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Abstract: During the COVID-19 pandemic, social education has shifted from face to face to online in
order to avoid large gatherings and crowds for blocking the transmission of the virus. To analyze the
impact of virus on user experience and deeply retrieve users’ requirements, this paper constructs
a reasonable evaluation index system through obtaining user reviews about seven major online
education platforms before and after the outbreak of COVID-19, and by combining the emotional
analysis, hot mining technology, as well as relevant literature. At the same time, the variation
coefficient method is chosen to weigh each index based on the difference of index values. Furthermore,
this paper adopts the comprehensive evaluation method to analyze user experience before and after
the outbreak of COVID-19, and finally finds out the change of users’ concerns regarding the online
education platform. In terms of access speed, reliability, timely transmission technology of video
information, course management, communication and interaction, and learning and technical support,
this paper explores the supporting abilities and response levels of online education platforms during
COVID-19, and puts forward corresponding measures to improve how these platforms function.

Keywords: online education platform; evaluation index; coefficient of variation; user experience;
COVID-19

1. Introduction

The global spread of COVID-19 resulted in the suspension of classes for students from more than
60 countries, disrupting the original teaching plans of schools in these countries and regions [1]. As the
first country to detect the spread of the virus, China was also deeply affected by it [2]. Under the
influence of the COVID-19 pandemic, schools were forced to suspend in China. However, the massive
suspension of school is found to affect the teaching progress [3]. In order to minimize the impact of
the pandemic on education and control the spread of the pandemic, online teaching has become a
necessary strategy to restore the normal teaching order in this special period. In the face of massive
demand, some office-meeting software, supported by the strong technical ability and the keen insight
into market opportunities, have also developed and improved relevant functions, and have become a
platform for teachers and students to realize online teaching together with many education platforms.
Among many online teaching platforms, the office-meeting software represented by DingTalk has
provided service such as online classroom and online teaching functionalities. However, due to some
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technical and functional defects, these online teaching platforms have been criticized by millions of
students. For instance, the satisfaction score of DingTalk dropped from 5 stars to 1 star quickly [4].

The above phenomenon shows that although the online education industry has a broad application
prospect, it exposes some existing problems in its development process, especially during a public
emergency period. Since MOOC (Massive Open Online Course) was widely used in 2013, online
teaching modes have gradually been known. At the same time, online education has attracted more and
more attention due to its advantages such as breaking the spatio-temporal limitations and improving
the fairness of education [5]. Furthermore, research shows that the MOOC teaching model can develop
teachers’ careers and improve teachers’ teaching skills [6]. However, at present, due to technology
restrictions, online education has been focused on vocational classes and tutorial classes without
involving basic courses and professional courses. Most schools still adopt the traditional teaching
ways [7]. As a result, school suspensions are a common risk aversion measure in the education sector
when facing public health emergencies such as COVID-19.

The current pandemic prompts the reform of existing teaching modes in ways that make
online education suddenly transit from an auxiliary method to the key way. This change brings
obvious difficulties and challenges to the online education platforms, including the changes of users’
concerns regarding online education, new requirements for online education, the satisfaction of these
requirements, and the live broadcast. All above issues need to be further thought and discussed.

These platforms provide strong support and help for education during the pandemic period,
and bring users a new experience, but also bring a lot of controversy. In order to better understand the
disputes from the source, it is necessary to analyze the changes of users’ concerns on these platforms
before and after the epidemic. Based on this, in terms of user experience on online education platforms
during COVID-19, this paper first collected user comments from seven representative and widely-used
mainstream online education platforms, scored comment emotion, and constructed an online education
platform evaluation index system. While setting the index weight, the coefficient of variation method
and entropy method were used for calculation, and the results of these two methods were compared
and the former was finally selected. Finally, based on the obtained index weights, the user experience
of each platform before and after the outbreak of COVID-19 was evaluated, so as to analyze the impact
of the pandemic on user experience.

On the one hand, this paper aims to see the emergency response level of online education in
response to public health emergencies, as well as to explore the development level of online education
and the technical support capacity of these platforms. On the other hand, in view of the current
disputes regarding online education, this paper explores the source of disputes from the perspective
of user experience, and understands the defects of online education platforms, so as to help online
education achieve longer-term development. Therefore, we hope that some of the research in this paper
can help the world know the impact of the pandemic on education, and make the following research
have a clearer understanding of the current level and disadvantages of online education. In addition,
the mining of user reviews and the processing methods of user experience are expected to provide
enlightenment and experience for other scholars and related companies, and help other industries
such as education or tourism to get closer to users’ real feelings and feedback in user experience
related research.

The structure of the paper is organized as follows: Section 2 is a literature review to provide
a basis for the subsequent establishment of the platform evaluation system; Section 3 selects seven
representative online education platforms and collects their user comments. Section 4 completes
emotional scores for each platform based on the initial comments and digs out hot issues from comment
data and ranks their popularity. Section 5 constructs and quantifies the evaluation index system of
online education platforms, and then evaluates user experience. Section 6 provides the summary of
the whole paper.
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2. Literature Review

This paper focuses on the impact of the pandemic on the user experience of online education
platforms. Due to the outbreak of COVID-19, there is very limited research in this area. However,
we can still learn from the existing international research on online education. The research method
of this paper is to establish an evaluation index system for online education platforms. Therefore,
we have reviewed and sorted out the existing international evaluation systems, whose evaluation
indexes are mainly based on the traditional teaching evaluation system indexes. Secondly, the purpose
of this paper is to study user experience, so the following is a review of the literature related to user
experience; and build our indicators based on the influencing factors of user experience studied by
previous people. This section will analyze the literature from the above two aspects.

2.1. The Study of Education Evaluation Systems

Due to the severity and urgency of the COVID-19 outbreak in late 2019, school suspension is one
of the most common ways of pandemic prevention and control [8]. However, the suspension of classes
affects the progress of courses, but the resumption of classes may cause a second spread of the pandemic
in schools [9]. Especially in the severe pandemic period, the best way to solve the contradiction
between the two is to shift classroom teaching activities from in-person to online, which can effectively
control the crowd gathering. Therefore, the online education mode under COVID-19 will become an
important way to prevent and control the pandemic and ensure the teaching progress.

Unlike online platforms in other industries, the evaluation of online teaching platforms is not
only reflected in technology, but also needs to be measured in terms of the quality of online courses,
teaching levels and so on. At present, the traditional educational evaluation system indicators
are mainly based on expert scores and industry-developed standards. Representative studies are as
follows: Tochot et al. [10] constructed a measurement model consisting of conceptual use, symbolic use,
legitimate use, and instrumental use through external evaluations by The Office for National Education
Standards and Quality Assessment (Public Organization) (ONESQA). Daytion and Vaughn [11]
designed a network course quality assurance system with 7 first-level indicators and 25 s-level
indicators based on educational practice goals. From the perspective of the quality of online courses,
Lin [12] had established an evaluation system consisting of 4first-level indicators, namely system
quality, information quality, service quality and attractiveness, and 16 s-level indicators. The above
evaluation indexes are mainly aimed at the traditional offline teaching mode, but do not apply to the
online mode.

In recent years, with the popularization of online education, more and more online education
platforms have emerged one after another. Meanwhile, higher requirements have been put forward for
the teaching/learning outcomes and technical standard that the platforms need to achieve. Therefore,
more consideration should be given to the technical and interactive features of online education when
evaluating these platforms and courses. For example, Kimberley et al. [13] combined the characteristics
of MOOC platform, and compared several assessment methods to find their respective advantages and
limitations. Wong and Billy [14] compared four MOOC platforms—namely Coursera, edX, FutureLearn
and OpenLearning, and the results show course differences in terms of their duration, learning activities,
assessment, social interaction and instructors’ participation. Based on the evaluations in terms of
theory foundation, principle of evaluation, evaluation index system, evaluation system and platform
design, and implementation over the Moodle network learning system, Xia [15] constructed a relatively
complete evaluation system with the characteristics of scientific and practical education. Combined
with course quality evaluation indicators, Jin [16] established the open quality evaluation index
system of online education through the capability maturity models such as reliability, effective testing,
and expert consultation verification. Additionally, in the field of mobile news training, Cervi et al. [17]
used the data collected through the post-evaluation survey to prove that MOOCs were effective training
tools by evaluating the structure, function, and opinions of participants. Moreover, factors such as
policies would also have an impact on the results of education. For example, in the field of media
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quality education, Caprino et al. [18] described the connection between the media education policies
and media literacy levels in 27 member states of the European Union.

Most of the above researches on the evaluation system of online education platforms are from
the perspective of curriculum and platform, but less related to user requirements and experience.
For example, Wong and Billy [14] scored the platform based on the traditional quality evaluation
system, the indicators and scores were improved or given by themselves on the basis of the past studies.
However, this paper will show an evaluation system in which the user experience indexes are not only
based on the previous indicator system, but also from the user comments. More importantly, under the
influence of public health emergencies, the course content, teaching methods of online education and
even students’ learning mentality are different from the past. While constructing the indicator system,
users’ experience and feedback behaviors should also be further considered.

