on
charging behavior, which can improve the users’ economic charging benefits and be of great significance
to the promotion of the EV market. It is necessary to consider the travel demand of EV users as a priority
factor to optimize the management and guidance of users’ charging behavior uniformly. Yang et al. [14]
thought it should use some other ways to stimulate users to participate in system optimization services.
Based on the users’ charging demand, Schwenk et al. [15] proposed a calendar-based charging strategy
to stimulate users’ charging behavior to realize reasonable guidance of users’ charging. To some extent,
matching users’ travel demand can also improve the market penetration of EVs. Hoog et al. [16]
allowed EV users to bid on the electricity price according to the demand and formulate the charging
power to meet the charging demand. Wang et al. [17] comprehensively considered the travel time
and charging cost of the users to establish an optimized objective function and obtain a low-cost
charging guidance strategy by solving the multi-objective model through a genetic algorithm.

From the user’s side, users’ participation is increased in the process of charging guidance, which can
improve users’ travel satisfaction. Due to the low utilization rate of data related to EV charging guidance,
the amount and types of data that can be analyzed are relatively few [18]. The data-driven methods
have a particularly negative impact on the accuracy of users’ travel demand analysis and the practical
application of a charging guidance strategy. To avoid this negative impact, the formulation of charging
electricity prices [16,19] and the calculation of guiding distance [20–22] have been conducted to select
charging stations for users’ travel demand. However, the analysis process of these studies was too
complicated, and the established models had high complexity. Moreover, the nonlinear models are
even used to solve the users’ travel demand, resulting in too much time and space to calculate. In fact,
the users’ travel demand can be simplified as the study of the next destination. Users are more inclined
to choose charging stations where the locations are closest to their travel destinations [17]. The current
construction of charging stations is not perfect [1], and it cannot guarantee that EV users will find
charging stations nearest the destination to complete charging. This paper takes the next destination
of the users’ trip as the research target of travel demand and establishes a simple model to solve
the charging station guidance that meets the target well. It is not necessary to spend too much effort to
analyze and calculate the travel demand of users. Instead, providing the trip destination according to
the users’ demand not only improves the users’ participation in the charging guidance but also enables
the proposed strategy to meet the users’ actual demand. The main contributions of this paper are
as follows:

(1) Based on the charging request point and the users’ next destination, a dynamic-area model is
proposed. The area extension algorithm (AEA) and the charging station attribution algorithm
(CAA) are added to ensure validity and scalability of the model. The constructed model can
intelligently match the charging station area in accordance with the direction of users’ destination
and provide charging guidance.

(2) The Dijkstra algorithm is improved based on the dynamic-area model by limiting the node
searching area. The improved shortest-path algorithm divides the charging guidance problem into
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three steps. It not only guarantees the users-oriented shortest-path planning but also effectively
reduces time complexity.

The structure of this paper is as follows: Section 2 describes the principle and process of
dynamic-area modeling. Section 3 describes the modeling process of an intelligent charging guidance
strategy. In Section 4, the validity of the model is verified by simulating the road network model.
The last section summarizes the work of this paper and puts forward the improvement work in
the future.

2. The Dynamic-Area Model

Faced with the popularity of EVs, a significant contradiction is to plan an optimal network
of charging stations for users to serve users’ charging demand and charging costs well [5].
Different from [5], this section builds a dynamic area included the charging station network.
The dynamic-area model conforms to the users’ travel plan and achieves the dynamic extension
of the charging station network. It is divided into two steps, including the restricted area initialization
and dynamic-area construction.

2.1. Restricted Area Initialization

Many researchers have studied traffic trips and vehicle navigation based on road network
maps [23–25]. The square grids and radiant line graphs running through the surroundings are
the primary forms of transportation routes in urban areas [26,27]. Thus, the algorithms are constructed
based on the road topology network area ABCD, as shown in Figure 1. Area ABCD includes charging
station nodes, ordinary road nodes, users’ charging request nodes, users’ next destination nodes,
and weight edges between nodes. Circle S and Circle P are constructed by the users’ charging request
point S and the corresponding next destination point P as two circle center points, using the distance
between the two points as a radius. The intersections of the two circles are a curved area HPES,
named the restricted area.
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To initialize the restricted area, it is necessary to obtain the coordinates of the four points of
the curved area HPSE which represents the four boundary points. The initialization process of
the restricted area is as follows.

