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Abstract: The rising need for mobility, especially in large urban centers, consequently results in
congestion, which leads to increased travel times and pollution. Advanced traffic management
systems are being developed to take the advantage of increased mobility positive effects and minimize
the negative ones. The first step dealing with congestion in urban areas is the detection of congested
areas and the estimation of the congestion level. This paper presents a a method for a traffic state
estimation on a citywide scale using the novel traffic data representation, named Speed Transition
Matrix (STM). The proposed method uses traffic data to extract the STMs and to estimate the traffic
state based on the Center Of Mass (COM) computation for every STM. The COM-based approach
enables the simplification of the clustering process and provides increased interpretability of the
resulting clusters. Using the proposed method, traffic data is analyzed, and the traffic state is
estimated for the most relevant road segments in the City of Zagreb, which is the capital and the
largest city in Croatia. The traffic state classification results are validated using the cross-validation
method and the domain knowledge data with the resulting accuracy of 97% and 91%, respectively.
The results indicate the possible application of the proposed method for the traffic state estimation
on macro- and micro-locations in the city area. In the end, the application of STMs for traffic state
estimation, traffic management, and anomaly detection is discussed.

Keywords: speed transition matrix; traffic state estimation; traffic state classification; center of mass;
intelligent transport systems; speed probability distribution

1. Introduction

Demographic, economic, and technological changes and developments are enablers that support
the increase in the human need for mobility, especially in large urban centers. The increase in the
need for mobility leads to advanced solutions in the traffic management domain and requires the
implementation of Intelligent Transport Systems (ITS) solutions and applications [1]. Aside from the
positive effects, it also has negative effects, such as increased congestion or pollution in urban areas.

The sustainable transport development is often confronted by a traffic congestion. The European
Commission reports that congestion that is caused by increased mobility accounts for 40% of all CO2

emissions of road transport and up to 70% of other pollutants from transport, and the total cost of
congestion in the EU is nearly e100 billion, which stands for 1% of the annual EU’s GDP [2]. Traffic
congestion can be classified as recurrent, mostly due to a large number of commuters during peak
hours, and non-recurrent caused by an unexpected event, such as traffic accidents, extensive weather
conditions, or special events. The authors in [3] report that recurrent congestion traffic covers almost
85% of all congestion occurring on the urban road networks. On the other hand, different numbers
are reported for the highway facilities [4], where the authors state that 50% of all traffic congestion
is caused by non-recurring congestion and 40% is caused by recurring congestion. The crucial part
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of ITS supported systems for the decision-making processes are the detection and quantification of
traffic state to initiate and implement improvement strategies. Moreover, traffic state estimation is
a prerequisite to many other ITS applications, like travel time prediction [5], route computation [6],
traffic flow prediction [7], etc.

This paper presents a method for the traffic state estimation on urban road segments that are based
on the clustering of the Center Of Mass’ (COMs) of the speed data represented in the Speed Transition
Matrices (STMs). The proposed methodology includes three main steps: (i) data preprocessing,
(ii) STM computation based on the speed data, and (iii) clustering-based traffic state estimation process.
The main part of the preprocessing step is data filtering based on the seasonality that results in
summer months and weekend data being excluded from the real-life large Global Navigation Satellite
System (GNSS) dataset. The STMs were computed based on the speed data, and they represented
the speed probability distribution of vehicles traveling between two road segments (transition). Next,
the agglomerative clustering approach is conducted in order to cluster the traffic data in form of
the STMs. Clustering results in three classes of the traffic state. The results are validated using the
cross-validation approach and the specific domain knowledge data, which were extracted from the
Highway Capacity Manual (HCM). The validation resulted in the average accuracy of the classification
for the cross-validation of 97%, and the domain knowledge data in 91%.

Contributions of this paper are as follows:

– Novel traffic data representation is proposed in form of the STM which application is shown for
the traffic state estimation, routing applications, and anomaly detection.

– The methodology for the traffic state estimation on a city-wide scale is proposed based on the
STMs and computed COMs.

– The proposed methodology is applied and validated on the real dataset for the City of
Zagreb, Croatia.