2.2. The Study of User Experience

User experience (UX) [19] refers to the feelings of users’ feelings before, during and after using
a product or system, including emotions, beliefs, preferences, etc. Zahidi et al. [20] pointed out
that the factors that affect user experience were the driving factors that triggered user satisfaction
and dissatisfaction. Moreover, user satisfaction depends on user needs, expectations, and existing
user experience.

Current research on user experience and satisfaction over the platforms is conducted through
questionnaire surveys or online reviews to obtain basic data, so as to complete statistical analysis
or natural language processing. UX is widely used in the evaluation and optimization research of
commercial platforms, but rarely in online education. Fox example, Pappas [21] conducted the research
with regards to the influencing factors of purchase intention, according to the real-time experience
feedback of 185 users with online shopping experience. Lohse et al. [22] used the user experience
questionnaire to evaluate the music, cutting and flickering of the learning video. According to the
analysis of customers’ online shopping comments’ vocabularies, Li et al. [23] obtained 11 indicators
which constitute to the satisfaction index system of e-commerce platforms. Yang [24] calculated the
evaluation score of a certain online courses by establishing a word library with positive/negative
emotional tendency, and combining the proportion weight of comments in each category and the
gap between the number of positive and negative comments. Compared with the questionnaire
data, the analysis based on online user comments is more realistic and objective. The objects of
questionnaire analysis are directional and not globally representative. Moreover, the questions set in
the questionnaire analysis are subjective. The data of network comments generally contain user objects
with various ages and levels, and there is no need to set some specific questions to obtain the data,
so the data obtained are more objective. Meanwhile, the evaluation index model built on this basis can
help the platform receive continuous evaluation feedback and dynamically understand its advantages
and disadvantages.

Current research on online education platforms is mainly focused on the satisfaction evaluation
results, willingness for continuous use, and learning influencing factors. Kamali et al. [25] made the
conclusion that the help of electronic devices and resources on learning and education is limited.
In order to give better effect, the priority should be given to provide a network environment that students
can adapt. Tawafak et al. [26] found that the continuance intention depends on the type of technology.
Roca et al. [27] verified that users’ continuance intention is determined by satisfaction, which in turn is
jointly determined by perceived usefulness, information quality, confirmation, service quality, system
quality, ease of use and cognitive absorption. Kravvaris et al. [28] and Mackness et al. [29] found
that learners’ autonomy played an important role in learning through the empirical study of MOOC.
Ayşenur et al. [30] took the following factors into consideration: perceived usefulness, flexibility,
reliability, active participation, instructor response time and consultation. Asarbakhsh and Sardars [31]
made the conclusion that system stuck and failed video connection affect user satisfaction through
analyzing learning demand, technological design and intervention content. Roth et al. [32] verified
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that students receiving the course through video conference had lower final grades and were less
satisfied with the course and the instructor. Perceval and Tejedor [33] portrayed an overview of the
five degrees of communication in education: oral gestural, writing, audio, audiovisual, and digital,
which highlighted the changes introduced by the online scenario in the educational process, reflecting
on the character of the student, the teacher and the relationship between them. Chen et al. [34] used a
questionnaire survey and web crawler to collect comment data of online and offline users, constructed
a customer satisfaction index system by analyzing emotion and the existing literature for quantitative
analysis, and then forecasted user satisfaction. Most of the above researches focus on platform
satisfaction or curriculum setting without evaluating and analyzing the teaching content combined
with platform technology. However, they still have reference value for the establishment of an online
education platform evaluation system in this paper.

To sum up, there are still some problems in the research on the evaluation system of online
education platforms, such as the lack of specific indicators, unclear evaluation objects, and unreasonable
weight distribution. The indicators in existing evaluation systems mainly focus on the two aspects of
online education curriculum and platform function; that is, setting fixed evaluation indicators from
the aspects of course quality, teaching effect, teaching technology, system quality, etc., and realizing
the evaluation through qualitative or quantitative methods. However, few people evaluate the level
of online education platforms from the perspective of user experience, and they do not consider
COVID-19 and the possible impact of the outbreak. Based on this, we expect to realize the evaluation
of user experience before and after the outbreak of COVID-19 from the perspective of user evaluation.
However, user experience is mostly used in the research of business platforms. Considering that
many research results from the factors affecting online education satisfaction can be used as evaluation
indicators that impact user experience, this paper will refer to the results of these articles to establish
our indicators. Additionally, in the analysis of user satisfaction and experience, more and more
researches focus on users’ comments and feedback, so as to score and evaluate the platform and
courses. By using the methods of processing and capturing these comments, the index system of online
education platforms can be built more accurately and more perfect.

Based on this, in terms of the effects of COVID-19, this paper optimizes the indicators used in
previous research, constructs an evaluation system for the online education platform, and finds out
users’ focus in order to analyze the impact of the COVID-19 pandemic on the user experience of
online education.

3. Data Acquisition

Before analyzing the data, comment data should be captured. This section first selects the
mainstream online education platforms during COVID-19, and then grabs the user comment data of
the selected platforms before and after the outbreak of the pandemic.

3.1. The Choice of Online Education Platform

At present, there are a large number of online education platforms in China, including MOOC,
Tencent Classroom, Xuetang Online, Yu Classroom, etc. However, the quality of these platforms varies
greatly, so it is necessary to select a representative platform from many online education platforms.
Qimai data is a professional mobile promotion data analysis platform launched by Beijing Qimai
Technology Co., Ltd. (Beijing, China), which supports data query of IOS, Android application market,
WeChat, small programs, etc. This paper selects data samples of online education platforms on the
Qimai platform.

The download volume through online education platforms, comments rank, as well as the
platform’s popularity are taken as measurement criteria. During COVID-19, more business software
has shifted to developing online education functions and has been widely used. This paper has
screened the ranking of “business” and “education” in the Qimai data subcategories (updated on
17 March 2020). The results are shown in Table 1 below. Application refers to the platform object
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selected in this study. Classification ranking refers to the user usage ranking of the selected platform in
the two subcategories of “business” and “education” on Qimai website. Application list refers to the
total user usage ranking of the selected platform on Qimai website. The “Keyword Coverage” mainly
means that users can find our APP (APP is the abbreviation of Application, which means Application
program. It mainly refers to software installed on a smart phone. Moreover, the original system can
improve the shortcomings and is personalized to meet the different needs of users) even if they search
for more keywords.

Table 1. Rank of online education platforms.

Application Application List Classification Ranking Keyword Coverage

DingTalk first First (business) 18,799

Tencent Meeting second Second (business) 8526

Zoom Cloud eighth Eighth (business) 5333

Chaoxing seventh Seventh (education) 2043

MOOC thirteenth Thirteenth (education) 7031

TIM fourth Fourth (business) 4467

WeChat Work third Third (business) 6157

It can be seen from Table 1 that in the category of “business”, DingTalk, Tencent Meeting, TIM,
and WeChat rank in the top four. In addition, Zoom Cloud, which ranks 8th in this paper, is selected
because the business software ranked 5th to 7th have not been transformed into online education
platforms. In the category of “education”, though Chaoxing Learning, MOOC did not rank at the top,
since the education ranking also contained a non-online learning platform, so Chaoxing Learning and
MOOC ranked top relatively on the premise of their network teaching platform. Therefore, Chaoxing
Learning and MOOC are selected here as the representative platforms of the online teaching and
education industry, while DingTalk, Tencent Meeting, ZoomCloud, TIM, and WeChat are selected
as the representatives of the transformation from business software platforms to online education
platforms during the pandemic.

3.2. Acquisition of Comment Data on Online Education Platforms

When collecting the data of user comments from DingTalk, Tencent Meeting, ZoomCloud, TIM,
WeChat Work, Chaoxing Learning, and MOOC, the moments (time nodes in this paper) of comment
collection and the types of comments should be considered. Since this paper mainly compares the user
experience of the online education platform before and after the outbreak of the pandemic, the time
nodes of comment collection are divided into two stages: 17 February 2020 to 17 March 2020 and
16 November 2019 to 16 December 2019. In addition, there are four types of user comments on
Qimai website, namely: all comments, developer reply comments, deleted comments and undeleted
comments. The deleted comment data cannot be collected and the developer’s reply to the comment
has nothing to do with user experience. Additionally, the number of comments per platform does not
represent the number of users on the platform because the number of comments is not a proportion of
the number of users. In order to make the comment more timely, the undeleted comment is selected
here as the comment data.

Through the analysis of the user usage and comment popularity of the online education platform,
the collected data were manually and simply processed, and the invalid words such as emoticons,
repeated words and mood words were removed to obtain the number of comments on the seven
platforms before and after the outbreak of COVID-19, as shown in Table 2 below.
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Table 2. Number of comments collected by the seven platforms before and after the outbreak of COVID-19.

Teaching Platform Before the Outbreak of COVID-19 After the Outbreak of COVID-19

DingTalk 1061 74,981

Tencent Meeting 1438 3970

WeChat Work 1022 959

Chaoxing 800 5319

MOOC 930 1819

TIM 500 400

ZoomCloud 560 800

4. Analysis on the Characteristics of User Comments on Online Education Platforms

Since users’ comments are relatively redundant and scattered, ROST CM5.8.0 software is used to
classify the emotional tendency of users’ comments, and NLPIR-Parse software is used to score the
emotional tendency of the comments, so as to analyze the online education platform with good user
experience and the emotional tendency of users. According to the statistical method of text similarity
and the visual analysis technology of semantic network, the hot issues concerned by users are mined
as the basis for the construction of the subsequent user experience index.

