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Abstract: Agriculture is an essential driving force in water resources management and has a central role
in the European Union’s Rural Development Programme (RDP). In this study, the solution developed
addresses countries characterised by relatively small farms, vast spatial and temporal variability and
severe data scarcity. The proposed model-based approach is directly relevant to the evaluation of
agricultural policies affecting water abstraction based on multisource data. The evaluation process
utilises an entirely spatially distributed, continuous hydrological model. The model provides a
gridded output of the main hydrological balance components, as well as vegetation water deficit and
irrigation water requirements, on a daily temporal step on a country scale. It provides information
at the farm level and facilitates the estimation of water abstractions in agriculture, taking into
consideration all the pertinent information included in the Integrated Administration and Control
System database that is maintained by RDPs in Europe. Remote sensing data also are used to
validate crop patterns. The obtained results were analysed to estimate the net effect of the RDP to the
reduction of water abstractions in agriculture. This work produces valuable information concerning
the evaluation of agricultural policies and the assessment of land use, and climate change adaptation
and mitigation strategies.

Keywords: water resources management; hydrological model; GIS; rural development policy;
irrigation; water abstractions

1. Introduction

Water is a vital resource on the planet and an indispensable input in crop production and almost
every other activity. At the same time, agriculture represents the primary water user, mainly for
irrigation, and has a central role in sustaining the growth of rural areas. As the world population grows
and the total demand for food increases, the rivalry from other economic activities surges, and as a
consequence, the water availability for crop production, in many regions, decreases [1,2]. Therefore,
water conservation in agriculture attracts ever-increasing attention under the pressure of climate change
and intense competition for the limited freshwater resources between the various users, especially
in semi-arid and arid regions [3–6]. Additionally, the importance of water management practices to
conserve freshwater ecosystems and biodiversity [7] highlights the complexity of such an endeavour.
In this framework, the sustainable management of water resources is a crucial step in preserving not
only agricultural production, but the vast majority of activities that sustain contemporary societies [8].

Sustainability 2020, 12, 7137; doi:10.3390/su12177137 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-2712-1676
https://orcid.org/0000-0002-1094-9397
https://orcid.org/0000-0002-1741-1493
https://orcid.org/0000-0002-7146-9549
http://dx.doi.org/10.3390/su12177137
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/17/7137?type=check_update&version=2


Sustainability 2020, 12, 7137 2 of 25

However, the lack of policy initiatives and widespread use of inefficient irrigation practices present
significant threats for water resources and food security [9]. Indicatively, extensive research on effective
agricultural water management practices in the last decades includes research on new irrigation
technologies, deficit irrigation, cultivation of drought-resistant crops and optimisation of crop patterns
avoiding water-intensive crops [9–13]. Recent technological developments in sensors, communication
and automation technologies also provide a sound basis for efficient irrigation management based on
environmental measurements such as soil moisture, evapotranspiration or crop stress [3,4,14,15].

Agriculture, therefore, is an essential driving force in the management of water use. Therefore,
it has a central role in the Rural Development Programme (RDP) of the European Union and the
Common Agricultural Policy (CAP) objective of “ensuring sustainable management of natural resources
and climate action”. Progressively, the CAP has embraced environmental goals [16,17]. These goals,
undoubtedly, are the primary source of funding and the critical form of public intervention influencing
natural resources and environmental management [18,19]. The primary policy tool in pursuing CAPs’
environmental objectives are the Agri-Environment Measures (AEMs) [18]. The AEMs target water
savings directly or indirectly. For example, the AEMs which attempt to control the use of nutrients
also target irrigation water savings. These measures set aside a proportion of the farm’s land and
reduce the use of nutrients and water on the rest. As a result, such AEMs alter the agricultural land
use pattern in the areas where they operate. At the same time, other measures aiming at securing crop
production and increasing competitiveness align with the overall environmental objectives [20,21].

The evaluation of rural development policy holds a key role in safeguarding RDP efficiency
in achieving the CAP objectives. Evaluation makes use of specific questions (Common Evaluation
Questions—CEQ) and impacts indicators that are common among all EU member states. CEQs and
impact indicators are part of the EU’s Common Monitoring and Evaluation Framework (CMEF).
Monitoring and evaluation are indispensable to adaptive policy design and management [22].
Proper indicators play a critical role in policy evaluation as well as in supporting actors in making
well-informed decisions based on timely, contextualised, and actionable information [1,23]. In this
context, academic research attempts to elaborate on robust indicators that will unravel the impact of
policy measures on issues related to water use. These issues refer to total water abstraction, water-use
efficiency in terms of “crop to drop”, and the water footprint of production. As such, addressing
them is highly essential for decision-makers in water-for-food governance from the local to the global
level [24–26].

The leading impact indicator related to water is I.10—“Water abstraction in agriculture” and
its complementary result indicator is R.13—“Increase in efficiency of water use in agriculture in
RDP supported projects”. The related CEQ is “To what extent has the RDP contributed to the CAP
objective of ensuring sustainable management of natural resources and climate action?” To this end,
the European Commission (EC) provided a set of detailed, nonbinding guidelines for “Assessing
RDP achievements and impacts in 2019” through the European Evaluation Helpdesk for Rural
Development [27]. The guidelines present several alternative methodologies which can fulfil the
evaluation quality criteria of rigorousness, reliability, robustness, validity, transparency, credibility,
practicability and cost-effectiveness.

The indicator I.10—“Water abstraction in agriculture” refers to the volume of surface and
groundwater applied to soils for irrigation purposes. According to the definition adopted in Regulations
(EC) No. 1166/2008 and (EC) No. 1200/2009 on farm structure surveys and the survey on agricultural
production methods correspondingly: “the volume of water cubic metres used for irrigation per
year is defined as the volume of water that has been used for irrigation on the holding during the
12 months prior to the reference date of the survey, regardless of the source (VIII. Irrigation, Annex II
of Commission Regulation (EC) No 1200/2009). The estimation may be produced by means of a model
(art. 11 of Council Regulation (EC) No 1166/2008)”.