From the starting point S(XS, YS) to the ending point P(XP, YP), a two-point formula is constructed
to obtain the distance between the two points. The distance is equal to the radius R, as shown in
Equation (1).

R =
2
√
|XS −XP|

2 + |YS −YP|
2 (1)
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The formula of Circle S and Circle P is shown in Equation (2). (X −XS)
2 + (Y −YS)

2 = RS

(X −XP)
2 + (Y −YP)

2 = RP
, and Rs = RP = R (2)

where Rs and Rp are the radii of Circle S and Circle P, respectively, and Rs = RP = R. Since the two
circles are congruent, it is concluded that the lengths of SO and OP are as shown in Equation (3).

|SO| = |OP| =
R
2

(3)

∆HSO, ∆HOP, ∆SOE, and ∆POE are congruent right-angled triangles. According to the similar
triangle theorem, the center point O(XO, YO) and the corresponding side lengths can be calculated by
Equations (4) and (5).

(XO, YO) =

 XO = XP +
(XS−XP)

2

YO = YP +
(YS−YP)

2

(4)

|HO| = |OE| =
2

√
R2 − (

R
2
)

2
=

√
3

2
×R (5)

According to the above equations, the coordinates of intersection H and E can be calculated as
shown in Equations (6) and (7).

(XH, YH) =

 XH = XO −
√

3
2 × (YS −YP)

YH = YO +
√

3
2 × (XS −XP)

(6)

(XE, YE) =

 XE = XO +
√

3
2 × (YS −YP)

YE = YO +
√

3
2 × (XS −XP)

(7)

After initialization of the restricted area, the prismatic area of the four points HPSE,
called the dynamic area, can be obtained as shown in Figure 2.
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Figure 2. Network topology of a prismatic dynamic area.

The following properties are shown by analyzing the prismatic dynamic area HPES.

a. The line segments of SP and HE show the symmetry of up-down and the symmetry of
left-right, respectively.

b. The number of nodes contained in the area is significantly smaller than that in the area ABCD.
c. The charging station nodes C1 and C2 in the area match with the direction of the users’ next

destination and also meet the users’ travel demand.
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2.2. Dynamic-Area Construction

To ensure the effectiveness of the charging station network, the dynamic area contains a sufficient
number of charging stations. In this section, the AEA is proposed for the area to realize the dynamic
extending. The basic idea of the AEA is to extend the distance L in the opposite direction with
the charging request point and the next destination point. Then the AEA uses the extended points as
two new center points to re-initialize the restricted area, as shown in Figure 3.
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There are three cases where the distance L is extended from the center points S and P to the points
S
′

and P
′

, respectively:
(1) The line segment SP is parallel to the X-axis. Then distance L is extended along the X-axis to

get the extended points S
′
(
Xs′ , Ys′

)
, P
′
(
XP′ , YP′

)
, as shown in Equations (8) and (9).

S
′
(
Xs′ , Ys′

)
=

{
XS′ = XS − L
YS′ = YS

(8)

P
′
(
XP′ , YP′

)
=

{
XP′ = XP + L
YP′ = YP

(9)

(2) The line segment SP is parallel to the Y-axis. Then distance L is extended along the Y-axis to
get the extended points S

′
(
Xs′ , Ys′

)
, P
′
(
XP′ , YP′

)
, as shown in Equations (10) and (11).

S
′
(
Xs′ , Ys′

)
=

{
XS′ = XS
YS′ = YS − L

(10)

P
′
(
XP′ , YP′

)
=

{
XP′ = XP

YP′ = YP + L
(11)

(3) The line segment SP shows a certain angle between the X-axis and the Y-axis; S
′

is the coordinate
point of S after extension. Extension at distance L is achieved by constructing ∆S

′

SA and ∆OSB,
as shown in Figure 3. Observing the triangle ∆OSB can get the relationship between the sides, as shown
in Equations (12) and (13). 