4.1. Emotion Analysis

Emotional analysis of text is also called opinion mining, tendentiousness analysis, etc., allowing a
large number of internet users and objects to participate, such as people, events, products, and other
valuable comments on information. These comments’ information expressed by people of all kinds of
emotional color and emotion tendentiousness, as well as text sentiment analysis, is the subjectivity of
color with emotional text analysis, processing, summing up and reasoning process. The actions in
the text, with the help of semantic rules to each user, reviews data assignment by value to determine
the size of the emotion and value of positive emotions, with said negative emotion value is negative,
neutral emotional value is zero said, and the higher the value, the more positive attitude, with said the
lower value, said the more negative attitude. Thus, the corresponding emotional score and emotional
tendency of user comments are obtained.

By rating users’ comment emotional tendency and emotion scores, this paper finds out users’
preference for the online education platform before and after the occurrence of COVID-19 and regards
it as the initial grading of the platform. Due to the partial limitation of the emotion dictionary in ROST
CM5.8.0, NLPIR-Parser software is used to score the comments on emotion, so as to find the online
education platform with good user experience.

4.1.1. ROST CM Analysis

As a digital research platform for humanities and social sciences based on content mining,
ROST CM [35] is a large, free social computing platform developed by Professor Shen in Wuhan
University. At present, it is the only one in China for the purpose of supporting humanities and
social science research and is widely used in many fields such as network public opinion [36,37],
personalized recommendation [38], emergency rescue decision making [39,40] and so on. The software
can realize Weibo, chat, the entire network analysis, site analysis, through analysis, word segmentation,
word frequency statistics, English word frequency statistics, traffic analysis, clustering analysis, and
a series of text analysis. Text mining does not need a basic computer using this software to conduct
text mining does not require a computer foundation, as long as it can be carried out in accordance
with the operation step. ROST CM software is competitive in semantic network emotion analysis. In
this paper, ROST CM5.8 is used for emotion analysis, and the analysis results are used to integrate the
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ratio of positive, medium, and negative comments of seven platforms before and after the outbreak
ofCOVID-19, as shown in Tables 3 and 4 below.

Table 3. The proportion of comments with emotional orientation before the outbreak of COVID-19.

Teaching Platform DingTalk Tencent
Meeting

WeChat
Work

Zoom
Cloud TIM Chaoxing MOOC

Proportion of
positive comments 50.05% 52.92% 40.72% 44.35% 45.21% 0.00% 60.33%

Proportion of
neutral comments 1.31% 1.32% 2.99% 2.09% 1.27% 0.00% 1.31%

Proportion of
negative comments 48.64% 45.76% 56.29% 53.56% 53.52% 100% 38.36%

Table 4. The proportion of comments with emotional orientation after the outbreak of COVID-19.

Teaching Platform DingTalk Tencent
Meeting

WeChat
Work

Zoom
Cloud TIM Chaoxing MOOC

Proportion of
positive comments 52.26% 47.86% 48.78% 42.43% 40.88% 22.40% 30.29%

Proportion of
neutral comments 1.32% 1.34% 1.22% 0.73% 0.73% 1.43% 1.32%

Proportion of
negative comments 46.43% 50.81% 50.00% 56.84% 58.39% 76.18% 68.39%

(1) From the above analysis, during COVID-19, DingTalk receives better user experience response
with positive reviews. It suggests that duringCOVID-19, with plenty of technology and reliable
software support, DingTalk can easily cope with the dramatic increase of users. As a business software,
it can meet the requirements of teachers and students while responding to various requirements of
online education. The following contents will further explore the advantages of this platform and
use it as a reference for other platforms. Compared with DingTalk, Chaoxing Learning needs to
think of the reasons why users have poor experience. Generally speaking, as an online education
software, users will not consider using this platform if there is no technological innovation or functional
improvement. A lot of technical and reliable software support is constructive for the later improvement
of the online platform.

(2) Compared with before the occurrence of COVID-19, users’ positive comments on Tencent
Meeting and MOOC decreased somewhat. The proportion of Tencent Meeting decreased by 5.06%,
but the proportion of MOOC positive comments decreased as high as 30.04%. As a self-study software
providing learning resources, MOOC prefers to provide electronic books, video, etc., and gives priority
to self-study. During COVID-19, in order to improve the quality of students’ learning outcomes,
by offering the video teaching, audio conferencing, etc., most colleges and universities carry out the
teaching by strongly interactive methods to achieve the same quality with in-person teaching. However,
in the face of COVID-19, MOOC did not develop new functions timely enough to improve their
disadvantages, resulting in a sharp decline in user experience. For the later evaluation of the online
education platform, evaluation criteria can be provided. If the platform can provide video teaching,
audio conference and teaching in a highly interactive manner, users will have high commendation on
the platform.

(3) The positive and negative comments of WeChat Work, TIM and Zoom Cloud platforms before
and after the outbreak ofCOVID-19 did not change significantly. Zoom Cloud’s positive comments
decreased by 1.92%, WeChat’s increased by 8.06% and TIM’s decreased by 4.33% during the pandemic.
These online education platforms have not been greatly improved on the whole, but compared with
Chaoxing Learning and MOOC, their user experience is relatively better. The positive and negative
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emotional evaluation of the platform by users has reference opinions on the later evaluation of the
platforms. Generally speaking, if the negative emotional evaluation of the platform by users is too
heavy, the overall evaluation by users on the platform will be lower. For the enterprises that belong to
the platform, software upgrade is of vital importance.

4.1.2. NLPIR Emotional Score

NLPIR-Parser [41] big data semantic intelligent analysis platform, which has been developed
for more than 20 years, integrates core technologies such as network data collection, natural
language processing, text mining and text retrieval. NLPIR emotion analysis mainly focuses on
the automatic recognition and weight calculation of emotion words, and adopts the co-occurrence
relationship and bootstrapping strategy to generate new emotion words and weight through repeated
iteration. In bibliometrics, the common word method of keywords is often used to determine the
relationship between the themes in the discipline represented by the document collection. For example,
co-occurrence relationship can be used to analyze the relationship between characters in a novel or
play. In statistics, bootstrapping strategy is a uniform sampling with a return from a given training set;
that is to say, every time a sample is selected, it is equally likely to be selected again and added to the
training set again.

The emotional scores of the comments before and after the outbreak of the pandemic (including
total emotional scores, positive scores and negative scores) are shown in Tables 5 and 6 by analyzing
the comments data of the seven online education platforms.

Table 5. Emotional rating of NLPIR-Parser before the outbreak of COVID-19.

Teaching Platform DingTalk Tencent
Meeting

WeChat
Work Chaoxing MOOC TIM Zoom

Cloud

Total emotional score −50 −68 −33 1 −1 −38 0

Positive score 52 32 28 4 12 4 3

Negative score −102 −100 −61 −3 −13 −42 −3

Table 6. Emotional rating of NLPIR-Parser after the outbreak of COVID-19.

Teaching Platform DingTalk Tencent
Meeting

WeChat
Work Chaoxing MOOC TIM Zoom

Cloud

Total emotional score 105 −267 −14 −341 −43 −20 530

Positive score 563 114 29 152 79 0 758

Negative score −458 −381 −43 −493 −122 −20 −228

According to the above emotional score data, before the pandemic, the feedback of the seven
platforms was generally negative, indicating that most users had a poor experience when using
the online education platform. From the previous section, the conclusion can be made that during
COVID-19, total emotional scores of DingTalk and Zoom Cloud are positive; and Zoom Cloud is the
highest, indicating that user experience of Zoom Cloud in general is the best, followed by DingTalk.
These two platforms show more advantages after the pandemic outbreak, which indicates that technical
response capacity of DingTalk and Zoom Cloud is a worthy reference. In addition, after the occurrence
of COVID-19, the negative score of Chaoxing Learning is much higher than its positive score, and its
disadvantages are more obvious, leading to a poorer overall user experience.

4.1.3. Visual Analysis Based on Semantic Network

Based on ROST CM’s analysis of the positive and negative proportion of user comments and
NLPIR’s rating of user comments’ emotions, it can be seen that DingTalk gets unanimous praise and
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provides the best user experience, while Chaoxing Learning and MOOC have poorer user experience.
In order to obtain users’ main concerns on online education platforms, semantic network visualization
analysis was adopted before and after the outbreak of COVID-19 for platforms such as DingTalk,
Chaoxing Learning and MOOC.

Semantic network is one of the representations of an artificial intelligence program, which expresses
human knowledge construction in the form of a network. It consists of arcs between nodes, where nodes
represent concepts (events or things), and arcs represent relationships between them. The semantic
network consists of four related parts. The lexical part: Determining which symbols are allowed in the
vocabulary, which involves nodes and arcs, and extracting key words from user comment information.
The structure part: Describe the constraint conditions of symbol arrangement, specify the node pairs
connected by each arc, that is, establish the connection line through the causal relationship between
keywords commented by users. The process section: Explain the access process, which can be used to
establish and modify the description, and answer the related question, that is, the direction between
related words indicates cause and effect. The semantic part: The method to determine the meaning
related to description, that is, to determine the arrangement of relevant nodes and their possessive and
paired arcs.