According to the guidelines [27], the most appropriate data source so far is the “Survey on
Agricultural Production Methods” provided by Eurostat; however, relevant data are available only
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for 2010. Besides, the data sources used in many countries to make these estimations are unclear,
given the absence of appropriate monitoring infrastructure in local water distribution authorities or
metering devices on individual farms. The quality of the information collected will improve in the
future since this is an “ex-ante conditionality” for funding, i.e., a precondition for providing funds.
Hence, at this moment, the use of models that can estimate the volume of water used in agriculture
based on agricultural land use recorded by Integrated Administration and Control System (IACS),
meteorological data and annual crop statistics seems to be the most suitable methodology for countries
facing data sparseness. Models are widely used in every aspect of planning and management of water
resources in agriculture [5,28–32] as well as in evaluating various economic and environmental impacts
of RDP effects [8,17,18,33–35].

A hydrological model is a computer-based simplified representation of a real-world hydro system
that enables researchers to understand, predict and manage water resources. There are several types of
models according to the application, the modelled processes, the method and the time and space scales.
Specific purposes and specific scales necessitate the use of various modelling approaches [36]. Also,
advances in hydrological knowledge and the increasing abundance of computer power facilitate the
development of more sophisticated and more efficient models. Hydrological models are characterised
as lumped, distributed and semi-distributed, according to the spatial scale in which they represent
the hydrological processes. Lumped models describe a watershed as a single entity and simulate
storages and fluxes into and out of the basin as a whole. Distributed models consider the spatial
variability of physiographic characteristics, hydrological processes, meteorological conditions and
boundary conditions, by dividing the watershed into many finely discretised entities (grid cells).
Each discretised entity represents small, generally homogeneous, parts of the watershed, and the
storages and fluxes between them are determined across the watershed. Semi-distributed models lay
somewhere in between lumped and distributed models [37]. Concerning their simulation basis, models
can be physical, conceptual or empirical. The most hydrological models in the international literature
are “conceptual,” using a priori relationships to simulate fluxes and storages [37]. The development of
Geographical Information Systems (GIS) and the increasing availability of vast volumes of spatial data
have also promoted the closer integration of GIS and hydrological models [36,38–40].

Hydrological modelling is a useful tool for the estimation of irrigation water needs at several
scales [5,32,41]. As an example, spatial distributed hydrological modelling has supported the estimate
of irrigation water needs at the country scale [5] as well as the estimation of the water footprint
of crops to establish alternative management plans for more sustainable water use [9]. During the
last decades, Remote Sensing (RS) has provided data with excessive spatial resolution, systematic
revisit times and synoptic view of the Earth’s surface [42]. The multispectral and multitemporal earth
observation satellites are an accurate and prompt tool for mapping land use/cover (LULC) and crop
types (CT) [43,44]. Additionally, RS classification techniques can create accurate CT maps.

This study proposes an evaluation procedure developed for Greece. However, since Greek
agriculture is characterised by small-sized and fragmented farms, vast spatial and temporal variability,
and severe data scarcity, this study can be valuable to many other southern EU countries. The proposed
model-based approach is directly relevant to the evaluation of the impact of agricultural policy
measures on irrigation water use, because it provides a reliable estimation of the impact indicators
and supports the statistical estimate of the policy’s net effects. To achieve this objective, the proposed
evaluation approach utilises the information included in the IACS spatial database. Such information
includes, among others, the adoption of agri-environmental measures, irrigation and water source.
Remote sensing data and techniques validated the information related to crop patterns. Finally, based
on the obtained results, the study estimates the net effect of the RDP on irrigation water savings.
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2. Materials and Methods

2.1. Developed Solution Characteristics

This work developed and applied a modelling approach which addresses the challenges related to
the small size and fragmentation of the Greek farm landscape. It also takes account of the vast spatial and
temporal variability and the severe data scarcity. This modelling approach is relevant to the evaluation
of agricultural water policies, because it facilitates the static and dynamic estimation of the gross
and net impact indicators. The proposed methodology uses a fully spatially distributed, continuous
hydrological model able to provide a gridded output of the main hydrological balance components,
vegetation water deficit and irrigation water needs on a daily temporal step for the whole country.
The developed solution is an integral part of a specially designed geo-information system planned to
include all the data and methods which are essential for the application of the hydrological model and
the incorporation of the model’s results to the spatial database of IACS. Furthermore, it supports the
analysis of the obtained results, for the estimation of the indicators’ gross and net values and of their
change. Also, the geo-information system comprises a knowledge base which holds all the information
for pre-processing the spatial data and for estimating model parameters. Such information may refer to
the Curve Number data layer, the soil hydraulic properties, or the vegetation characteristics (planting
dates, rooting depth, coefficients needed for actual evapotranspiration calculation, and others).

The base of the developed modelling approach is AgroHydroLogos model [5,36,39,40,45].
The model operates as an extension of the GIS software package ArcGIS (Environmental Systems
Research Institute-ESRI, Redlands, CA, USA). As such, it facilitates the entirely spatially distributed
calculation of the main hydrological balance components and the irrigation water requirements, and
makes use of the capabilities of ArcGIS in editing, analysing, managing and visualising geospatial
data. The model can calculate, on a daily or monthly basis, the indispensable hydrological balance
components, such as soil moisture, actual evapotranspiration, runoff and deep infiltration. Additionally,
it may also calculate other important variables, including vegetation water deficit and irrigation water
requirements, in order to facilitate agro-hydrological analysis. The hydrological model development
utilises object-oriented programming techniques which facilitate adaptation and further development.
The Graphical User Interface (GUI) of the model follows the typical ArcGIS software extensions form.
The hydrological model is flexible and simple, because its conceptual scheme draws on well-established
but simplified methods for the simulation of the involved hydrological processes.