∣∣∣SS
′
∣∣∣ = L

|SB| =|XO −XS|

|OB| = |YO −YS|

(12)
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|SO| =
2
√
(XO −XS)

2 + (YO −YS)
2 (13)

According to the triangle similarity theorem, it can obtain ∆S
′

SA ∼ ∆OSB. The relationship is
shown in Equation (14). ∣∣∣SS

′
∣∣∣

|SO|
=
|SA|
|OB|

=

∣∣∣S′A∣∣∣
|SB|

(14)

Furthermore, the coordinate of S
′

after the extension is shown in Equation (15).

S
′
(
Xs′ , Ys′

)
=


XS′ = XS −

L×|XO−XS |

2
√
(XO−XS)

2+(YO−YS)
2

YS′ = YS −
L×|YO−YS |

2
√
(XO−XS)

2+(YO−YS)
2

(15)

In the same way, the coordinate of P
′

after the extension is shown in Equation (16).

P
′
(
XP′ , YP′

)
=


XP′ = XP +

L×|XO−XP |

2
√
(XO−XP)

2+(YO−YP)
2

YP′ = YP +
L×|YO−YS |

2
√
(XO−XP)

2+(YO−YP)
2

(16)

Through the discussion of three different cases, the initialized restricted area can be extended
dynamically to establish the dynamic-area model according to the users’ travel demand. The dynamic
area can continuously extend the range of the area to ensure the effectiveness of the charging station
network, and to some extent, limit the number of nodes that needs to traverse in the area. The restricted
area initialization and the AEA improve the scalability and robustness of the dynamic-area model.

3. Intelligent Charging Guidance Strategy

The problem of EV charging guidance is essentially a path planning problem from the EV to
the charging station. Different from traditional vehicle path planning, intelligent charging guidance
needs to ensure that EVs are guided to the charging station in matching their way to destination [12].
How to plan an optimal path for users to match the travel demand and meet charging demand is
the research target of the intelligent charging guidance strategy proposed in this section. According to
Section 2, a charging station network area that meets the users’ travel demand is constructed based
on the dynamic area. However, the number of charging stations in the area is uncertain. Therefore,
this section proposes a CAA based on the dynamic area to ensure that the number of charging stations
is sufficient. In addition, the shortest-path solution is divided into the charging request point to
the charging station (R-C) and the charging station to the next destination(C-N) to find the better travel
trips with less travel distance.

3.1. CAA Description

Based on the dynamic area, this paper uses the ray-casting algorithm [28] to detect whether there
is a sufficient number of charging stations in the area. The ray-casting algorithm is an algorithm often
used to process spatial data. Its basic principle is that the judgment point extends a ray, then calculates
the number of intersections between the ray and the boundary of the polygon area according to
the number of intersections, determining whether the judgment point is within the area. Because of
the symmetry and continuity characteristics of the dynamic area, a CAA is proposed by improving
the ray-casting algorithm. The CAA uses the charging station as a judgment point to extend a ray
in a specific direction. The point is inside the area if the number of intersections is odd, otherwise,
it is outside. As shown in Figure 4, the dynamic area is a prismatic formed by line segments among G,
D, F, and E. The square node is assumed as the judgment point. There are six relationships between
nodes and the dynamic area by extending the ray indefinitely in the same direction.
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The relationships of rays, points, and the dynamic area are summarized into six cases.

(1) The rays and the points are below the area;
(2) The rays and the points are above the area;
(3) Both the rays and the points are in the area;
(4) The rays pass through the area and the points to the left of the area;
(5) The rays are outside the area, and the points are at the area boundary;
(6) The rays and the points are to the right of the area.

According to the relationships, the steps of the CAA are as follows:
(1) Exclude cases where there are no intersections that are cases (1), (2), (6). By judging

the coordinate relationship between the charging station and the boundary points G, E, F, it can directly
conclude whether the points intersect with the area.

(2) Calculate the number of intersections by constructing similar right triangles. In Figure 4,
point A is taken as an example for illustration. By constructing similar right triangles, ∆EBD and ∆ECH,
the coordinates of points C and B can be obtained based on the given coordinates of points GDEF at
the boundary and the judgment point A, as shown in Equations (17) and (18).

C(XC, YC) =

{
XC = XE

YC = YA
(17)

B(XB, YB) =

{
XB = XE

YB = YD
(18)

The linear function fED(x) of the line segment ED is defined by using the two-point formula,
as shown in Equation (19).