The software ROST CM5.8.0 analysis was used to obtain the semantic network relationship shown
in Figures 1 and 2. The main purpose is to show the semantic network diagram of user comments to get
the similarity of users’ comments on the platform, so as to dig out the most concerned points of users.
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From Figures 1 and 2: the “software” is the important node, and “live” is the closest node,
reflecting that the major teaching method of DingTalk is live, which has increased the interaction,
and better enlivened the learning atmosphere, improving the teaching quality. In addition, before
and after the outbreak ofCOVID-19, “five star”, “payment by installments” and other kinds of nodes
appear, because DingTalk congested for a while, public relation (PR) explained timely, which caused a
topic of “payment by installments to the five-star”. It is a timely response that makes users give five
stars and high commendation to DingTalk.

At the same time, the “office” before the pandemic was closer to the central node. The description
of the relevant nodes involved two aspects: office and education, among which “mobile phone”,
“holiday”, “powerful” and “Internet” nodes were the main evaluation of the business function of
DingTalk. This is because before the outbreak of the pandemic, DingTalk was more of an important
software for business clocking and office work. However, after the outbreak of the pandemic, most of
DingTalk’s nodes focused on educational evaluation, such as “live broadcast”, “school”, “children”
and “homework”, while the business experience evaluation was relatively rare. This indicates that
DingTalk adjusted its software functions in time to meet the needs of users of online education courses
before and after the outbreak ofCOVID-19.

In addition, the semantic relations of Chaoxing Learning and MOOC are as shown in Figures 3–6:
setting “software”, “rubbish”, “learning”, “class” as the key nodes; “submit”, “server”, “log in”,
“collapse”, “waiting” are the closest nodes, demonstrating that Chaoxing Learning has more problems,
such as: server crash, unable to log in or submit the learning time due to system failure. In addition,
setting “learning”, “rubbish”, “curriculum” and “software” as important nodes, the nodes close to each
other include “failure”, “connection”, “duration”, “server” and “progress”, etc. It can be seen from
these nodes that connection failure, unsubmitted learning duration, server crash and other problems
often occur in the MOOC platform. At the same time, there are also some independent nodes in the
figure, including “account” and “homework”. It can be learned that the platform may fail to register an
account, submit homework, or refresh website, etc., while “delay”, “serious” and other nodes indicate
that there is a serious delay in the MOOC platform.
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4.2. Acquisition of Hot Issues in User Comments

In order to dig out the hot issues that users pay attention to from a large number of data, so as to
build a subsequent user experience evaluation system, the similarity heat statistics method is used to
analyze the similar information from the descriptive information of the text, and the information is
ranked according to the frequency of the occurrence of the similar information.

4.2.1. Introduction to Algorithm Principle

In this section, Python is used for text similarity heat statistics. The input is Excel, and only
platform comment content is included here. The specific implementation steps are as follows:

(1) Data preprocessing

Pandas, the data analysis package of Python, are used to obtain input information, and the words
of the input comment sentences are segmented through the Python Chinese phrase fragment Jieba to
form a two-dimensional array.

(2) Dealing with dictionaries

Gensim is a Python library for automatically extracting semantic topics from documents that can
be used to process unstructured and numeric text. The corpora.Dictionary method in the library is
invoked to generate dictionaries from two-dimensional arrays of words, thus creating a dictionary
based on input comment text information that uniquely identifies a word with a numerical number.

(3) Corpus processing

The Bag-of-Words model means to pack all words into one bag without considering their
morphology and word order, that is, each word is independent. If you create a dictionary [Jane, wants,
to, go, Shenzhen, Bob, Shanghai], the sentence “Jane wants to go to Shenzhen” can be expressed
as (1,1,2,1,1,1,0), which is the number of occurrences of the corresponding word in the dictionary.
Therefore, a two-dimensional array is converted into a sparse vector through the Doc2Bow method
used in Python to build the Bag-of-Words model to form a corpus.

(4) Calculating text similarity

The LSI (Latent Semantic Indexing) model uses SVD (Singular Value Decomposition) to decompose
the word-document matrix. SVD can be seen as discovering unrelated index variables from the
word-document matrix and mapping the original data into the semantic space. Documents that are
not similar in the word-document matrix may be similar in the semantic space. The text topic matrix
obtained by LSI can be used for text similarity calculation.

TF-IDF is a statistical method used to assess the importance of a word to one of the documents in
a document set or corpus. The importance of a word increases proportionally with the frequency of its
occurrence in the document, but decreases inversely with the frequency of its occurrence in the corpus.

In practice, models-used Latent Semantic Indexing (LSI) model calculates the TF-IDF in a corpus,
then uses keywords acquisition method to obtain the number of features in the dictionary, finally
takes the corpus in the words of the number of features in TF-IDF and dictionary into Sparse Matrix
Similarity calculation methods, establishes a sparse matrix similarity and an index.

(5) Calculating the similarity between test data and sample data

Each user comment text was segmented through Jieba, sparse vector of test data was calculated
through doc2bow, and finally, the similarity between test number and sample data was calculated,
and data with similarity of more than 0.6 was classified as a class of problems.

(6) Statistics on hot issues
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The amount of data in each type of problem is calculated and regarded as problem heat.
The questions are ranked according to their heat.

4.2.2. Results Analysis

Data from seven online education platforms before and after the occurrence of COVID-19 were
statistically analyzed for text similarity and heat. The results are shown in Figures 7 and 8.

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 29 

invoked to generate dictionaries from two-dimensional arrays of words, thus creating a dictionary 
based on input comment text information that uniquely identifies a word with a numerical number. 

(3) Corpus processing 
The Bag-of-Words model means to pack all words into one bag without considering their 

morphology and word order, that is, each word is independent. If you create a dictionary [Jane, 
wants, to, go, Shenzhen, Bob, Shanghai], the sentence “Jane wants to go to Shenzhen” can be 
expressed as (1,1,2,1,1,1,0), which is the number of occurrences of the corresponding word in the 
dictionary. Therefore, a two-dimensional array is converted into a sparse vector through the 
Doc2Bow method used in Python to build the Bag-of-Words model to form a corpus. 

(4) Calculating text similarity 
The LSI (Latent Semantic Indexing) model uses SVD (Singular Value Decomposition) to 

decompose the word-document matrix. SVD can be seen as discovering unrelated index variables 
from the word-document matrix and mapping the original data into the semantic space. Documents 
that are not similar in the word-document matrix may be similar in the semantic space. The text topic 
matrix obtained by LSI can be used for text similarity calculation. 

TF-IDF is a statistical method used to assess the importance of a word to one of the documents in 
a document set or corpus. The importance of a word increases proportionally with the frequency of its 
occurrence in the document, but decreases inversely with the frequency of its occurrence in the corpus. 

In practice, models-used Latent Semantic Indexing (LSI) model calculates the TF-IDF in a corpus, 
then uses keywords acquisition method to obtain the number of features in the dictionary, finally 
takes the corpus in the words of the number of features in TF-IDF and dictionary into Sparse Matrix 
Similarity calculation methods, establishes a sparse matrix similarity and an index. 

(5) Calculating the similarity between test data and sample data 
Each user comment text was segmented through Jieba, sparse vector of test data was calculated 

through doc2bow, and finally, the similarity between test number and sample data was calculated, 
and data with similarity of more than 0.6 was classified as a class of problems. 

(6) Statistics on hot issues 
The amount of data in each type of problem is calculated and regarded as problem heat. The 

questions are ranked according to their heat. 

4.2.2. Results Analysis 

Data from seven online education platforms before and after the occurrence of COVID-19 were 
statistically analyzed for text similarity and heat. The results are shown in Figures 7 and 8. 

 

Figure 7. Results of mining hot issues on the online education platforms before the outbreak
of COVID-19.

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 29 

Figure 7. Results of mining hot issues on the online education platforms before the outbreak of 
COVID-19. 

 
Figure 8. Results of mining hot issues on the online education platforms after the outbreak of COVID-
19. 

The comparison between Figures 7 and 8 shows that before and after the outbreak of COVID-
19, the hot issues that users were concerned with on the same platform changed greatly. For example, 
before the outbreak of COVID-19, users’ biggest comment on the MOOC platform was the lack of 
landscape function, but after the occurrence of COVID-19, users’ biggest comment on the platform 
was the problem of crash back. This shows that in different periods, users have different concerns 
and requirements for the platform. In addition, by comparing the hot issues presented by different 
platforms, it is not difficult to find that there are certain similarities in these issues, such as stuck and 
crash back, which are hot issues existing in almost every platform. Therefore, the existing problems 
of all platforms can be further integrated to establish a unified evaluation index system. 

5. Evaluation of User Experience of Online Education Platforms before and after the Outbreak of 
the Pandemic 

In this section, by analyzing the characteristics of comments on online education platforms, the 
comments of each platform are classified according to the similarity degree, so as to obtain the main 
problems of the platforms in user experience. According to the word frequencies of user comments, 
the related word frequency of each type of problem is counted. Then, based on the existing literature 
and hot issues of user comments, the evaluation index system of user experience of the online 
education platform is constructed and quantified. Finally, the changes of user experience before and 
after the outbreak of the pandemic are found out and analyzed. 