The main reasons behind selecting the AgroHydroLogos model in this study were that: (i) the
use of an in-house developed simulation model may provide better insight and, at the same time,
more flexibility in adapting the model to the peculiarities of the present application (e.g., compatibility
with the IACS spatial database); (ii) the model has been already applied and tested under Greek
conditions, in the entire country taking into account the strict time and financial limitations of the
current study; and (iii) the model can be applied in various forms (e.g., daily and monthly temporal
steps, spatial resolutions) depending on the input data availability, and therefore, it can be applied at a
first stage using the currently limited available data, but it can be further improved as more detailed
data become available in the future or also adapted to additional scenarios.

This application selects the daily temporal discretisation to describe with reasonable detail the
hydrological processes and to allow the detailed simulation of irrigation. Furthermore, this time step
allows the simulation of long periods and the utilisation of readily available meteorological data. At the
same time, it may also exploit reanalysis data or data related to future climate scenarios.

The spatial resolution of the hydrological model was set to 300 × 300 m. This spatial resolution is
a compromise between the required resolution to represent the typically very small farms and the high
spatial variability (e.g., soils and relief) on the one hand and the limitations posed by the computational
requirements and data storage capacity considering the size of the study area.

A key characteristic of Greece, as well as of many other South European countries, is the
extensive spatial variability of meteorological conditions within short distances, mainly due to the
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considerable differences in elevation, the very long coastline and the significant number of peninsulas
and islands [46]. At the same time, in most cases, the meteorological information available is sparse
and representative of lower altitudes or coastal locations [21]. In order to overcome these limitations,
the applied modelling approach uses interpolation techniques incorporating adjustments depending
on topography. In the applied methodology, the weights of the available weather stations for each
grid cell of the simulated area were calculated before each execution of the model, according to the
Inverse Distance Weight method. The values of the meteorological variables were then calculated
on a cell-by-cell and day-by-day basis during run time, using the previously calculated weights and
considering the topographic conditions additionally in each grid cell. This methodology requires a
negligible cost concerning storage or computational power in comparison to other techniques, such as
the spatial interpolation of the meteorological data before running the model, or the application of the
entire spatial interpolation algorithm at each time step that may affect the model’s performance and
use considerable storage space.

Several studies provide a more thorough description of the AgroHydroLogos simulation
model [5,36,39,40,45].

2.1.1. Conceptual Scheme

The design of the conceptual scheme of the model accomplishes the following targets: (i) makes use
of well-established but simplified methods for the simulation of the involved hydrological processes,
(ii) requires readily available or easy-to-obtain spatial data and parameters, (iii) adapts to Mediterranean
conditions, (iv) efficiently describes vegetation-water dynamics, and (v) simulates crops irrigation.
Figure 1 presents the core of the conceptual scheme and the involved storages and flows.
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soil volume.

The water content of the reference soil volume is directly involved in the calculation of most
water balance components such as actual evapotranspiration, infiltration, direct runoff and deep
infiltration, as well as in the estimation of crop water requirements. Thus, the following equation that
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describes the water balance of the reference soil volume (Figure 1) has a central role in the hydrological
model operation.

RSWCi−1 − SRWCi = Pi −Qi − aETi −DIi (1)

In this equation, RSWCi−1 and RSWCi (mm) are the reference soil volume water contents of the
previous and the current day, respectively, and Pi (mm), Qi (mm), αETi (mm) and DIi (mm) are the
total precipitation depth, the direct runoff depth, the actual evapotranspiration depth and the deep
infiltration depth of the current day, correspondingly. The reference soil volume is defined as the
topsoil layer. In very deep soils, it is limited by the rooting depth.

In wet periods RSWC may increase up to a maximum value, which equals to the water holding
capacity of the reference soil volume (RSWHC). Increased RSWC values result in reduced infiltration
rates, increased actual evapotranspiration rates and increased deep infiltration rates. In contrast, in dry
periods when soil becomes very dry, actual evapotranspiration, deep infiltration and effective rainfall
are limited. The initial value of RSWC is the primary initial condition for the application of the model;
however, its determination is challenging. For this reason, the model’s application requires a warm-up
period, during which RSWC is adjusted by the success of very wet winter periods or very dry summer
periods when RSWC equals to the RSWHC or zero, respectively.

2.1.2. Simulation of Hydrological Processes

Direct runoff is calculated using the Soil Conservation Service Curve Number (SCS-CN) method,
which is very well documented and one of the most widely used conceptual methods for the estimation
of runoff response [44,47–54]. This simple but effective method directly accounts for most of the factors
affecting runoff generation, such as land use/cover and soil by using only one parameter.

Specifically, the following equation calculates the direct runoff depth:

Q =
(P−λS)2

P+(1−λ)S f or P > λS

Q = 0 f or P ≤ λS
(2)

where P is the total rainfall depth (mm) (in this case the daily rainfall depth), λ is the initial abstraction
ratio, Q is the direct runoff depth (mm), and S is the potential maximum retention depth (mm) expressed
in terms of a dimensionless curve number (CN) parameter as follows:

S =
25, 400

CN
− 254 (3)

In this study, the initial abstraction ratio is set to the typical value (λ = 0.2) in order for CN to
be the only unknown parameter of the method and to maintain the compatibility with the method
documentation. In order to account for the effect of the soil’s antecedent moisture conditions (AMC)
on runoff response, the estimated CN values are adjusted according to the reference soil volume water
content of each processed cell. Initially, the CN values corresponding to dry (CNI) and wet (CNIII)
conditions are estimated using the equations described in the method’s documentation based on CN
value for the typical conditions (CNII) as described in the method’s documentation [54]. Then, the CN
value is adjusted each day linearly between CNI and CNIII depending on the actual soil water content
of the reference soil volume. More details on the SCS-CN method are present in [44,47–54].