X −XE

XD −XE
=

Y −YE

YD −YE
(19)

Then the coordinate of point H can be obtained, as shown in Equation (20).

H(XH, YH) =

 XH =
(YA−YE)×(XD−XE)

YD−YE
+ XE

YH = YA
(20)

Due to ∆EBD~∆ECH, the intersection interval variable τ is calculated by Equation (21).

τ =
[
XC − (YE −YC) ×

XD −XB

YE −YB

]
−XA (21)
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where Equation (21) represents the distance from the intersection H to A. When τ > 0, it means that
the intersection H is to the right of the ray starting point, and there is one intersection. When τ < 0,
it means that the intersection is to the left of the ray starting point A, and there is no intersection.

(3) By traversing the line segments DE and FE with point A, the number of intersections is
calculated to determine whether it belongs to the dynamic area.

3.2. Dijkstra for Improving Node Searching Area

The traditional Dijkstra algorithm mainly considers the characteristics of network topology but
ignores the structural characteristics of network topology [29]. In general, the time complexity of
the Dijkstra algorithm depends on the structural characteristics of the network topology for node
searching. When the network topology graph contains a large number of irrelevant nodes, the operation
efficiency of Dijkstra will be significantly reduced. To improve the efficiency of node traversal of
the Dijkstra algorithm, the earliest proposed algorithm on the structural characteristics of the network
topology is Stig [30]. It limits the searching area with nodes through a restricted area. Different
from Stig [30], an improved Dijkstra algorithm based on the dynamic area is proposed by improving
the scalability of the restricted area.

This paper gives the road network topology graph G, and G is a weighted undirected graph.
Let the initial dynamic area be D = (α, β) with M nodes, including m charging station nodes, and the final
dynamic area D′ = (α′, β′) with M’ nodes, including m’ charging station nodes. Where α, α′ are the sets of
nodes, and β, β′ are the sets of edges’ weights. First of all, the initial dynamic area is D constructed from
the road network topology graph G, and the list of charging stations in area D is Csta. Then, the CAA
is used to scan the charging stations in the area and determine whether the number of charging
stations n is sufficient to meet n ≥ N. N is the minimum value of a given charging station, and it can
be solved according to the density of charging stations in different areas [31]. If n ≤ N, the AEA is
executed by using dynamic distance L to construct a new dynamic area until the number n of charging
stations detected by the CAA meets n ≥ N. Finally, the final dynamic area D′ can be obtained, and its
corresponding list of charging stations is Cend.

In area D, the node list of the charging station is Csta. In area D′, the node list of the charging
station is Cend. Csta and Cend are shown in Equation (22). Csta = [c1, c2, c3, . . . , cσ, . . . , cm], Csta[σ] = cσ and σ ∈ [1, m], G = D

Cend =
[
ci, c j, ck, . . . , cm′

]
, Cend[k] = ck and k ∈ [1, σ], G = D′

(22)

Csta contains m charging stations before the CAA execution, and each charging station represented
by a unique node cσ. The length of the Cend is equal to m’, and m’ ≤ m. It means that there is m’
charging stations after executing the AEA, and each charging station is represented by a unique node
ck. The dynamic distance L is calculated according to the number N’ of charging stations in the road
network area G and the distance R between the two centers, as shown in Equation (23).

L =
R
N′

(23)

Based on the two algorithms AEA and CAA, the improvement process of the node searching area
is implemented. The searching area of nodes from area G to area D′ is significantly reduced by using
the adjacency list to store the information of road nodes and charging station nodes. The adjacency list
is shown in Figure 5.
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After initializing the dynamic area D from G, if the CAA detects the number of charging stations
and Csta meets n ≥ N, then Csta = Cend, which means the AEA does not need to be executed, and D = D′.
In this case, the time and memory spent on node searching reach the minimum. Otherwise, the AEA is
executed multiple times until the dynamic area is large enough for the CAA to detect the number of
charging stations. Although the searching area of the nodes after the multiple executions of the AEA
will be larger than that without execution, it is still lower than the case of G.

The range of the dynamic area is determined to minimize the total cost of travel, which needs to
calculate the minimum total distance from the charging request point to the next destination. Based on
Dijkstra to solve the shortest path in the dynamic area, the process of the dynamic area shortest-path
algorithm can be divided into three steps. The charging request point defined as ri, the next destination
point is ti, and the charging station in the area is cσ. The three steps are shown below.