5.1. Setting of Index System 

Based on the Network Learning Evaluation System over the Moodle platform proposed by Xia 
[14] and referring to the evaluation index system of open online course teaching quality by Jin [15], 
user evaluation is selected as the analysis basis. Data selection and evaluation methods of Li [20] and 
Yang [21] are adopted, comment results are analyzed, problems of each platform are integrated to 
construct the user experience evaluation index system of online education platforms, which contains 
5 primary indexes and 15 secondary indexes, as shown in Table 7. 
  

Figure 8. Results of mining hot issues on the online education platforms after the outbreak of COVID-19.

The comparison between Figures 7 and 8 shows that before and after the outbreak of COVID-19,
the hot issues that users were concerned with on the same platform changed greatly. For example,
before the outbreak of COVID-19, users’ biggest comment on the MOOC platform was the lack of
landscape function, but after the occurrence of COVID-19, users’ biggest comment on the platform
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was the problem of crash back. This shows that in different periods, users have different concerns
and requirements for the platform. In addition, by comparing the hot issues presented by different
platforms, it is not difficult to find that there are certain similarities in these issues, such as stuck and
crash back, which are hot issues existing in almost every platform. Therefore, the existing problems of
all platforms can be further integrated to establish a unified evaluation index system.

5. Evaluation of User Experience of Online Education Platforms before and after the Outbreak of
the Pandemic

In this section, by analyzing the characteristics of comments on online education platforms, the
comments of each platform are classified according to the similarity degree, so as to obtain the main
problems of the platforms in user experience. According to the word frequencies of user comments,
the related word frequency of each type of problem is counted. Then, based on the existing literature
and hot issues of user comments, the evaluation index system of user experience of the online education
platform is constructed and quantified. Finally, the changes of user experience before and after the
outbreak of the pandemic are found out and analyzed.

5.1. Setting of Index System

Based on the Network Learning Evaluation System over the Moodle platform proposed by
Xia [14] and referring to the evaluation index system of open online course teaching quality by Jin [15],
user evaluation is selected as the analysis basis. Data selection and evaluation methods of Li [20] and
Yang [21] are adopted, comment results are analyzed, problems of each platform are integrated to
construct the user experience evaluation index system of online education platforms, which contains 5
primary indexes and 15 secondary indexes, as shown in Table 7.

In order to quantify the above-mentioned primary and secondary indicators, setting subsequent
indicator weight should be based on an indicator library that contains synonyms, opposites, and
related words by user comments. The index library is traversed and the frequency of the words is used
as the evaluation method. The next section will explain, in detail, the indicator library corresponding
to each level indicator.
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Table 7. Setting of index system.

First Level Indicators Secondary Level Indicators Definition of Indicator Index Evaluation Method

Platform system
characteristics

System stability The website can be successfully accessed at any time, there will be no errors, the system
does not appear flashback, do not crash

Establish different word banks
for the secondary indicators.

Through the enumeration of the
index thesaurus, the frequency
of the occurrence of the words

is taken as the evaluation
method of this index.

System compatibility The online education platform can be used by different clients and can be received by
different terminals

Background customer
service support Technical and academic support

Provide the use of online education platform and learning-related technical support
services, and provide valuable guidance and help for the focus and difficult content of

the course

Platform video quality

Video picture quality The video picture is clear, and the students will not have visual discomfort and
unpleasant mood when watching the video

Video sound quality The video sounds clear

Timeliness of video information
transmission

Teachers’ PPT and blackboard pictures can be displayed on the students’ interface in a
timely manner

Platform technical
requirements

Interface design The interface layout is reasonable, the text expression standard, the font size color
suitable for reading

Access speed Platform page load speed

Navigation link Content navigation is convenient, clear, in line with the browsing rules

Security The platform shall keep confidential the personal information of users

Reliability The whole system runs stably for a long time, and there are few cases of lag
and flashback

Platform teaching
support system

Exchange interaction Through live broadcast, group work, homework, and other modules; promotes
interaction between students and teachers, between students

Teaching functions This platform can carry out learning courses through live broadcast, recorded
broadcast, PPT display and other ways

Course management

Can achieve synchronous or asynchronous discussion, that is, through real-time video
or audio conference. In addition, it can specify the permissions of relevant personnel of
the course, such as teachers and students. Assignments can only be released through
teachers, and teachers can only join the group through teachers. Remind students to

sign-in in time

Student status management Online registration information function, and records each student’s study time
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5.1.1. The Characteristics of a Platform

Most collected user reviews are focused on the evaluations for system compatibility, stability,
response speed and so on. The system characteristic is the basic index for the evaluation of the
online education platform quality, which reflects that the network hardware environment of the online
education platform still has room for improvement in technical support and support services for
learners. Accordingly, under the characteristics of the platform system, two secondary indexes, stability
and compatibility, are set here. The stability of the system means that the website can be accessed
successfully at any time without errors. System compatibility means that the online education platform
can be used by different clients and received by different terminals. Examples of word libraries for
stability and compatibility of the system are shown in Tables 8 and 9.

Table 8. Examples of word library for system stability.

Name Example 1 Example 2 Example 3

Good evaluation of system stability fluency runs smoothly stabilization

Poor evaluation of system stability system crash poor stability Unable to jump to other interface

Table 9. Examples of word library for system compatibility.

Name Example 1 Example 2 Example 3

Good evaluation of system compatibility stabilization well diversity

Poor evaluation of system compatibility at question non-support bad

A word relating to system compatibility applicable version suitability fit measure

5.1.2. Support Service

Constructing the systematic evaluation index for an online education platform should consider
the teaching environment which directly affects the user experience on the platform: whether the
platform can provide students with valuable learning information or guidance to solve their problems
in learning; and whether it can guide students to reasonably use the platform and the related learning
tools. Based on this, a secondary index of technical and academic support is set under the characteristics
of the platform system, which means that relevant customer service personnel provide technical
support and learning guidance materials for learners. The examples of relevant word libraries are
shown in Table 10.

Table 10. Examples of word library for technical and academic support.

Name Example 1 Example 2 Example 3

Good evaluation of technical and
academic support beneficial efficient excellent

Poor evaluation of technical and
academic support

perform practically no
function no customer service rubbish

5.1.3. Platform Video Quality

The problem of “video” was repeatedly mentioned in user comments after the outbreak of
COVID-19. For example, while using video conference of DingTalk, there are problems such as
“unsmooth picture”, “low picture quality”, “unable to adjust the volume”, “delayed video uploading
and downloading” and so on. It can be seen that the continuous development of media technology
has put forward higher requirements for the quality of course video on online education platforms.
In terms of video information transmission, if students cannot receive information in time, their
learning enthusiasm will be greatly reduced. Based on this, this paper sets three secondary indexes to
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assess video quality, namely, the quality of the video picture, the quality of the video sound, and the
timeliness of the video information transmission. Examples of relevant word libraries are shown in
Tables 11–13.

Table 11. Examples of word library for video picture quality.

Name Example 1 Example 2 Example 3

Good evaluation of video picture quality fluency distinct free from inhibitions

Poor evaluation of video picture quality slur low quality blank screen

Table 12. Examples of word library for video sound quality.

Name Example 1 Example 2 Example 3

Good evaluation of video sound quality resonant clear fluency

Poor evaluation of video sound quality noise the sound is serious off and on

Table 13. Examples of word library for video information transmission.

Name Example 1 Example 2 Example 3

Good evaluation of timeliness of video information transmission good real-time not kartun fluency

Poor evaluation of timeliness of video information transmission kartun motionless delay

5.1.4. Requirement of Platform Technology

The network technology of the platform refers to the way of information communication between
learners and the online education platforms, among which the effective and reliable Internet technology
is the evaluation standard for the advantages and disadvantages of the online education platform, and
the simple and user-friendly interface design is an important factor determining the quality of online
education and affecting the user’s sense of experience. Therefore, the second-level indexes required by
platform technology include interface design, access speed, navigation link, security, reliability, etc.,
and the examples of relevant word libraries are shown in Tables 14–18.

Table 14. Examples of word library for interface design.

Name Example 1 Example 2 Example 3

Good evaluation of interface design concise practical as plain as print

Poor evaluation of interface design clutter anti-human esthetic effect

Table 15. Examples of word library for access speed.

Name Example 1 Example 2 Example 3

Good evaluation of access speed good speed amazed fluency

Poor evaluation of access speed unable to load slowing load along while

Table 16. Examples of word library for navigation link.

Name Example 1 Example 2 Example 3

Good evaluation of navigation link logical meticulous distinct

Poor evaluation of navigation link laborious a mere skeleton unable to browse
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Table 17. Examples of word library for security.

Name Example 1 Example 2 Example 3

Good evaluation of security covert Privacy safety enhancement

Poor evaluation of security insecure violate human rights lack of privacy

Table 18. Examples of word library for reliability.