The rest of the paper is organized as follows. In Section 2 literature review is presented on
recent developments related to GNSS data representation, data modeling techniques, and traffic state
estimation approaches. Section 3 presents the methodology that was used to estimate the traffic state
using the STMs and computed COMs with clustering, and validation methods. Section 4 describes the
used real-life GNSS dataset and the results of traffic state estimation, clustering, and validation. In
Section 5, the discussion is given regarding the presented method for the traffic state estimation. The
advantages and disadvantages of using the proposed methods are given, and the possible application
of the STMs for other traffic-related problems are presented. Section 6 presents the conclusion and
future work suggestions.

2. Literature Review

2.1. GNSS Data for Traffic Representation

The crucial part of the ITS are data-driven services [8,9], which are supported by the advancements
in technologies that enabled the lower cost of data collection systems. There are roughly two groups of
data collection systems: (i) dedicated infrastructures which mostly consists of point detectors such
as loop detectors, radar or lidar counters, and traffic cameras, and (ii) Floating Car Data (FCD) with
devices mounted inside vehicle or carried by the driver, like GNSS devices or cellular data. The FCD
from GNSS devices is often used to collect traffic data, because it provides a low cost, high accuracy,
less delay, and wide coverage. One of the main FCD advantage is the ability of route construction
and analysis.

The authors in [10] used GNSS data to conduct a field experiment in order to validate collected
traffic data. The result suggests more reliability when using the GNSS data than loop detector data.
In [11], the authors conducted an experiment with mobile phones onboard GNSS devices for traffic
density and volume estimation. The results show that the proposed models successfully incorporate
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GNSS data to estimate the traffic parameters. In [12], the authors used GNSS probe data for the traffic
state estimation based on the speed by incorporating the curve fitting method. In [13], the authors used
streaming GNSS data to classify the travel modes based on the characteristic distribution of velocity
and acceleration for different travel modes.

The GNSS datasets enable the use of the dynamic routing applications. Dynamic routing can be
defined as a process of changing the original (pre-computed) route based on the current traffic state on
the road traffic network [14]. The traffic network’s dynamic nature is manifested in both temporal and
spatial changes that can be captured by GNSS data. The authors in [15,16] conclude that drivers with
available real-time traffic information can significantly decrease travel time if compared to the drivers
using offline navigation tools.

In this paper, FCD data that were based on the GNSS tracks were used. The data were preprocessed
to compute the STMs that present the speed probability distributions when vehicles are moving
between consecutive road traffic segments. Computed STMs were used to represent the traffic state
on the observed road network segments. The STMs can be used in both offline and online route
planning scenarios.

2.2. Data Modeling Techniques

When estimating traffic states from sparse GNSS datasets, most of the authors use
aggregation-based methods in order to determine the observed traffic parameter value. Traffic data,
like speed, volume, or density, are mostly aggregated in profiles that represent the change of observed
parameter over the defined time period, i.e one day. Data is usually aggregated in a narrow time
interval (common values are 5-, 15-, 30-, 60-min.) as an average or median of all values recorded in
the observed time interval. Because of the data aggregation, profiles could include large deviations in
some time intervals that raises the question of the reliability of obtained results. One more challenge in
data aggregation is related to the missing data, as it can extremely influence the average or median
values.

Vector representation of traffic data in the form of a time series is one of the most common data
modeling techniques [17]. The change of traffic parameter under observation with dimensions 1× n is
examined through a daily profile in defined n time intervals. The shortcomings of such approaches
are reflected in the inability to represent spatial components of the observed parameter. In contrast,
some authors, [18,19], used matrix models in order to represent the traffic data. Matrix models can
model more complex data, with the ability to represent more dimensional data. Then, both spatial
and temporal information can be analyzed simultaneously. In most cases [18], matrix dimensions are
represented with m× n where m represents the number of spatial segmentations (often road segment)
and n number of time intervals. This kind of modeling can be used to extract spatial and temporal
dependencies between the observed traffic parameters. For example, in the case of the commonly used
data representation form of Origin-Destination (OD) matrices, one more dimension must be added in
order to analyze the temporal component. OD matrices represent the number of vehicles traveling
between defined points in the traffic network. While the provided information is useful for mobility
pattern research, the patterns could indicate false information due to the predefined delivery routes if
the data consist of delivery vehicles.