The estimation of the deep infiltration through the soil profile is through the Brooks and Corey [55]
equation assuming free drainage (zero pressure head) boundary condition at the bottom of the reference
soil volume:

K = Ks(θ/θs)
1/n (4)

where K represents the unsaturated soil hydraulic conductivity when soil moisture equals θ,
Ks represents the saturated soil hydraulic conductivity, θs is the soil moisture in saturation and
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n is a shape factor. Base flow simulation uses the method of Arnold et al. [56] and Hattermann et
al. [57]:

Qb,i = Qb,i−1e(−ab) + Wrch(1− e(−ab)) when aq > aqq

Qb,i = 0 when aq ≤ aqq
(5)

where Qb,ι (mm) is the base flow in the day i, Qb,ι − 1 (mm) is the base flow in day i − 1, αb is the base
flow reduction, Wrch (mm) is the aquifer recharge in the day i, aq (mm) is the water quantity stored in
the aquifer in the day i, and aqq (mm) is the limit of stored water, below which there is no base flow.

The calculation of the actual Evapotranspiration rate (aET) draws on meteorological conditions,
land cover and water availability in the reference soil volume. In this application, meteorological
conditions are considered through the reference evapotranspiration (ETo), which is a climatic variable
computed from meteorological data. Reference evapotranspiration is calculated with the Food
and Agriculture Organization (FAO) Penman–Monteith method [58], which is a physically based
method that closely approximates ETo and explicitly incorporates both physiological and aerodynamic
parameters. The meteorological data required are daily values of air temperature, solar radiation,
air relative humidity and wind speed. Land cover characteristics (e.g., aerodynamic properties, albedo,
stomatal characteristics, leaf anatomy) are considered through the crop coefficient (Kc). In this way,
potential evapotranspiration ETp is calculated from ETo as follows:

ETp = Kc·ETo (6)

The aET is finally calculated based on a water stress coefficient Kst expressing the effect of water
availability in the reference soil volume.

aET = Kst·ETp (7)

The values of Kc and Kst are determined for each grid cell and each day, depending on the
vegetation characteristics of each place, based on the knowledge base, which contains information for
a wide range of land cover types.

Irrigation water needs (IRR) are calculated for the irrigated agricultural areas and for each time step
as the difference between the evapotranspiration rate for standard optimal irrigated crop conditions
that do not induce significant crop yield reduction and the actual evapotranspiration rate without
irrigation of Equation (10).

IRR = ETp·Sc − aET (8)

The adjustment coefficient (Sc) is the acceptable ETp reduction rate without significant yield
reduction [58]. Typically, a value of Sc equal to 0.90 is considered acceptable and was used in this
application. However, the acceptable crop stress threshold can be adjusted for drought-tolerant crops or
the simulation of deficit irrigation. Irrigation water application and distribution losses are considered
on a later stage of the geospatial analysis as it is explained below. Finally, snow accumulation and
snowmelt processes also are considered for higher altitudes through air temperature [59].

2.1.3. Runoff Routing

Daily discharge for each grid cell of the stream network, for every time step, is estimated by adding
the accumulated surface runoff for this time step to the accumulated base flow. Runoff routing through
hillslopes (overland flow) and the stream network is carried out with a travel time approach [45].
Travel times for the hillslopes (overland flow) and the channel network (channel flow) of the modelled
area are calculated based on the flow velocity on each grid cell [60]. To this end, the flow velocity grids
for the overland flow and the channel flow are generated based on the land cover, the slope along
the flow paths and the drainage network grids. The following equation computes flow velocity for
overland flow (Vo) as:

Vo = k·J1/2 (9)
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which is derived from the Manning equation assuming k = R2/3/n. The coefficient k is associated with
land cover characteristics and the values corresponding to each land cover class estimated according to
McCuen [61]. The hydraulic gradient (J) is considered equal to the slope along the flow paths (mm−1).
The flow velocity for channel flow (Vc) is calculated using Manning’s equation:

Vc =
1
n

R2/3 J1/2 (10)

where the roughness coefficient (n) ranges from 0.055 to 0.025, according to the stream order of each
segment [62]. The hydraulic radius (R) for each grid cell of the drainage network is determined by
a power law relationship [63], which relates hydraulic radius to the upstream area and provides a
representation of the average behaviour of the channel geometry:

R = a·Ad
b (11)

where (Ad) is the drained area upstream of the cell in square kilometres, which is determined by the
flow accumulation routine of the GIS, (a) is a network constant and (b) a geometry scaling exponent,
both depending on the discharge frequency. The parameters a and b usually set equal to 0.07 and 0.43,
respectively, to correspond to regular storm events [62]. The hydraulic gradient (J) is again considered
equal to the slope along the flow paths (mm−1).

The two flow velocity grids (for overland and channel flow) are overlayed, and the final flow
velocity grid for each catchment is calculated. The final flow velocity grid is expressed in time per unit
length units, which is the time necessary for the water to cross a distance of one meter, to facilitate the
calculation of the travel time for each grid cell.

This methodology does not aim at producing very detailed hydrographs, but it is sufficient for
water balance modelling at a daily time step.

2.1.4. Geospatial Analysis

The results of the model are aggregated for each year. They are stored to a specially designed
geo-information system that includes all the data and the methods essential for the analysis of the
results, the estimation of the impact indicator values and the estimation of the net effect of the RDP on
the reduction of water abstraction in agriculture.

The significant problem is that even if the model can operate in very fine spatial resolutions,
the resolution required for the accurate representation of the typically tiny farms would be prohibited
in terms of computational requirements (Figure 2). To overcome this problem, a larger cell size of 300 m
sounds like a suitable compromise. Then, a unique algorithm was developed to link the polygon of
each parcel in the IACS spatial database, with the nearest corresponding grid cell of the model having
the same crop and the same conditions (e.g., soil, weather) (Figure 2). In this way, the developed
approach can provide information at the parcel level, and therefore facilitate the further analysis of the
results and the estimation of water abstractions in agriculture by considering the precise boundaries of
the irrigated parcels and all the relevant information included in the IACS database (e.g., crop, applied
agri-environmental measures, irrigation system, water source).