- Step 1: R-C (Request point to Charging station). R-C indicates the shortest-path guidance from
the charging request point to the charging station. The shortest-path distance is lRC = l(Ri, Cσ),
and its corresponding node set is dRC = d(Ri, Cσ).

- Step 2: C-N (Charging station to Next destination). C-N indicates the shortest-path guidance from
the charging station to the next destination. The shortest-path distance is lCN = l(Cσ, Ni), and its
corresponding node set is dCN = d(Cσ, Ni).

- Step 3: R-N (Request point to Next destination). R-N indicates the process of the dynamic-area
shortest-path algorithm from the charging request point to the next destination.

Where lxy
(
xi, y j

)
is the representation of the shortest path between nodes. It indicates

the shortest-path length from nodes xi to y j, and the corresponding set of shortest-path nodes
is dxy

(
xi, y j

)
.

Multiple shortest paths and node sets from R-N can be obtained by traversing the list Cend of
the charging station in the effective dynamic area, as shown in Equation (24).{

liRN = lRC + lCN
di

RN = dRC ∪ dCN
and i ∈ [1, n] (24)

where liRN represents the total travel distance of the i-th user in the R-N, and di
RN represents

the corresponding set of road nodes. By comparing different liRN and sorting the distance, it can
conclude the shortest-path charging guide plan η of the dynamic area, as shown in Equation (25).

ηi =
[(

l1RN, d1
RN

)
,
(
l2RN, d2

RN

)
, . . . ,

(
liRN, di

RN

)
, . . . ,

(
lnRN, dn

RN

)]
and i ∈ [1, n] (25)

where n is the number of charging stations in the dynamic area. The charging guidance strategy for
the shortest path is ηmin :

ηmin = min(ηi) (26)
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where ηmin is the best charging station planning result in the dynamic area. It meets the shortest total
mileage of the travel, and the guided results meet the travel demand and charging demand of users.

3.3. Strategy Structure

According to Section 3.2, the input and output of the intelligent charging guidance strategy are
concluded as follows:

Input: The weighted undirected graph G. It represents road network information. The users’
charging event Ui = (ri, ti) represents the i-th charging request point ri and next destination initiated ti
obtained by users.

Output: Charging guidance strategy η, as shown in Equation (25). The charging guidance strategy
for the shortest path is ηmin, as shown in Equation (26).

The execution process of the intelligent charging guidance strategy is shown in Figure 6.

- Step 1: Determine Ui = (ri, ti) and set ri = S; ti = P, HE points were calculated by Equations (6)
and (7). The dynamic area model was established with points HPES.

- Step 2: Determine the list Csta of charging stations in the area. According to the CAA, traverse
the charging stations to determine whether they are within the dynamic area.

- Step 3: Determine the list Cend of charging stations in the dynamic area; the list length is n. Set
the sufficient number of charging stations in the dynamic area as 3. If n ≤ 3, execute the AEA
and return Step 2; otherwise, execute Step 4.

- Step 4: Calculate the R-C and C-N distance of each station in the dynamic area. Then, get the R-N
calculation results and the list of charging station guidance strategies.

- Step 5: Calculate the shortest-path charging station guidance strategy ηmin .

Where, the CAA is executed when the number of charging stations n in the dynamic area is
detected each time. Then, the AEA is executed when n in the area does not meet the sufficient
number 3. The implementation of the CAA and AEA ensures the dynamic scalability of the dynamic
area and the effectiveness of n in the area.
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4. Simulation and Results

4.1. Road Network Model

In the research of urban road structure, the distance between two points can be expressed by
linear distance [32]. Most of the existing research on urban path guidance and planning is based on
the urban traffic network graph [1,33]. The usability and extensibility of the urban traffic network
graph are of considerable significance to study the effectiveness of algorithms. This paper proposes
a hybrid structure of rings and squares to build a road grid model. A square grid is constructed in
the central area to emit the radiation path, and the polygon forms a circular and radial mixed road
traffic-network structure around the radiation path. As shown in Figure 7, the road network model
based on this hybrid structure can serve different urban forms, and the concept of the hybrid structure
has also been applied in multiple studies [26,34].
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The circular radial traffic network graph in Figure 7 takes the square as the central area and forms
the peripheral area in the ring. The line segments between the nodes are straight-line distances,
which indicate the two-way road. The effectiveness and applicability of the proposed charging
guidance model can be better verified by meshing the urban roads and charging stations.