The novel data representation in the form of STM is proposed in order to overcome the mentioned
limitations regarding the sparse GNSS data analysis. STM does not suffer from aggregation or missing
data limitations, as data are not aggregated in such a way, and all of the recorded speed data are shown
in one matrix. The origin and destination vehicle movement are limited to consecutive links, enabling
the usage of delivery vehicles in the traffic analysis process.

2.3. Traffic State Estimation Approaches

Many traffic state estimation approaches are developed to overcome the challenge of quantifying
the congestion on the road networks [20]. Measures are related to the available traffic parameters, such
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as speed, travel time, congestion indices, delay, volume, and level of service. In this paper, the speed is
chosen as a traffic parameter for traffic state estimation. The authors in [21] report that speed is a good
measure for traffic state estimation, because the congestion is a function of speed reduction, which is
related to increase in time travel, vehicle operating cost, fuel consumption, and emissions. When using
the GNSS data, the speed is relatively easy to compute and does not require complex processing if
compared to extracting the traffic volume from the same dataset [22].

One of the main research goals with a topic that is related to traffic state estimation is to discern
different states and provide a certain threshold for the classification of the traffic states. The well-known
traffic study [23] presents the three-phase traffic theory. It includes classification to three states, namely
“wide moving jam”, “synchronized”, and “free flow”. The additional research was presented in [24],
where the authors presented a method for tracking synchronized flows and propagating moving
jams. The authors in [25] classified the congestion based on the traffic images that represent speed
on the observed road segment, resulting in five classes, namely “isolated”, “low frequency”, “high
frequency”, “homogeneous”, and “mixed”. In [26], the authors used a clustering technique to estimate
the traffic state based on the trajectory data. The authors in [27] used artificial neural networks and
decision tree algorithm to classify road traffic congestion levels based on the extracted speed traffic
patterns. The research resulted in three classes, namely “jam”, “heavy traffic”, and “light traffic”.
In [28], the authors used neural network to classify traffic patterns with the aim of incident detection.
The authors report three classes of traffic state described with speed, volume, and occupancy values.
The authors in [29] estimate the congestion of the trajectory segments with three different intensities.
Subsequently, congestion events are identified in the traffic network on each turning direction through
multiple clustering approaches based on the speed, distance, and time of day. The authors in [30] aim
to visualize the traffic conditions on the urban road network. Traffic conditions are classified based on
the average speed and grouped into five different classes.

In this paper, three classes of traffic state were used, namely “Free flow”, “Stable flow”,
and “Congestion”. This approach is used to characterize the congested traffic state and describe
all of the states that can occur on the traffic network. The COM estimation process is used to simplify
the clustering process of traffic data that are represented by STMs. The three dimensional STM
representation is transformed into the two-dimensional representation using the x and y coordinates
of COM. With this transformation, the classical distance metric, such as euclidean distance, is more
interpretable than the classification of raw matrices, where distance is measured between every
cell in two matrices. The proposed approach presents a simple but effective way of clustering the
traffic data represented by the STMs. The advantage of the proposed method can be seen in the
reduced computation complexity of the cluster analysis process and the increased interpretability of
obtained clusters.

3. Methodology

Given the large FCD dataset, this paper aims to describe a traffic state estimation and classification
method. Figure 1 presents the proposed methodology. In this Section, the main steps are briefly
described: (i) STMs computation, (ii) traffic state estimation process, and (iii) clustering and
validation methods.

3.1. Speed Transition Matrix

Most of the authors represent traffic data as a time series vector v ∈ R1×n [17] or a two-dimensional
matrix M ∈ Rm×n [22]. Dimensions m and n refer to the numbers of the road network segments
(the spatial component) and the number of time intervals (the temporal component) of the observed
road network. The STM concept is proposed on the Markov chain theory, where the transition matrix
shows the probability of transition from one state to another. The STM is used to represent the
probability of speed wchangehen traveling between two consecutive road network segments. In this
paper, the road network is represented as a directed graph G = (V, E), where V is a set of vertices
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representing intersections, and E is a set of edges representing road segments that connect two adjacent
intersections. The transition is defined as a spatial change in vehicle trajectory when traveling from
edge ei to edge ej in time interval t. As a traffic parameter under observation, the average speed is
used. The average speed computed on ei labeled as the origin speed so, and the average speed on the
ej segment is labeled as destination speed sd. Two examples of the transition are visually represented
in Figure 2a with red and blue colors. The transitions describe the vehicles traveling between edges c
and f , and edges b and g. Subsequently, the STM matrix X is constructed as follows. First, all speed
transitions from so to sd between ei and ej are discretized and then counted within the particular time
interval t. Each obtained value represent the count of transitions between so and sd. The speed counts
are further transformed into the speed transition probability distribution to obtain the probability for
every transition. Values are put into the matrix X, which dimensions depend on the chosen resolution
(sensitivity) of the speed change and the maximal observed speed. In this paper, 5 km/h is chosen
as the speed discretization value and 100 km/h for the maximal possible speed, which resulted in
matrix dimensions of 20× 20. The specific maximal speed value is chosen, because experiments are
conducted on the road segments with a speed limit between 50 and 80 km/h. Equation (1) presents
the STM, where every value pij represents the probability that the vehicle had origin speed so and
destination speed sd in the observed transition at time interval t.