Name Example 1 Example 2 Example 3

Good evaluation of reliability awesome steady good

Poor evaluation of reliability no one with a hundred crash login not on

5.1.5. Platform Teaching Support System

Jun and Yong [42] described the general structure and main functionalities of the open source
web-based teaching management system, and incorporated student data, course management, teaching
data collection and configuration management of the system into the contents of the online teaching
management system. This paper draws on this literature and combines the questions raised by
user comments to set four second-level indicators, namely, communication and interaction, teaching
function, course management and student status management. The examples of relevant word libraries
are shown in Tables 19–22.

Table 19. Examples of word library for exchange interaction.

Name Example 1 Example 2 Example 3

Good evaluation of exchange interaction convenience speediness can video

Poor evaluation of exchange interaction shade screens reply is swallowed automatically open mic

Table 20. Examples of word library for teaching functions.

Name Example 1 Example 2 Example 3

Good evaluation of teaching functions convenience stabilization waste

Poor evaluation of teaching functions troublesome waste mess around

Table 21. Examples of word library for course management.

Name Example 1 Example 2 Example 3

Good evaluation of course management covert privacy clear course classification

Poor evaluation of course management don’t remind time box harass

Table 22. Examples of word library for student status management.

Name Example 1 Example 2 Example 3

Good evaluation of student status management attention switching frequency the background records

Poor evaluation of student status management cannot modify not sure discrepancy

5.2. Indicator Scoring Method

In the previous section, different word libraries were established for the second-level index. In this
section, the occurrence frequency of words was taken as the initial score of this index.

Generally speaking, a second-level index consists of two word libraries: positive and negative
comments [43]. The second-level index of the system is evaluated by “(frequency of occurrence
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of positive words—frequency of occurrence of negative comments)/total number of comments on
the platform”. However, when the universality of evaluated words is relatively high, the related
words library is added, and the form of “related words + adjectives” is taken as the indicator library.
For example, the word describing the poor system compatibility is “problematic”, which has strong
universality and can also be used to describe other indicators. Therefore, the related word, “version
adaptation” is added. Only when two words, “version adaptation” and “problematic” appear in the
comment, it can be judged that the comment describes the poor system compatibility. Therefore, when a
second-level index contains three vocabularies: positive comment, negative comment and related word,
the second-level index of the system is evaluated by “(positive comment frequency containing related
word—negative comment frequency containing related word)/total comment number of the platform”.

After obtaining the scores of each indicator on each platform through the above methods, the data
is processed and the preliminary scores are obtained.

5.3. Index Weight Setting

After obtaining the preliminary scores, it is necessary to set the weight of each indicator, so as to
obtain the total score of each platform. The setting methods of index weights are divided into subjective
and objective weighting methods. Subjective weighting methods include expert scoring method
and Delphi method, etc., while objective weighting methods include entropy weighting method and
coefficient of variation method. Since the experimental data are directly obtained from the network
with large amount of data and poor hierarchy, and the objective weighting method does not rely on
subjective judgment of human beings and has strong mathematical theoretical basis, the objective
weighting method is adopted here to set the index weight. By comparing the weight results of two
objective weighting methods—coefficient of variation and entropy method—the coefficient of variation
method is used to weight the experimental results.

5.3.1. Coefficient of Variation Method

Coefficient of variation method [44] is a method to calculate the variation degree of each index in
the system by directly using the information contained in each index, and it is an objective weighting
method. In the evaluation index system, the greater the difference in the value of the same index
between different platforms, the greater the weight of the index; the smaller the difference in the value
of the same index between different platforms, the smaller the weight of the index.

Suppose that the target vector and each index vector are constructed into a matrix M = (index 1,
index 2..., index n) = {X1, X2, ..., Xn}. The coefficient of variation of the ith evaluation index is calculated
as follows:

CVi =
D
xi

(1)

where D is the standard deviation of the i evaluation index. The coefficient of variation was normalized,
and then the weight of coefficient of variation of each evaluation index can be obtained.

The weights of secondary indexes before and after the outbreak of COVID-19 by coefficient of
variation method are shown in Tables 23 and 24, and the numbers marked in red are the three secondary
indexes with the highest weights before and after the outbreak of the pandemic.
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Table 23. The weights of secondary indexes before the outbreak of COVID-19 by coefficient of
variation method.

First-Level Index Second-Level Index Index Weight

Platform system characteristics System stability 0.056780

System compatibility 0.062532

Background customer service support Technical and academic support 0.057641

Platform video quality

Video picture quality 0.050599

Video sound quality 0.050884

Timeliness of video information transmission 0.083637

Platform technical requirements

Interface design 0.063798

Access speed 0.135036

Navigationlink 0.048805

Security 0.059239

Reliability 0.112449

Platform teaching support system

Exchange interaction 0.070685

Teaching functions 0.048894

Course management 0.048957

Student status management 0.050066

Table 24. The weights of secondary indexes after the outbreak ofCOVID-19 by coefficient of
variation method.

First-Level Index Second-Level Index Index Weight

Platform system characteristics System stability 0.061711

System compatibility 0.054056

Background customer service support Technical and academic support 0.082499

Platform video quality

Video picture quality 0.075169

Video sound quality 0.056147

Timeliness of video information transmission 0.077557

Platform technical requirements

Interface design 0.082348

Access speed 0.062215

Navigationlink 0.000000

Security 0.067109

Reliability 0.068368

Platform teaching support system

Exchange interaction 0.082622

Teaching functions 0.063522

Course management 0.102191

Student status management 0.064485

5.3.2. Entropy Weight Method

Entropy was first introduced into information theory by Shannon [45], and has been widely
applied in engineering technology, social economy and other fields. Information measures the degree
of system order when entropy measures the degree of system disorder. For an index, its dispersion
degree can be judged by entropy value. The smaller its information entropy is, the greater its dispersion
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degree is, the more information it provides, and the greater its role and weight it can play in the
comprehensive evaluation.

Suppose there are k indicators and n sets of data. First, the target vector and each indicator
vector are constructed into a matrix M = (indicator 1, indicator 2..., the indicator k) = {X1, X2,..., Xk},
where Xi = {x1, x2,..., xn}. According to the definition of information entropy in information theory,
the information entropy of a group of data is calculated as follows:

E j = −ln(n)−1
·

n∑
i=1

pi j · lnpi j (2)

where pij is the proportion of standardized data in this index data. Then the weight of each index can
be determined according to the information entropy.

The weights of secondary indexes before and after the outbreak of COVID-19 by entropy weight
method are shown in Tables 25 and 26. The numbers in red are the three secondary indicators with the
highest weights before and after the outbreak of COVID-19.

Table 25. The weights of secondary indexes before the outbreak of COVID-19 by entropy weight method.

First-Level Index Second-Level Index Index Weight

Platform system characteristics System stability 0.035310

System compatibility 0.030881

Background customer service support Technical and academic support 0.050035

Platform video quality

Video picture quality 0.044019

Video sound quality 0.031988

Timeliness of video information transmission 0.051665

Platform technical requirements

Interface design 0.049066

Access speed 0.036606

Navigationlink 0.383216

Security 0.039662

Reliability 0.041621

Platform teaching support system

Exchange interaction 0.052509

Teaching functions 0.037286

Course management 0.079421

Student status
management 0.036716

Table 26. The weights of secondary indexes after the outbreak of COVID-19 by entropy weight method.

First-Level Index Second-Level Index Index Weight

Platform system characteristics System stability 0.052743

System compatibility 0.061028

Background customer service support Technical and academic support 0.052945

Platform video quality
Video picture quality 0.046264

Video sound quality 0.046546

Timeliness of video information transmission 0.101660

Platform technical requirements

Interface design 0.059589

Access speed 0.145680

Navigationlink 0.044719

Security 0.055884

Reliability 0.128727

Platform teaching support system

Exchange interaction 0.068772

Teaching functions 0.044794

Course management 0.044847

Student status management 0.045801
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5.3.3. Method Comparison

The coefficient of variation method and entropy weight method are both objective. According to
the calculation results, users’ attention to the platform changed before and after the outbreak of the
pandemic. However, there are differences in index weights between the two approaches.

The coefficient of variation method calculates the weight according to the coefficient of variation
of the index. Table 23 shows the weights of secondary indicators before COVID-19. Three secondary
indicators with the highest weight are access speed, reliability, and timeliness of information
transmission, indicating that users are more concerned about the smooth use of the platform and
basic technical problems. Table 24 is the secondary index weight after the outbreak of COVID-19.
The highest three secondary index weights are course management, interaction, learning and technical
support, respectively, indicating that user attention is shifting from basic technical problems to the
learning function.

The entropy weight method calculates the weight according to the information entropy of
the index. Table 25 shows the weights of secondary indicators before the outbreak of COVID-19.
Three secondary indicators with the highest weight at this time are navigation links, course management,
and communication and interaction, among which the weight of navigation links is much higher than
that of other indicators. However, only one comment about navigation links appeared in WeChat Work
platform; other platforms have not mentioned this indicator. This is because the entropy weight method
amplifies the differences between the index data, leading to extremely high weight of navigation links,
but its weight does not match common sense. In general, the pros and cons of the navigation links are
unlikely to be the key factors for user experience. In addition, the high weights of course management,
and communication and interaction, indicate that users pay more attention to the learning function of
the platform. Table 26 shows the weights of secondary indicators after the occurrence of COVID-19.
At this time, three secondary indicators with the highest weights are access speed, reliability, and
timeliness of video information transmission, indicating that users pay more attention to the technical
problems of the platform at this time. Compared with before and after the outbreak of the pandemic,
the attention of users under the entropy weight method shifted from the learning function of the
platform to the technology of the platform.