4.2. Results and Discussion

Based on Figure 7, a coordinate system is established to assign coordinate values to each node in
the graph and assign weight values to each link, as shown in Figure 8. The figure contains 57 nodes,
including seven charging station nodes, five charging request points r1~r5, corresponding to five
destination nodes t1~t5, and the rest are ordinary nodes. The length of the line segment between
the nodes represents the distance, and the unit is KM.

As shown in Figure 8, the simulation examples of five charging requests to the next destinations
are U1~U5, where U contains the coordinates of the charging request point ri(xi, yi) and the next
destination point ti(xi, yi). Ui = (ri, ti), indicating the user i initiates the charging request at ri and gives
the next destination ti. The specific data is shown in Table 1.
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Table 1. List of simulation examples.

Ui(ri,ti) U1 U2 U3 U4 U5

ri r1 = 7 r2 = 38 r3 = 51 r4 = 16 r5 = 29
ti t1 = 56 t2 = 1 t3 = 11 t4 = 44 t5 = 34

ri(xi, yi) (−10, −5) (−36, −8) (−20, 30) (0, 10) (36, 0)
ti(xi, yi) (−31, −20) (0, 0) (16, −5) (31, −20) (−18, 25)

The simulation data includes the list of charging station nodes Csta and Csta = [c1, c2, c3, c3, c5, c6, c7],
and the corresponding data are as shown in Table 2.

Table 2. List of charging stations.

Csta Charging Station Node List Charging Station Coordinates

c1 2 (10, 0)
c2 18 (−16, 10)
c3 27 (26, −15)
c4 31 (26, 15)
c5 41 (0, −25)
c6 46 (44, 0)
c7 53 (−44, 10)

According to the intelligent charging guidance strategy proposed in Section 3.3, the model is
solved at the charging request point and the next destination given by the simulation example. Based on
the simulation data in Table 1, the initial dynamic area D is established, and the minimum number of
charging stations in the area is set as Nmin = 3. The results of the final dynamic area D′ of the users U1

to U5 and the charging strategy η1 to η5 can be calculated. They are shown in Table 3.
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Table 3. Results of the intelligent charging guidance strategy. CAA: charging station
attribution algorithm.

Ui(ri,ti) D′i (Hk,Ek,Sk,Pk) CAA R AEA

U1(7, 56) D′1

H1(7.11, −51.15)
n = 3

C = [18, 53, 41] 54.84 Execute 3 times
L = 7.83

E1(−48.11, 26.15)
S1(1.81, 3.44)

P1(−42.82, −28.44)

U2(−36,−8) D′2

H2(−47.75, −10.61)
n = 3

C = [18, 53, 41] 74.58 Execute 1 time
L = 10.65

E2(−6.54, −55.53)
S2(−29.45, 47.53)
P2 (11.75, 2.61)

U3(51, 11) D′3

H3(7.11, −51.15) n = 4
C =

[2, 18, 31, 53]
64.55 Execute 2 times

L = 9.22
E3(−48.11, 26.15)

S3 (1.81, 3.44)
P3(−42.82, −28.44)

U4(16, 44) D′4

H4(41.48, 21.85) n = 4
C =

[2, 27, 31, 41]
43.14 No execution

E4(−10.48, −31.85)
S4 (0, 10)

P4 (31, −20)

U5(29, 34) D′5

H5(30.65, 59.26)
n = 3

C = [2, 18, 31] 76.51 No execution
E5(−12.65, −34.26)

S5 (36, 0)
P5(−18, 25)

Table 3 is the dynamic area established with users U1~U5. The area meets the travel demand of
the users from the charging request points to the next destination points. The four coordinates of
the final dynamic area D′ are (Hk, Ek, Sk, Pk). Its corresponding number of charging stations n and node
list C is detected by the CAA. R is the distance from the charging request point to the next destination
point in D′. The AEA executes different times according to n and L until n ≥ 3. A schematic diagram of
effective dynamic-area calculation results is shown in Figure 9.