Figure 1. The methodology for the traffic state estimation and classification based on the Center Of
Mass (COM) estimation of the speed data represented using Speed Transition Matrices (STMs).

Figure 2b,c show two examples of the STM. Example (b) represents normal traffic flow as the
high-speed values are present on both origin and destination segments, and (c) represents congested
traffic flow, as speed is speed much lower when compared to the free flow speed. It can be noted that
the position of the captured pattern is important information for the traffic state estimation.

X =


p11 p12 . . . p1n

p21
. . .

...
...

. . .
...

pm1 . . . . . . pmn

 (1)
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(a)

(b) (c)

Figure 2. (a) Example of transitions on a simple road network, (b) STM representing the normal traffic
flow, and (c) STM representing the congestion.

3.2. Center of Mass Estimation

This method presents a simple but effective feature extraction process. The feature, in this case,
is the position of the traffic pattern extracted from the STM. The COM’s position is the single most
important information that is useful for the traffic state estimation problem when using the STMs,
as the position can indicate different traffic conditions. If placed in the upper left corner, the position
indicates that the average speed is very low if compared to the speed limit and traffic state can be
declared as heavily congested. For the lower left corner, the position indicates very high speed on
origin road segments while, at the same time, the speed is extremely low on the destination road
segment. The same behavior can be noticed if COM is located in the upper right corner, where
speed values are low on the origin, and extremely high on the destination road segment. If the COM
coordinates are positioned in the center of the matrix or in the lower right corner, it indicates that
the speed values on both origin and destination road segments are relatively close or higher than the
speed limit. This behavior can be interpreted as normal traffic behavior, as the speed value points
to traffic flow without congestion. If COM’s position is located in-between mentioned traffic states,
the traffic state could be declared unstable.

STMs are transformed to extract the COM in order to simplify the classification process. As the
result, the 20× 20 STM is represented by COM coordinates, cx, and cy. Subsequently, all of the points
with coordinates cx and cy can be plotted in a two-dimensional space and clustered by the position in
the coordinate system. Figure 3 represents the transformation from STMs and simplification to COMs
plotted all in one coordinate system.
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Figure 3. Representing the three dimensional STM data with the two dimensional COM coordinates.

For the COM estimation, a method that is based on the computation of the expected coordinate
values is used [31]. First, marginal distributions for the x and y coordinates are computed while using
(2) and (3):

px(xj) =
m

∑
i=1

pij j = 1, 2, . . . , n (2)

py(yi) =
n

∑
j=1

pij i = 1, 2, . . . , m (3)

where px is a marginal distribution of the x coordinates of the STM, and py is a marginal distribution
of the y coordinates of the STM. Afterwards, x and y coordinates of the COM are computed as the
expected values:

cx =
n

∑
j=1

px(xj) · j (4)

cy =
m

∑
i=1

py(yi) · i (5)

where cx is a x coordinate of the COM, and cy is a y coordinate of the COM.

3.3. Clustering

In this paper, clustering aims to find groups of traffic patterns that are represented as STMs used
to represent the current traffic state on the observed road segment. Three classes of traffic state were
used, namely “Free flow”, “Stable flow”, and “Congestion”. This approach is used to characterize not
only the congested traffic state but to describe all states that can occur on the traffic network. The “Free
flow” class describes the traffic conditions when a vehicle travels on an empty road or with speed
close to the speed limit. The "Stable flow” class describes traffic conditions that most drivers feel as
“normal”, when drivers experience speed reductions, but the traffic is flowing smoothly most of the
time. The “Congestion” class indicates traffic conditions with a strong decrease in travel speed and
increased travel times on the traffic road network.