Following the estimation of the irrigation water needs depth for each parcel and each year,
the corresponding irrigation water volumes for each field are estimated considering the area of each
parcel. Then, the distribution network losses and the irrigation water application losses are estimated.
The distribution network losses are estimated based on the water source described in IACS database
and the reported losses percentages (Table 1). The corresponding irrigation water application losses
were also estimated based on average losses percentages for the various irrigation systems categories
described in the IACS database (Table 1).
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Table 1. Estimated losses percentages for the various water sources and irrigation systems.

Water Source Distribution Losses (%) Irrigation System Water Application Losses (%)

Collective Irrigation 25 Surface Irrigation 35
Borehole or Well 5 Sprinkler Irrigation 10

Unknown 15 Drip Irrigation 20

The total water abstractions for each parcel were finally calculated by summing all the
abovedescribed factors. The obtained results were analysed, and various statistics were calculated for
the studied years. Water abstractions also were aggregated at various administrative levels boundaries
and for the different crop types.

2.2. Application

The model was applied for 34 years (1971–2004) all over Greece (country scale, area � 131,940 km2,
Figure 3), using a different setup for each modelled case. Specifically, it was applied using as input a
land cover dataset consisting of the IACS database for the base year (2015) and the evaluated year (2018)
in order to evaluate the effect of the implementation of RDP from 2015 to 2018 on water abstractions in
agriculture. The model used the latest CORINE land cover (2018) for the nonagricultural areas that
are not covered by the IACS database. In this way, the total water abstractions for each parcel were
estimated for the crop patterns and cultivation practices existing in 2015 and 2018 for the reference
meteorological conditions (1971–2004) and included as information in the IACS database for each year.
The obtained results were analysed to estimate the values of the common impact indicators and answer
to the common evaluation questions (CEQ).

Finally, it should be mentioned that the first year of the simulation period was used as a warm-up
period in order to initialise the soil moisture spatial distribution, which is an initial condition that is
not feasible to be directly estimated.
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2.2.1. Input Data

The study used meteorological data from 140 meteorological stations of the Hellenic National
Meteorological Service (HNMS) [64] distributed over the whole country (Figure 3) [21]. The number of
meteorological stations is adequate, considering the size of the study area. However, the vast spatial
variability of meteorological conditions in Greece and the uneven density of stations across the country
made necessary the use of specially adapted interpolation techniques as explained previously in the
description of the methodology. Furthermore, most of the 140 meteorological stations’ data series
had gaps or did not record all the required weather parameters (Figure 3). Accordingly, the available
datasets were assessed for integrity and consistency, and a gap-filling algorithm was applied as
described in [21]. The data used in this study consist of a daily data series for precipitation (P) as well
as for minimum, maximum, and average temperature, mean relative humidity, wind speed at 2 m
height, and solar radiation or sunshine hours for the estimation of ETo with the FAO Penman–Monteith
method [58].

The land use and land cover for the two studied years was based on the Integrated Administration
and Control System (IACS) spatial database for the base year (2015) and the evaluated year (2018). IACS
provides detailed spatial information at farm level (one polygon for each parcel) for all agricultural land
each year and also contains detailed information on the cultivated crop in each parcel, the irrigation and
the agri-environmental measures. The model used the CORINE land cover 2018 for the non-agricultural
areas which are not covered by the IACS spatial database [65].
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The study combined soil data from various sources in order to define the Hydrologic Soil Groups
(HSG) required for the determination of CN values and the required soil hydraulic properties (Figure 4).
The basic information was the soil map of Greece (scale 1:30,000) [66], which covers most of the
cultivated areas. For the remaining areas, the study made use of data sources like the European Soil
Database (European Soil Database v2.0, scale 1:1,000,000) [67] and the topsoil physical properties for
Europe based on Land Use/Cover Area frame Survey (LUCAS) topsoil data [67,68].
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The spatial distribution of the curve number for the typical conditions (CNII) was determined
based on the soil and the land use/cover (LULC) layers described above. To this end, the HSG spatial
distribution was determined based on the soil data. The HSG layer was then combined with the
LULC layer to determine the soil—land use/cover complexes for each grid cell of the study area.
The determination of the CN value for each grid cell (Figure 4a) utilised an adapted lookup table based
on the SCS-CN method’s documentation [54] to comply with the IACS and the CORINE LULC classes.

Finally, the digital elevation model (DEM) used in this application came from the Shuttle Radar
Topography Mission (SRTM) [69]. The original spatial resolution of the DEM was 90 m × 90 m,
resampled to 300 m × 300 m, which is the spatial resolution used in the model, like the rest of the data.

2.2.2. Remote Sensing

Although IACS data are considered very reliable, they can still contain errors, e.g., due to false
claims or digitisation errors or some farmers might not apply for any subsidies [70]. Therefore, the study
used Sentinel-2 (S2) data for crop mapping and the validation of IACS’ declared parcels, for two
characteristic water districts of Greece, namely GR08 (Thessaly) and GR07 (E. Sterea Ellas) (Figure 3).

The Sentinels are satellites developed to support the Community’s Copernicus program. The S2
mission of the European Space Agency (ESA) provides imagery of very high spatial (10 m) and temporal
(5 days cycle) resolution. Given its Multi-Spectral Imager (MSI) sensor, it operates on 13 different
spectral bands covering the Visible (VIS, 4 bands: 1-2-3-4), Near Infrared (NIR, 5 bands: 5-6-7-8-8A,
four of them are red edge bands) and Short-Wave Infrared (SWIR, 4 bands: 9-10-11-12) portions of the
electromagnetic spectrum. Thus, it can deliver innovative and continuous data, and it is a unique tool
for monitoring crop conditions, seasonal changes and crop classification, etc. [71].
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To distinguish the existing crop types for the evaluation of the declared parcels dataset,
the study acquired (via the ESA Open Access Hub, https://scihub.copernicus.eu, accessed on 29
March 2020) four freely available, cloud-free S2 images, geometrically and atmospherically corrected
(Bottom-Of-Atmosphere, 2A processing level), representative of the 2018 agronomic season.