In Figure 9, r represents the charging request point, t is the next destination, and c is the charging
station. The shaded areas in cases (a) to (e) are the dynamic area, area D is the initial dynamic area,
and area D′ is the final dynamic area. When the number of charging stations in the area does not meet
Nmin ≥ 3, the AEA is executed to form the D′. Cases (a) to (c) show the result of the algorithm execution
of U1~U3, respectively. As the execution frequency increased of the AEA, the range of the dynamic
area also extended. In cases (d) and (e), the number of charging stations meets Nmin ≥ 3, thus the AEA
is not executed, then D′ is equal to D. The statistics of the node number in the dynamic area are shown
in Figure 10.

Figure 10 shows the number of nodes in the area D
′

1~D
′

5 after the execution of the AEA. The number
of nodes in the initial dynamic area D1~D5 detected by the CAA is 8, 14, 27, 28, and 22, respectively.
Among them, the number of charging stations in the area D4~D5 already meets the condition Nmin ≥ 3,
and only the AEA is performed on D1~D3. The white part in the figure is the number of newly added
nodes in the dynamic extension area, which is 19, 16, and 9, respectively. Compared with the number
of nodes in the total area, the number of nodes in D

′

1~D
′

5 is much smaller due to the improvement of
the node searching area based on Dijkstra.

Similar to the charging guidance strategy based on users’ travel destinations, Wang et al. [12]
proposed a geometry-based algorithm. Different from the dynamic-area model, Wang et al. [12] selected
a charging station for charging by calculating the angle and distance between the charging request
point and the destination. The research proposed in this paper does not need to calculate the angle
between multiple charging stations and travel planning, and due to the nature of the dynamic-area
extension, it has better scalability in the selection of charging stations. However, when the number of
charging stations in the initial dynamic area is small and the distribution of the number of charging
stations in the area is very sparse, the proposed dynamic-area model will spend more time to calculate
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the AEA and CAA. Based on the algorithm ideas in [12], this paper uses the simulation examples in
Table 1 to calculate the Dijkstra shortest-path algorithm, geometry-based algorithm, and dynamic-area
shortest-path algorithm, respectively. Furthermore, Figure 11 presents the results of the algorithms.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 20 
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Figure 9. Schematic diagram of D and D′. (a) U1’s dynamic area change diagram. (b) U2’s dynamic
area change diagram. (c) U3’s dynamic area change diagram. (d) U4’s dynamic area change diagram.
(e) U5’s dynamic area change diagram.
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As shown in Figure 11, the comparison of the three algorithms on R-C, C-N, and R-N is presented.
The case (a) shows the result of different algorithms in R-C. Dijkstra can find the shortest path
under different charging requests due to its algorithm characteristics of the shortest path. Because of
the limitation of searching direction, the geometric-based algorithm and dynamic-area shortest-path
algorithm consume much distance in the process of charging station guidance. The case (b) shows
the guidance result of C-N. Both the geometry-based algorithm and the dynamic-area shortest-path
algorithm can find the relative shortest path in the process of destination-oriented guidance. Compared
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with the Dijkstra algorithm, the path guidance with direction achieves specific optimization. At last,
the case (c) is R-N, including R-C and C-N. The proposed dynamic-area shortest-path algorithm,
because it finds the charging station with the shortest path in the dynamic area, not only meets the users’
travel demand but also always realizes the shortest-path guidance of the total trip. The geometry-based
algorithm uses the distance traveled and the angle between the charging station and the destination as
the basis for measuring the selection of the charging station. In most cases, it can achieve the shortest
guidance for the total trip. However, when there are multiple charging stations with similar distances
and angles within the included angle range, the shortest-path charging station is not selected.

4.3. Comparison of Execution Time

Based on the improved shortest-path algorithm of the restricted area [30], this paper establishes a
dynamic area to guide the shortest path and generalizes the reference [30]. To verify the generalization
of the dynamic-area shortest-path algorithm, Section 4.3 compared the time performance of
the dynamic-area shortest-path algorithm and the traditional Dijkstra algorithm.