3.3.1. Agglomerative Clustering

The hierarchical clustering is chosen for the clustering method. This approach constructs a
hierarchical representation of a dataset, which presents an overview of the distribution of existing
COMs extracted from STMs. This approach’s advantage is in providing the ability of reproducibility
of resulting clusters and it provides more explanatory results [25]. There are two types of hierarchical
clustering: (i) agglomerative and (ii) divisive. The approaches differ by way of constructing binary
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tree representation. The agglomerative approach uses a top-down, and the divisive approach uses the
bottom-up strategy. In this paper, the agglomerative approach is used. It initiates each pattern as a
single cluster and measures the distance between patterns and intermediate clusters. Subsequently,
in every iteration, it combines the two closest patterns into a new cluster. The process is repeated until
only one cluster remains. Figure 4a shows the results of an agglomerative clustering presented by
dendrogram plot.

(a) (b)

Figure 4. (a) Result of the agglomerative clustering approach, and (b) the elbow method results.

3.3.2. Clustering Validation

The elbow curve is presented for the observed data in order to confirm the number of clusters.
In the cluster analysis process, the elbow curve is a heuristic used to determine the number of clusters
in the dataset. Figure 4b presents the elbow curve with distortion plotted against the different number
of clusters. The “elbow” can be detected in the part of the curve where the number of clusters is 3.
At this point, the further increase of the number of clusters would not significantly contribute to the
clustering quality. This value is used for the number of clusters for further experiments.

As the first validation technique of the classification process, cross-validation is adopted from [29,32].
For the cross-validation process, the 1000 data instances (COMs) from every class are randomly selected
and labeled based on the visual inspection. The selected dataset is then separated into the training
and test sets with a ratio of 80% for training and 20% for testing. The labeled dataset is then used as a
ground truth value and compared to the agglomerative clustering results.

The second validation process is related to comparing the resulting classes with the domain
knowledge data. The well-known HCM values of the Level of Service (LoS) are used to represent the
specific domain knowledge data for the traffic state estimation process. HCM defines six levels of
service for road segments that are based on driving speed values, from A to F, with LoS A representing
the best driving conditions and LoS F the worst. Label A represents the best traffic conditions, with
vehicle speeds larger than 80% of the free-flow speed, while label F represents the most extreme
congestion, where vehicle speeds are less than 30% of the free-flow speed [33]. LoS quantifies the
increase in travel time due to the conditions on the road segments and it is also a measure of driver
discomfort, and fuel consumption. In this paper, LoS values are used to validate the traffic state
estimation process. Firstly, the LoS values are merged in three classes in following way: (i) free-flow
traffic conditions represented by the LoS labeled as A and B, (ii) traffic conditions represented by
the LoS labeled with C and D are labeled as stable, and (iii) congested traffic conditions that are
represented with LoS are labeled with E and F. Then, the same test dataset for the cross-validation is
labeled with three classes. The labeled dataset is then used as a ground truth value and compared to
the agglomerative clustering results.
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4. Results

4.1. Data

The large real-life FCD acquired from the vehicles equipped with the tracking devices is used.
Each record contains a time-stamp, geographical longitude and latitude, speed, and heading. Due to
the storage limitation, most of the data are sampled in the following way: 100 m for vehicles in driving
mode and every 5 min. for turned off vehicles. Raw data are map matched to the road segments
in a digital map based on the measured latitude, longitude, and heading. Data that could not be
matched to appropriate road-segment due to the errors caused by tunnels, high building concentration,
or other causes were filtered out. GNSS data for Croatia’s road network were recorded for five years
between August 2009 and October 2014 by approximately 4200 tracked vehicles. The tracked vehicle
fleet is versatile and mostly consists of delivery vehicles (vans, caddies, small trucks) and taxi cars.
The historically tracked data, which consist of 6, 55 billion records, was provided by Mireo Inc. as a
part of the SORDITO project [34]. In this paper, we analyze the data and estimate traffic state using the
proposed method for some of the most relevant road segments and intersections in the City of Zagreb,
the capital, and the largest city in Croatia.