The data pre-processing involved image resampling (10 m, since S2 images have different pixel
sizes), subset and masking (excluding pixels outside those selected). Finally, the stack (collocation) of
10 spectral bands for each date was executed by excluding bands 1 (coastal aerosol), 9 (water vapour)
and 10 (cirrus). Subsequently, mapping the target classes relied on supervised classifications using the
Random Forest (RF) classifier, a non-parametric decision tree machine learning algorithm. Contrary to
parametric classifiers, RF examines the association between the training and the response dataset. It is a
predictive model that recursively splits a dataset into regions by using a set of binary rules to compute
a target value for classification purposes. Multiple decision trees (forming an RF) are created during
training, after which the mode of the provided classes of the individual trees sets the output class of the
forest [71–74]. RF requires the adjustment of two parameters, the number of trees which will be created
by randomly selecting records from the training samples and the number of variables used for tree
nodes. In the present research, RF run used the RF classification toolbox of the Sentinel Application
Platform (SNAP) provided by the European Space Agency (http://step.esa.int/main/toolboxes/snap,
accessed on 9 January 2020).

The classification training samples included 140 and 120 points for the two regions, respectively.
The reference samples were split into two sets of separate training (70%) and validation reference samples
(30%). A two-step classification procedure used the first training set, and 6 classes (summer-fodder
crops, winter crops, set aside-bare soils, orchards-olives, artificial surfaces and water). The first step
comprised a broad distinction among crops and forest, water and built-up classes. The second step
further classified the crops.

2.2.3. Calibration Validation

As regards to the hydrological balance, the model has been already successfully calibrated
and validated in previous studies [5,36]. Also, it has been tested for specific parts of the studied
region [39,40]. The model was also tested based on the current configuration and input data providing
similar performance with the previous applications [5,36]. It should be noted though that, due to
the acute scarcity of reliable hydrological data and the vast study region as compared to the time
and financial constraints of the current study, a thorough calibration and validation of the applied
hydrological model was not feasible at this stage. Considering also that the most critical information
for this application is the water abstractions in agriculture, model testing focused on the estimation of
irrigation water needs. The key parameters that may influence the irrigation water needs are the soil
hydraulic properties, the crop-related coefficients (Kc, Kst, Sc) and the losses percentages. To check if
the selection of percentage losses and crop coefficients is appropriate, the model’s result was tested on
specific case studies (e.g., using data from local water distribution authorities for collective irrigation
networks water abstractions, and estimations from case study farms). Generally, the obtained results
were comparable with the estimations mentioned above except for some specific crops like olive groves
or vineyards, where a systematic overestimation was observed, possibly because deficit irrigation is
the norm in these crops. Thus, future work should focus on the detailed calibration of the Sc parameter
specifically for each crop. Furthermore, a more detailed calibration/estimation of losses should be
made in pilot case studies with diverse characteristics and with various water sources, distribution
networks and irrigation systems. Also, it should be noted that the same approach and parameters
were used in both examined scenarios; therefore, the expectation is that the estimation of changes will
be more accurate because of the elimination of possible systematic errors.

It should be underlined that the available water abstraction data are minimal. When they exist,
their documentation and metadata are weak, and they mostly concern the recent few years, and so it is

https://scihub.copernicus.eu
http://step.esa.int/main/toolboxes/snap
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hard to make critical, safe comparisons. Accordingly, the next step is the more exhausting calibration,
and validation of the model as more detailed data are becoming available.

2.3. Counterfactual Analysis

The evaluation aims at determining the policy’s net effects on irrigation water savings. In essence,
evaluation establishes the real impacts of a CAP measure. There are many factors, beyond the operation
of AEMs, which can have an impact on agricultural land use patterns and, consequently, on water
savings. For example, taking into account the high cost of irrigation, a cost-minimising farmer may
choose a mix of cultivations that minimises energy for irrigation costs under expected yields and
prices. This decision will, inevitably, produce considerable water savings without the influence of a
policy measure. Thus, evaluation attempts to isolate the influence of a policy’s measure on the values
of water savings from the influence of other contextual factors or interventions. What would have
happened to beneficiaries in the absence of the AEMs is called the “counterfactual”. The net effect of
the measure compares the counterfactual outcomes, i.e., outcomes without AEMs, to those observed
under the AEMs. Evaluators compare a sample of units that are under the influence of the measure
(policy on) with a corresponding sample of units which is not influenced by the measure (policy off).
In evaluation terminology, the former is the “treatment” group or the group of “policy beneficiaries”,
and the latter is the “control” group or the group of “policy non-beneficiaries”.

In similar evaluations, the farm is the primary statistical unit, because this is the level at which
farmers consider their alternatives and make their optimisation decisions. However, the IACS database
provides information only at the farm parcel level, and it does not link the parcels of land farmed
by the same decision-maker. The evaluators overcome this significant data limitation by creating a
canvas of 5 × 5 km (25 km2) squares which cover the entire national territory. In this perspective,
each square is a large farm whose land-use allocation is the outcome of the simultaneous decisions
made by farmers cultivating parcels within the square boundaries. For each square, the hydrological
model provides estimates of the needs for crop irrigation water. Besides, for each square, the
evaluators know the area under AEMs and a range of physical and agronomic characteristics. The latter
include the square’s average height, its mean slope, prevailing soil conditions, average rainfall, mean
evaporation, and others. In total, 6418 squares cover the whole territory, of which 4897 contain
plots with irrigated land and form the population of the evaluation study. From the population of
4897 squares, a stratum of 1044 squares contains parcels operating under the AEMs, i.e., squares that
contain “beneficiaries”. From this stratum, the evaluation can draw the “treatment” sample of squares.
The rest of the 3853 squares do not contain any parcels operating under the AEMs and thus are squares
of “non-beneficiaries”. From this stratum of “non-beneficiaries”, the evaluation can draw the “control”
sample of squares. Figure 5 shows the distribution of the sample squares.