In fact, since the outbreak of COVID-19 disrupted normal study plans, the original face to face
learning has shifted to online. More and more teachers and students are using online education
platforms now, so users pay more attention to a platform’s functionalities, good teaching environment,
and effective implementation of learning programs. Based on this, the entropy weight method is
not reasonable, while the coefficient of variation method is reasonable. Therefore, the coefficient of
variation method is finally selected as the setting method of index weight.

5.4. The Analysis of Evaluation Results

5.4.1. Overall Result Analysis

Due to the low market demand, the number of users for online education platforms was relatively
small before the outbreak of COVID-19. DingTalk and Tencent Meeting did not develop an online
education function. Therefore, compared with learning functions of the platform, users are more
focused on smooth use and technical problems. After the outbreak, because market demand of online
education and the number of online platform users rose rapidly, mobile office platforms such as
DingTalk and Tencent Meeting also successively introduced the function of online teaching. Due to
their competitive parent companies, DingTalk and Tencent Meeting have little technical problems,
so users pay attention to the functionalities of online study. In terms of teaching support system, which
represents the learning function of the platform, it can be further seen that users pay more attention to
communication, interaction, and course management than teaching functionalities and school role
management. Teaching functionalities refer to live broadcast, video broadcast, etc. All the platforms
selected here have played an online education role during the pandemic period and all have basic
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functionalities such as live broadcast, video broadcast, etc. Therefore, there is little difference in this
index and the index weight is naturally low. Student status management refers to the modules such
as online registration, recording lecturing, etc. If the duration of video playing cannot be accurately
calculated, it may lead to low scores of students and other situations damaging the user experience.
Among the seven platforms, only MOOC and Chaoxing Learning are conducted through course
recording, and the learning time needs to be recorded by calculating the video playing time. The other
five platforms mostly teach through live streaming, so the demand for learning time recording and the
weight of this index is relatively low.

Interaction is effective to improving teaching quality. Group discussion, attendance check
by asking questions, and raising hand to speak, promote students’ learning enthusiasm and help
instructors understand students’ learning degree and disabuse students of questions. Due to the
space distance of online teaching, the interaction between teachers and students is difficult to carry
out. Therefore, in order to ensure the quality of online learning, the design of communication and
interaction functions is extremely important for the user experience of the online education platform
during the pandemic. If the platform can provide rich interactive functionalities, it will be favored by
more teachers and students.

Classroom management ensures the orderly development of the teaching plan. The setting
of permissions in course management ensures the difference between the identities of online users
and clarifies the difference between teachers and students. In course management, the function of
reminding students to check in restores the offline scene of class bell ringing and improves the learning
atmosphere. Therefore, course management is relatively important.

To sum up, after the outbreak of the pandemic, there is a huge market need for online
education platforms. Course management, communication and interaction are the key factors
affecting user experience.

5.4.2. Results Analysis of Each Platform

Based on a set of evaluation index system of the user experience, 5 primary indexes including
platform system characteristics, customer service support, video quality, technical requirements,
the platform teaching platform support system, and 15 secondary indexes including stability and
compatibility of system, and user comments are weighted through variation coefficient method, and
scores and ranks of user experience are shown in Tables 27 and 28. In the matrices, the green font
indicates the data with the highest score, while the red font represents the data with the lowest score in
each row.

Table 27. Scores and ranks of user experience before the outbreak of COVID-19.

Rank 1 2 3 4 5 6 7

Platform Name Zoom
Cloud

Tencent
Meeting DingTalk MOOC TIM WeChat

Work Chaoxing

System stability 0.84 0.75 0.79 1.00 0.00 0.43 0.79

System compatibility 0.90 0.77 1.00 0.80 0.27 0.84 0.00

Technical and
academic support 0.89 1.00 0.51 0.78 0.00 0.69 0.55

Video picture quality 1.00 0.87 0.91 0.74 0.76 0.85 0.00

Video sound quality 0.71 1.00 0.95 0.91 0.80 0.84 0.00

Timeliness of video
information transmission 0.72 0.46 1.00 0.54 0.70 0.02 0.00
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Table 27. Cont.

Rank 1 2 3 4 5 6 7

Platform Name Zoom
Cloud

Tencent
Meeting DingTalk MOOC TIM WeChat

Work Chaoxing

Interface design 1.00 0.72 0.43 0.63 0.00 0.38 0.77

Access speed 0.19 0.20 0.19 0.00 1.00 0.12 0.19

Navigationlink 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Security 1.00 0.85 0.72 0.86 0.00 0.39 1.00

Reliability 1.00 0.34 0.33 0.10 0.08 0.00 0.49

Exchange interaction 1.00 0.77 0.27 0.00 0.36 0.69 0.63

Teaching functions 1.00 0.95 0.99 1.00 0.95 1.00 0.00

Course management 1.00 0.93 0.95 0.96 0.91 0.94 0.00

Student status
management 0.78 0.89 1.00 0.86 0.96 0.82 0.00

Total Score 99.78 70.21 65.32 46.14 33.48 20.22 0

Table 28. Scores and ranks of user experience after the outbreak of COVID-19.

Rank 2 3 1 5 6 4 7

Platform Name Zoom
Cloud

Tencent
Meeting DingTalk MOOC TIM WeChat

Work Chaoxing

System stability 1.00 0.60 0.97 0.00 0.54 0.76 0.73

System
compatibility 1.00 0.85 0.98 0.85 0.00 0.94 0.84

Technical and
academic support 1.00 0.78 0.67 0.34 0.00 0.37 0.30

Video picture
quality 1.00 0.58 0.74 0.36 0.35 0.53 0.00

Video sound
quality 0.71 0.00 1.00 0.84 0.84 0.70 0.74

Timeliness of
video information

transmission
0.90 0.72 1.00 0.13 0.86 0.64 0.00

Interface design 1.00 0.47 0.94 0.33 0.00 0.41 0.43

Access speed 0.93 0.96 1.00 0.42 0.94 0.96 0.00

Navigationlink 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Security 0.58 0.79 0.87 1.00 0.37 0.00 0.97

Reliability 0.95 0.84 1.00 0.28 0.82 0.73 0.00

Exchange
interaction 0.40 1.00 0.56 0.72 0.00 0.94 0.19

Teaching
functions 0.41 0.00 0.91 1.00 1.00 0.73 0.92

Course
management 1.00 0.65 0.67 0.39 0.01 0.32 0.00

Student status
management 0.46 0.55 1.00 0.00 0.70 0.57 0.70

Total Score 91.18 54.44 99.79 17.07 9.18 44.69 0

As can be seen from Table 27, before the occurrence of COVID-19, the ranking of user experience
of each platform from high to low is Zoom Cloud, Tencent Meeting, DingTalk, MOOC, TIM, WeChat
Work, and Chaoxing Learning. It can be seen from Table 28 that after the occurrence of COVID-19,
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the ranking of user experience of each platform by descending order is: DingTalk, Zoom Cloud, Tencent
Meeting, WeChat Work, MOOC, TIM, and Chaoxing Learning.

This change is closely related to initiatives taken by education platforms during the pandemic.
As an online office software, DingTalk quickly identified its new position, providing a complete set
of solutions for online education of all kinds of schools. It also developed functions such as online
classroom and health tasks to respond to “school suspension without class suspension”. Although
the application of teaching functions was opposed by students who were tired of learning at the
beginning, compared with other platforms, its performance during the pandemic was more prominent.
The platform had higher stability and compatibility, relatively simple interface design, complete
teaching functions, and was favored by teachers and students. Similarly, WeChat Work was originally
an online office software, but it also helped with online teaching during the pandemic. WeChat’s group
broadcast supports online teaching, while the pandemic prevention collection form of micro-documents
helps schools manage students’ health information. The improvement of its teaching functionalities and
the reliability of the platform have also won many positive comments. In contrast, as an educational
software, Chaoxing Learning could have played a greater role during the pandemic, but its performance
was always atthe bottom in terms of user experience score. The reasons for this situation are closely
related to the imperfect learning function and low access speed of the platform. The other four
platforms also showed slight changes in their rankings, but the differences were not significant.

The performance of each platform on each indicator will be analyzed in detail below.

(1) Zoom Cloud

Zoom Cloudperformed well overall, ranking the 1st before the outbreak ofCOVID-19 and 2nd after,
respectively. Before the pandemic, Zoom Cloud’s access speed was the only disadvantage compared
with other platforms. Users had a poor experience in this indicator. After the outbreak of the pandemic,
Zoom Cloud has greatly improved its access speed, and users’ attention has been transferred to its
teaching functionalities. However, Zoom Cloud needs to improve its communication and interaction,
teaching functionalities, and student status management. Due to its relatively stable system, simple
interface, and easy operation, Zoom Cloud was highly praised during the pandemic period. However,
Zoom Cloud did not develop teaching functionalities, instead, it was still a mobile office software for
video conferencing and content sharing. It is more suitable for team meetings, where everyone can
express and share their views. However, the interaction between teachers and students in teaching
is still dominated by teachers’ teaching and supplemented by students’ participation. Therefore,
the communication and interaction between teachers and students do not exactly meet the needs of
teaching. In addition, users of Zoom Cloud do not distinguish between teachers and students, so it is
deficient in teaching functionalities and school role management.