The seasonality of the traffic flow is considered in order to lower the deviation. Summer months,
July and August, are excluded from the experiment. They significantly influence the results on the
road network of Zagreb, due to the different, and lower traffic flows that are caused by vacations [35].
Data are further divided into two groups: working days and weekend days. Working day data,
Monday to Friday, show different traffic conditions when compared to the weekend data (Saturday
and Sunday), mostly due to the daily commuters and, therefore, the weekend data are also excluded.

4.2. Traffic State Estimation

Results of a traffic state estimation are shown for the eight time intervals throughout a day. Time
intervals are defined by [34,36] for the congestion estimation problem based on the same real-life FCD
dataset that refers to speed data for the City of Zagreb. Intervals are defined, as follows: (i) 05:30–06:45
as morning interval with very small traffic volume, (ii) 06:45–07:25 as interval before the morning
rush hour, (iii) 07:25–08:20 as morning rush hour, (iv) 08:20–15:30 as interval between morning and
evening rush hour, (v) 15:30–17:05 as evening rush hour, (vi) 17:05–19:00 as interval after evening rush
hour, (vii) 19:00–22:00 as interval that represent evening traffic conditions, and (viii) 22:00–05:30 as the
night interval.

Table 1 represents the results for the traffic state estimation grouped into three classes. The results
are shown while using the ratios between the number of classified transitions and the total number of
transitions in the observed time interval. The rows show the distribution of classified transitions in
the observed time interval. Rush hours are highlighted and, as expected, have the largest values of
the transitions labeled as congested. The time interval between rush hours shows the largest value
of the ratio for the congested transitions. This indicates that congestion that started in the morning
rush hour is prolonged to the next time interval. This also could indicate that congestion starts at the
interval between rush hours and is prolonged to the evening rush hour. This kind of behavior could
indicate inefficient traffic regulations on observed transitions. The ratio of the congested roads in the
time interval of 17:05–19:00, shows a large portion of the transitions classified as congested, although it
is not the rush hour interval. This behavior can be addressed to the city attractions placed in the city
center and people visiting such locations in their free time. This fact can be confirmed by the classes’
spatial distribution that is presented in Figure 5g.
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(a) 22:00–05:30 (b) 05:30–06:45

(c) 06:45–07:25 (d) 07:25–08:20

(e) 08:20–15:30 (f) 15:30–17:05

(g) 17:05–19:00 (h) 19:00–22:00

Figure 5. Results of traffic state estimation visualized on the map of the City of Zagreb.
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Table 1. Results of traffic state estimation represented using three classes.

Free Flow Stable Flow Congestion

22:00–05:30 28.31% 54.15% 17.54%
05:30–06:45 27.38% 53.55% 19.08%
06:45–07:25 19.08% 42.83% 38.10%
07:25–08:20 13.97% 32.53% 53.50%
08:20–15:30 12.09% 33.86% 54.05%
15:30–17:05 13.05% 35.46% 51.04%
17:05–19:00 15.53% 40.59% 43.88%
19:00–22:00 19.77% 46.33% 33.90%

Figure 5 shows the spatial distribution of the classified traffic patterns for every observed time
interval. The colors used for the visualizations are: (i) red—“Congestion”, (ii) yellow—“Stable flow”,
and (iii) green—“Free flow”. It can be noticed that the congestion level is the highest in the city center
and the west part of the city. Some congestion patterns can be extracted by analyzing all time intervals.
For example, the southern part of the city represents the business area. The congestion appears only
in the morning and evening rush hours due to the daily commuters. Visualization of the congestion
patterns can be used for more in-depth and more granular analysis of the traffic state. For the case
study, Zagreb’s three most important bridges across Sava river are chosen, which divide the southern
and north part of the city. The bridge Jadranski most is detected as the most congested bridge. Figure 6a
shows the enlarged image of the traffic congestion estimation results for the Jadranski most in the
rush hours. The results show the most congested approaches to the bridge and the roundabout at
the southern approach. The figure shows that STMs can estimate traffic state at micro-locations and
consider the direction of the traffic flow. It can be observed that direction from south to north is more
congested than the opposite one. The same behavior can be noticed in the afternoon rush hour.