This experiment was performed in the same configuration computer (processor 2.6 GHz quad-core
Intel Core i7, Memory 16 GB 2133 MHz LPDDR3). Figure 12 shows the execution results of computed
time and traversal time.
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In Figure 12, the comparison results of the shortest-path computed time and node traversal time are
shown respectively. Due to the limited nodes of the simulated road network model, the computing time
of the computer is very low. However, we know that the Dijkstra algorithm is realized by traversing all
nodes in the graph. Therefore, under the condition that the starting point and ending point of charging
events remain unchanged, increasing nodes of the simulation road network model will not increase
the time complexity of the proposed model, but will increase the time complexity of the traditional
algorithm. By comparing with the computed total time between the two algorithms, the computed time
reaches a minimum of 0.0001950 s on the dynamic-area shortest-path algorithm, but the corresponding
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Dijkstra algorithm reaches a maximum of 0.00493 s. It is indicated that the dynamic-area shortest-path
algorithm can effectively reduce the number of nodes and computed time in the node traversal
and calculation. Similarly, in the calculation of charging requests from U1 to U5, the computed time of
the dynamic-area shortest-path algorithm is far less than that of the Dijkstra algorithm. By reducing
invalid nodes, the dynamic-area shortest-path algorithm effectively reduces the time consumed in node
traversal. The node traversal time of the R-C and the C-N shows that the dynamic-area shortest-path
algorithm keeps the minimum time, unlike the Dijkstra algorithm.

In charging events U1~U5, the dynamic-area shortest-path algorithm shows the traversal time
of nodes significantly reduced by comparing with the Dijkstra algorithm, and the dynamic-area
shortest-path computed time is 91.74% lower on average. Figure 13 shows the comparison of the node
traversal time between the Dijkstra algorithm and the dynamic-area shortest-path algorithm.Sustainability 2020, 12, x FOR PEER REVIEW 18 of 20 
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Figure 13 shows the relationship between the algorithm average computation time and the number
of nodes in the road network. In Figure 13, TR represents the total road network with all nodes.
From the shaded area in the figure, it can intuitively obtain the time to node comparison effect of
the charging events U1~U5 and TR. The size of the shaded area can intuitively show the time consumed
by the algorithm execution. In addition, the diagonal slope in the shaded area is the density K,
and the unit is number/ms. As the number of nodes traversed increases, the time consumption becomes
higher, and the density K becomes smaller. The K of each charging event is shown in Table 4.

Table 4. Density value K.

U1 U2 U3 U4 U5 TR

K 99.26 106.83 99.47 112.82 70.70 11.56

The more considerable density value indicates that more nodes can be traversed in a certain period.
In the U1~U5 area, the density value is higher than that of TR. When traversing all the nodes in the TR
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area, the density reaches the minimum. The K in Table 4 shows the dynamic area can always keep
the value higher than Dijkstra, which means the AEA and CAA proposed in this paper are effective.

5. Conclusions

As the number of EVs continues to increase, guiding EV users effectively to charging stations is of
considerable significance for alleviating users’ charging anxiety. This paper proposed an intelligent
charging strategy to study the travel demand and charging demand of EV users. In the study of users’
travel demand, the Dijkstra algorithm is improved based on the dynamic-area model. By improving
the searching area of nodes, the direction of the charging guidance is set intelligently to find the charging
stations consistent with users’ destinations. In the study of charging demand, the charging strategy
realized in the dynamic area for users to find the shortest travel path. The CAA and AEA are designed
to improve the robustness and reliability of the intelligent charging guidance strategy. Both of the two
algorithms are based on the dynamic-area model to ensure a sufficient number of charging stations.
The main contribution of the intelligent charging guidance strategy is concluded to be that it makes
EV charging guidance more in line with users’ travel demand and charging demand. Furthermore,
it improves the operating efficiency of the Dijkstra algorithm and the timeliness of the guidance
algorithm. In the real world, maps are calculated by latitude and longitude. Therefore, the input data
of the proposed model can be well replaced by latitude and longitude and applied to the navigation of
the real world.

In this study, factors such as the remaining driving range of EVs and road congestion were not
taken into account. The proposed model cannot calculate whether the charging station is within
the reachable range based on the remaining mileage of the EV but matches charging stations for the EV
based on the dynamic area. Further research will consider a given initial SOC (State of Charge) value
and add the road congestion covered in the dynamic area.
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