One of the methods available to avoid biased comparisons between “control” and “treatment”
squares is to match each “treatment” square with a similar, if not identical, “control” square. Matching
pairs ensures that the evaluation compares pairs of almost identical subjects that differ only by the
operation of the measure. After a successful matching, the mean values of a range of matching variables
between “control” and “treatment” groups are not statistically different. Among the available matching
pairs algorithms, this evaluation uses the propensity score matching.
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3. Results

The model was applied for 34 years (1971–2004) using a different setup for each modelled case,
and it allowed the estimation of the different components of water balance all over Greece as well as
vegetation water deficit and crop water needs. Specifically, the model was applied using as input the
IACS database for the base year (2015) and the evaluated year (2018), correspondingly. In this way, the
total water abstractions for each parcel were estimated for the crop patterns and cultivation practices
existing in 2015 and 2018 for the reference meteorological conditions (1971–2004) and included as
information in the IACS database for each case.

In Figure 6a, the average annual precipitation depth spatially distribution for the study period is
illustrated. The extensive spatial variability of the annual precipitation depth ranges from well above
2000 mm/year at the northwest mountainous areas to below 300 mm/year at the eastern part of the
country and especially in the central Aegean islands. The extensive spatial variability in comparison
to the relatively small size of the country may be due to the massive sierra with a north–south
direction that divides the mainland of the country and to the very long coastline [21,36]. The spatial
distributions of average annual reference, potential and actual evapotranspiration depths are presented
in Figure 6b–d, correspondingly. It is evident that ETo spatial distribution is not correlated with
the spatial distribution of precipitation and many areas with low precipitation have at the same
time high ETo. Potential evapotranspiration is more diverse, as also it is influenced by land cover
properties (Figure 6c). Interestingly, areas with high ETo and ETp values are characterised by low
actual evapotranspiration depths (Figure 6d). In dryer areas, ETa is controlled by soil water availability,
which is limited by lower precipitation depths and smaller soil water holding capacities.



Sustainability 2020, 12, 7137 15 of 25
Sustainability 2020, 12, x FOR PEER REVIEW 15 of 25 

 
Figure 6. Spatial distribution of average annual precipitation (a) and reference (b), potential (c) and 
actual (d) evapotranspiration depths. 

 
Figure 7. Spatial distribution of average annual vegetation water deficit for the 2018 scenario. 

Figure 6. Spatial distribution of average annual precipitation (a) and reference (b), potential (c) and
actual (d) evapotranspiration depths.

The high temporal variability of precipitation (not shown here) is an additional important factor
affecting water availability as most of the water abstractions take place in the dry season (May to
September) [36].

The spatial distribution of the average annual vegetation water deficit (Figure 7) is related more
to ETp than to precipitation. The most significant part of water deficits is observed during the dry
season, when precipitation is meagre in all areas; thus, in areas with higher ETp, higher deficits are
observed. Increased water deficits indicate areas with higher desertification risk [75–77]. The same
figure shows that irrigation water needs are higher in southern Greece and mostly in the southeast
part of the country.

The above results were linked with the parcel polygons of the IACS spatial database (about
6,000,000 polygons) and integrated into the database mentioned above. In this way, it was made
possible to estimate more precisely the total water abstractions for each parcel and to investigate the
effect of the agri-environmental measures on agricultural water use as these measures applied on each
farm. As an example, Figure 8 shows the net irrigation needs for each irrigated parcel for the 2015 and
2018 scenarios.

The obtained results were then analysed to estimate the values of the common impact indicators
and answer to the common evaluation questions. Table 2 presents summary results of irrigation
water requirements and the corresponding total water abstractions in agriculture for the scenarios
corresponding to the years 2015 and 2018. The total water abstractions for irrigation are higher in 2018
due to the increase in the irrigated area. In contrast, the water abstractions per cultivated area hectare
are slightly lower in 2018.
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Table 2. Summary of the estimated total water abstractions and irrigation needs for the two scenarios.

Scenario Irrigated/
Non-Irrigated

Number of
Parcels Area (ha)

Net
Irrigation

Water Needs
(hm3)

Total Water
Abstractions

(hm3)

Specific
Water

Abstractions
(m3/ha)

2015
Non-Irr. 4,228,555 6,088,847 - - -
Irrigated 1,756,408 1,117,505 4683.02 6387.98 5716.29

2018
Non-Irr. 4,201,347 5,262,600 - - -
Irrigated 1,789,624 1,175,612 4866.74 6634.03 5643.05

Difference 33,216 58,107 183.72 246.06 −73.24
Percentage change 1.89% 5.20% 3.92% 3.85% −1.28%

The estimated total water abstractions for irrigation were also aggregated to the boundaries of the
water districts of Greece to allow the comparison with the information included in the corresponding
Master Plans on Water Resources Management [78] for each water district and with other data sources
and previous studies. As can be seen in Table 3, the estimated total water abstractions are generally
lower than the estimations included in the master plans for both scenarios. However, the difference
is not considerable. Also, it is interesting to highlight that the total water abstractions calculated
for the two scenarios are between the corresponding figures estimated by Soulis and Tsesmelis [5]
based on land cover data coming from CORINE Land Cover (CLC) 2000 and 2012 and statistics for
the irrigated areas coming from ELSTAT (Hellenic Statistical Authority). It should be noted though
that there are some more profound differences when specific water districts are considered. There is
a general agreement though in the estimated abstractions for the larger plains of the eastern part of
the country (e.g., Thessaly and Central Macedonia). Also, it can be seen that the irrigation needs in
western Greece are considerably lower as the climate there is much wetter. On the other hand, it is
worth noting that all estimations of total water abstractions in agriculture are considerably lower than
the corresponding estimations presented in Eurostat for the annual water abstractions by source and
sector [79]. Specifically, for the years 2011 to 2015, the total water abstractions in agriculture reported
in Eurostat are 8282.54 hm3, while with the current methodology were equal to 6387.98 hm3 for 2015
and 6634.03 hm3 for 2018.