On the other hand, different behavior can be observed on the other two bridges, namely Most
slobode (left) and Most mladosti (right), as shown in Figure 6b,c. The traffic state estimation results
show different behavior in the morning and afternoon peak hours. In the morning peak hours,
the traffic congestion is increased in a direction towards the city (south to north), which indicates the
increase in traffic demand due to the commuters, while the other direction (north to south) represents
the normal or free-flow conditions. In the afternoon peak hours, both bridges’ flow indicates the
normal or free-flow conditions, and congestion occurs at the intersections due to inadequate traffic
lights signalization.

(a) (b) (c)

Figure 6. (a) Traffic state on the Jadranski most in both peak hours, (b) Traffic state on the bridges Most
slobode and Most mladosti in the morning peak hours, and (c) Traffic state on bridges Most slobode
and Most mladosti in the afternoon peak hours.
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4.3. Validation Results

The results for both validation processes are reported while using the confusion matrices and
the classification report that shows the total accuracy of the model, precision, recall, and F1 scores
for every class. The confusion matrix reports the performance of the classification in a visual manner.
Each row of the matrix represents the ground truth values, while the columns present the predicted
class labels. The values in the matrix represent the accuracy of the prediction computed as a number of
data instances that are correctly classified divided by all of the data provided for the considered class.

In classification problems with more than two classes, the precision is computed as the sum of the
true positive values, divided by the sum of true positive and false positive values computed across all
classes. The F1 scores are computed as the harmonic mean of precision and recall. The accuracy is the
measure for the accuracy of the model computed across all classes by averaging the total true positive,
false negative, and false positive values.

Table 2 presents the classification report for the cross-validation method. The validation achieved
the average prediction accuracy of 97%. The recall of the class labeled as “Free flow” with a value 84%
shows that, even the precision shows the perfect score, there are some values that are not classified
correctly. If Table 3 (confusion matrix) is observed, it can be seen that 15.9% of the values of the class
“Free flow” are labeled as “Stable flow”. The results of the cross-validation method indicate that the
classes labeled with “Stable flow” and “Congestion” are well separated and they can be classified with
high accuracy, while classes that are labeled as “Free flow” and “Stable flow” to some extent are harder
to separate.

Table 2. Results of the cross validation.

Precision Recall F1 Score

Free flow 1.00 0.84 0.91
Stable flow 0.93 1.00 0.97
Congestion 1.00 1.00 1.00

Accuracy 0.97

Table 3. Confusion matrix of the cross validation.

Known
Predicted Free Flow Stable Flow Congestion

Free flow 0.841 0.159 0
Stable flow 0 1.000 0
Congestion 0 0.003 0.997

Table 4 presents the classification report for the validation that is based on the domain knowledge
extracted from the HCM. The validation achieved the average prediction accuracy of 91%. The lower
prediction accuracy can be accounted to the strict boundaries of defined LoS values. The lowest
precision value can be noticed in the class labeled as unstable operations. If the corresponding
confusion matrix is observed in Table 5, it can be seen that 19.1% of unstable traffic instances are
predicted as congested traffic and 4.6% are predicted as normal traffic.

Table 4. Results of validation using domain knowledge data.

Precision Recall F1 Score

Free flow 0.99 0.95 0.97
Stable flow 0.83 1.00 0.90
Congestion 1.00 0.81 0.89

Accuracy 0.91
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Table 5. Confusion matrix of validation using domain knowledge data.

Known
Predicted Free Flow Stable Flow Congestion

Free flow 0.954 0.046 0
Stable flow 0.004 0.996 0
Congestion 0 0.191 0.809

5. Discussion

In this paper, novel traffic data representation in the form of the STM is proposed.
This section describes the potential application of the STM in traffic-related research and applications,
and highlights some drawbacks that need to be addressed in further research. This section also
emphasizes expected impact for academia, such as using STMs for visualization, quantifying,
and classifying traffic state, capturing the changes in the speeds on a road network, identifying
the anomalous behavior, and using COM’s movement for presenting the probability of traffic state
change or the capturing complex traffic patterns that can be used to identify potentially dangerous
traffic situations.