(2) Tencent Meeting

Tencent performed better overall, ranking the 2nd before the outbreak ofCOVID-19 and 3rd after,
respectively. Before the pandemic, its access speed, reliability, and timeliness of video information
transmission were poor, indicating the existence of problems such as lag and video fluidity. After the
outbreak of the pandemic, Tencent Meeting has significantly improved in the above three indicators,
but the quality of video sound and the teaching functionalities are deficient. In terms of the quality of
video sound, many users put forward problems such as “there is no sound on the recording screen”
and “the sound volume cannot be adjusted”. In terms of teaching functionalities, Tencent Meeting
has the similarity with Zoom Cloud: as video conferencing software, both of them can only satisfy
the need of video teaching, and are unable to count the number of students entering the meeting and
record the time of entering meeting, without distinguishing students’ and teachers’ type, resulting in
low score in the interaction, teaching functionalities, and student status management.

(3) DingTalk
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DingTalk performed better overall, ranking 3rd before the outbreak ofCOVID-19 and 1stafter,
respectively. Before the outbreak of the pandemic, the three lowest indexes were communication
and interaction, reliability, and interface design. After the outbreak of the pandemic, the reliability
and interface design scores increased, but the communication and interaction scores were still low.
Although DingTalk was originally a mobile office software, it was successfully transformed and
introduced functionalities related to teaching during the pandemic. Thanks to Alibaba Group, 140,000
servers were deployed to ensure the normal operation of the system during the pandemic. In terms
of communication and interaction, when the teacher gives a live lecture, students can express their
views through the message window. However, the message window is somewhat delayed and the
interaction process is not smooth enough. Therefore, although DingTalk performs well compared with
other platforms, it is still deficient in communication and interaction.

(4) MOOC

MOOC performed mediocrely overall, ranking 4th before the outbreak ofCOVID-19 and 5th after,
respectively. Before the pandemic, MOOC was ranked last in terms of speed, interaction, and reliability.
After the outbreak of the pandemic, the interaction and communication have been improved, but the
stability of the system, the timeliness of video information transmission, reliability, and school role
management have been criticized. Positioning an online education platform, however, MOOC does not
aim to provide online learning services to students in school, but to provide an equal learning platform
for all, including students and office workers. As a result, students on the platform are learning via
video classes from existing elite schools, rather than via live streaming. With video recording method,
it has rare interaction. After the outbreak of COVID-19, a large number of students are using MOOC to
watch course video. The watching time becomes the important factor to measure student learning
conditions for schools. However, due to frequent unsynchronized learning record and low sensitivity,
it greatly impacted on the student status management and reduced user satisfaction. The technical
problems of the platform have existed before and after the outbreak of the pandemic.

(5) TIM

TIM performed poorly overall, ranking 5th and 6th before and after the outbreak ofCOVID-19.
Before the pandemic, it ranked the last in terms of system stability, platform learner support, interface
design and security, but it performed well in access speed. After the outbreak of the pandemic,
the platform had serious problems in five aspects: system compatibility, platform support for learners,
interface design, communication and interaction, and course management. TIM is known as the concise
version of Tencent QQ, which can sync QQ friends with low entry threshold. However, its positioning
is also suitable for teamwork office software, which has the same problems as Zoom Cloud and Tencent
Meeting. At the same time, TIM also performs poorly in terms of technology and system compatibility,
which is lack of a suitable version of the tablet and delays in updating, etc. As one of Tencent’s office
software, with no advertising push, simple design interface, and practical function, TIM enables
Tencent to provide an opportunity to capture the market in the field of mobile office. Without clear
profit as well as appearance of pure mobile office software such as DingTalk, TIM is declining.

(6) WeChat Work

The overall performance of WeChat Work is mediocre, ranking 6th and 4th before and after
the outbreak ofCOVID-19. Before the pandemic, it ranked last in reliability and navigation links,
and performed poorly in timely video information transmission. WeChat Work is the only platform that
has problems on navigation links, with critics pointing out that it contains too many advertising links.
After the outbreak of the pandemic, WeChat has improved its scores in various indicators. The main
problem has shifted to security, and its privacy protection for users is insufficient. Like TIM, WeChat
Work is equivalent to office WeChat. Besides live conference, it also undertakes daily information
communication, clocking, approval, and other functions. Therefore, as a teaching software, its teaching
functionalities are not complete enough. In addition, most users believe that WeChat is a private space,
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while the chat records of staff or students on WeChat can be viewed by superiors, and the moderator
of the meeting can open the microphone of others at will. The setting of these functions is a kind of
privacy interference behavior, so users have raised many doubts about the security of this platform.

(7) Chaoxing Learning

Chaoxing Learning had the lowest overall performance, ranking last before and after the
outbreak ofCOVID-19. Before the pandemic, Chaoxing Learning performed poorly in three first-level
indicators, including system compatibility and video picture quality, including platform system
characteristics, video quality and teaching support system. After the outbreak of the pandemic,
its teaching functionalities have been improved, but it still ranks the bottom in five secondary
indicators, including the quality of video images, timeliness of video information transmission
and course management, and there are still many limitations. Chaoxing Learning is a mobile
learning platform, which provides electronic literature review, course learning and group discussion
functionalities. However, technical problems often occur on the platform, and the platform has been
complained of many times due to the system crash during the pandemic. In addition, when the
system crashed, the official reply of Chaoxing Learning was that “efforts are being made to repair it,
and we call on more students to learn from the wrong peak, so that the stability will be significantly
improved”, which shows the weakness of the technical support behind Chaoxing Learning. Due to the
limitations of the technology, it also performs poorly in teaching functionalities such as school role
management. Many users commented that they were “unable to sign in” and were defined as absent
by the system, as “failure to sign in after the wrong peak is still considered as absenteeism, and the
homework notification cannot be received”, etc.

6. Conclusions

Through this research, we hope to make up for the few literatures on the differences of online
education platforms in case of emergencies, so as to improve the education level from more perspectives.
This paper collected online user experience data of the online education platforms before and after
the outbreak of COVID-19, and obtained the change of user experience focus by analyzing the data
before and after the outbreak. On one hand, the relevant characteristics analysis of online user reviews
before and after the outbreak of COVID-19 is carried out, emotional tendencies of user reviews in
the two stages are compared, and the method of text similarity statistics are used to retrieve the hot
issues in the user reviews. The study found that during COVID-19, the users of the platforms have
different concerns and requirements, and there are some similar problems between each platform
such as kartun and flashback. According to the existing literature and the characteristics analysis
results for the comments from online education platforms, an evaluation index system was constructed.
Meanwhile, the coefficient of variation weighting method was used to comprehensively evaluate
the 15 secondary indicators. The results show that before the outbreak of the pandemic, users were
concerned about the access speed, reliability, and timeliness of video information transmission of the
platform, and the user experience of the Zoom Cloud platform was the best. After the outbreak of the
pandemic, users mainly focused on course management, communication and interaction, learning
and technical support services of the platform, and the user experience of the platform was the most
important. Overall, Chaoxing Learning had the poorest user experience and DingTalk performed best.

Based on the above analysis, this paper summarizes the following suggestions, which are expected
to improve the user experience of the online education platform during COVID-19:

(1) Improving support service

Providing comprehensive, timely, convenient and fast support services for learners is conducive
to the maintenance of learners’ positive learning attitude. In online education courses, there are several
problems: untimely video information transmission, slow platform access, and untimely response to
questions in class, students’ hope to get corresponding guidance after class, and teachers’ opinions
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in a timely manner so as to improve their learning effect. Therefore, the delay of feedback should
be shortened and the variety of feedback forms should be ensured. In addition, in the online class,
there will be more accidents, such as the failure of voice connection, the teachers’ unfamiliarity with
the software interface, unable to skillfully operate the software, and diagnosis problems. Moreover,
the hardware problems cannot be solved. For example, the microphone cannot be heard or spoken,
and even lead to classroom suspension, which wastes a lot of time. Therefore, the platform should
simplify the software design and configuration, and provide corresponding customer service to solve
user problems at any time. On the other side, the network problem of the platform needs to improve
its own technology.

(2) Improving the convenience of interactive communication

While conducting online classroom teaching on the platform, sometimes it is not convenient
for learners to interact and communicate with teachers. It is suggested that the platform should be
designed in a split screen so that users can simultaneously interact with the platform, thus timely and
effectively share and interact with information resources.

(3) Optimizing ease of use

For the problems regarding stability, security and compatibility of the platform, and the invisibility
for homework assignment and submission for mobile learning, as well as the block of pop-up questions
for video learning, it is suggested that the platform should continue to be optimized.

(4) Enriching platform resource

It is suggested that the platform should provide extended learning resources for users to ensure
that the resources cover all disciplines. In addition, more course activities can be added to the platform
to continuously improve the enthusiasm of learners.
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