Alongside the presented application of the method, it has some drawbacks that need to be
addressed. Traffic state value is only based on the speed values. This could be a problem on short road
segments bounded by unsynchronised traffic lights because vehicles would have very low speeds due
to the traffic light’s signal plan. Regarding this property, the traffic state could be wrongly estimated as
very high. Secondly, sparse GNSS data is used, which entails wide time intervals for the experiment.
Commonly used, shorter time intervals like 5-, 15-, 30-, or 60-min could give better insight on the
traffic state and, thus, on the traffic state on the observed road segments. In this paper, the dataset used
for the experiment is data that only include working days to only capture the most extreme congestion
conditions in the urban road network. A possible improvement would be to include the weekend data
to analyze the differences between traffic in working and weekend traffic flow fluctuations.

5.1. Traffic State Estimation

In this paper, the use of the STM is proposed to estimate and classify the traffic state on the
urban road network. It is shown that the STM can be useful for the visualization, quantifying,
and classifying traffic state. The STM is a possible traffic data modeling approach for traffic state
prediction. The proposed data model can be used as a set of images for training some machine
learning model in order to predict the future state of traffic. The full potential of the STMs can be
utilized in (near) real-time analysis when the position of the COM for every STM is changing over
the observed time period. The position itself and the movement of the COM (positions in the past
observed intervals) could provide usable and actionable information for traffic management systems.
The COM’s movement indicates the change in traffic state and can present the probability of traffic
state change, which is an important factor in the traffic state prediction problem.

5.2. Routing Applications

The routing applications benefit the most from the traffic state estimation and prediction. Every
route planner must include current, and possibly future, traffic state information to enable fast and
secure delivery. Traffic state estimation based on the STM can provide useful information regarding
the congestion, and therefore routing through the less congested roads. The framework for solving
the well-known routing problem Time-Dependent Vehicle Routing Problem, is presented in [36].
The authors used speed profiles to extract the congestion zones and quantified the congestion by
computing the slowdown coefficients using the travel times. The STM can be used in both steps.
The congestion zones can be identified based on the position of the COM, while the same point
represents the slowdown probability on the observed road segments.
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5.3. Anomaly Detection

Anomaly detection is a crucial part of ITS, especially in the incident management domain.
The detection of the recurrent anomalies like heavy congestion could improve reaction time and
give some actionable information for the traffic management authorities. On the other side, fast
detection of non-recurrent anomalies, like traffic incidents, could even save a human life. STM presents
an opportunity to capture the changes in the speeds on the observed road network, and identify the
potential anomalous behavior. In contrast to the speed profiles, the STM provides a two-dimensional
distribution of speed on consecutive road segments in an observed time interval. It enables the capture
of a more complex traffic patterns that can be used to identify potentially dangerous traffic situations.
As one of the applications for anomaly detection, traffic bottleneck detection and propagation can
be represented while using STMs. The STM presents the tool to capture, visualize, and analyze the
bottlenecks’ impacts on the road network. The bottlenecks result in traffic congestion on one part of
the network caused by the traffic accident, badly timed traffic lights, or slow vehicles that disrupt the
traffic flow. The STM can capture such scenarios. The COM’s position in the upper right corner, or in
the lower-left corner, could indicate a serious accident, as it shows very high-speed values on one road
segment if compared to its consecutive one with very low-speed values.

6. Conclusions and Further Research

This paper presents a novel traffic data representation of the GNSS dataset by using the STMs.
The methodology is presented for the traffic state estimation and classification on a citywide scale.
The COM for every matrix was extracted to classify the STMs. This approach resulted in simplification
of the classification process and higher interpretability of the resulting classes. The results show that
STMs can be used to estimate the traffic state on a citywide scale and on micro-locations. The results
are validated using the cross-validation method, and specific domain knowledge, which resulted in an
accuracy of 97% and 91%, respectively.

As presented in the discussion section, the STM is a traffic data representation model that shows
multiple possible implementation possibilities in different traffic and transport-related research and
applications. Some of the applications are: (i) real-time traffic state estimation, (ii) routing applications,
and (iii) anomaly detection in traffic data by identifying unusual traffic patternsthat are captured by
the STM.

There are multiple possible further research directions for the academic community. The first
one could include training a deep learning model that is based on the Convolutional Neural Network
(CNN) as a traffic state classifier. The STM is a data model that formed as a traffic image that can be
used as input data for training the CNN. The second one would include a tensor-based analysis. Traffic
tensor could be created as multiple STMs placed in the tensor-based on the time interval, in which the
STM is collected. Subsequently, a tensor-based analysis could give more spatiotemporal insight into
traffic conditions.
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