Table 3. Comparison of various estimations of the total water abstractions for the 14 water districts of
Greece and for the entire country.

Water District Code

Soulis and
Tsesmelis [5]

Master Plans on Water
Resources Management [78]

Current Study

Scenario 2015 Scenario 2018

Total Water Abstractions for Irrigation

(hm3)

W. Peloponnese GR01 305.8 201.0 97.7 97.4
N. Peloponnese GR02 435.2 401.5 229.6 243.5
E. Peloponnese GR03 350.7 325.0 381.4 386.7
W. Sterea Ellas GR04 318.2 367.0 273.8 273.2

Epirus GR05 278.1 153.5 123.0 125.8
Attica GR06 106.0 99.0 14.8 18.9

E. Sterea Ellas GR07 567.7 774.0 543.1 584.7
Thessaly GR08 1335.5 1550.0 1443.6 1578.7

W. Macedonia GR09 322.8 609.4 518.7 543.8
C. Macedonia GR10 640.4 527.6 863.7 903.2
E. Macedonia GR11 554.8 627.0 536.5 582.7

Thrace GR12 556.6 825.2 664.3 645.9
Crete GR13 393.5 320.0 672.8 622.7

Aegean Islands GR14 282.2 95.5 24.9 26.8
Entire Country 6447.7 6875.7 6388.0 6634.0

Table 4 presents a summary of the total irrigation water abstractions for the main irrigated crops.
Cotton is the leading irrigation water consumer in Greece, followed by fodder crops and olive groves.
As regards olive groves, however, results may be significantly overestimated. Specifically, the reported
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net irrigation needs depth (Table 4) seems to be very high in comparisons with the water amounts
used in typical farms. The high net irrigation needs depth can be attributed to the fact that olives are
typically cultivated in the drier parts of the country. On the other hand, deficit irrigation or application
of specific amounts of water at predefined development stages is the usual irrigation strategy in olive
groves [80–85]. Still, it is an important observation that, even with deficit irrigation olive groves,
that typically do not attract any attention when it comes to water consumption, they consume a large
amount of water due to the extensive irrigated area (180,090 ha in 2018). The irrigated area is the third
largest following cotton and fodder crops with a small difference. It should also be noted that this
irrigation water is mostly consumed in the drier part of the country.

Table 4. Net irrigation water needs (without losses) and total water abstraction for the main crop types.

Net Irrigation Needs (mm) Total Water Abstractions (hm3)

Scenario Year 2015 2018 2015 2018

Cotton 417.7 414.3 1373.1 1387.1
Maize 387.2 390.4 567.2 479.1
Fodder 403.4 405 913.9 1053.1

Rice 604.6 616.9 271.7 244.1
Olive Groves 1 536.2 534.3 1274.8 1220.5

Vegetables 2 447.6 445.2 252.3 270.1
Fruit Trees 378.2 382.5 570.2 610.2

Other Crops 351.8 349.7 1164.7 1369.8
1 An overestimation of net irrigation requirements for olive groves is expected for the reasons explained
above.2 Including potatoes.

In order to investigate the quantification of the impact of RDP measures in the improvement of
water use efficiency in agriculture, at first, the following approach applied. Initially, the measures that
potentially have a direct or indirect impact in the water use efficiency in agriculture were identified.
To analyse the changes in water use over time and under the RDP’s influence, the study identified
the parcels that were supported by these measures in 2018 but were not supported in 2015. It was
observed that these parcels had slightly higher total water abstractions (�10 hm3) due to the larger
irrigated area. However, they have slightly lower average irrigation needs depths (�12 mm) and lower
total water abstractions per hectare (�152 m3/ha) or 2.7%. As regards the comparison of the cultivation
patterns, there is a reduction in the areas cultivated with cotton and an increase in the areas cultivated
with beans.

A more elaborate counterfactual analysis described in the methodology section shows that the
net effects are considerable. The Average Treatment Effect (ATE) is the difference in average per
hectare irrigation requirements between 1042 matched “treatment” and “control” squares (Table 5).
In treatment squares, irrigated land uses 852.46 m3/ha less water. If we upscale this ATE estimate to
the 142,331 ha under the AEM 10.1.4, we derive total net water savings of 121.3 million m3. The net
irrigation needs for 2018 are 4866.74 million m3 (Table 2). Thus, the net effect of 121.3 million m3

corresponds to net proportional water savings of 2.5%.

Table 5. Average water demand (m3/ha of irrigated areas) in squares with and without areas supported
by Action 10.1.4.

Matched Observations
(Squares) ATE (m3/ha)

Standard
Error(m3/ha) z Value Significance 95% Confidence

Interval

Treatment-Control −852.5 55.4 −15.4 0.00 −961.0 −743.9

Finally, as regards the accuracy of the farmers’ declared crops database, the classification images of
the two selected regions (Thessaly and Sterea Hellas) were used for its validation (Figure 9). The accuracy
assessment was accomplished using the second validation set. The results were evaluated using
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overall accuracy (OA), producer’s accuracy, user’s accuracy metrics [86], and the Kappa coefficient [87].
The classification OA and Kappa coefficient, for the Thessaly and Sterea Hellas regions, were estimated
at 89.4% and 90.2%, and 0.71 and 0.74, respectively. The results indicate high accuracy in the farmland
declaration process.Sustainability 2020, 12, x FOR PEER REVIEW 19 of 25 
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4. Discussion and Conclusions

Environmental objectives have recently become an integral part of CAP [16,17], which represents the
critical form of public intervention influencing natural resources and environmental management [18,19].
The primary policy tool in CAPs environmental objectives are the agri-environment measures (AEMs) [18].
Accordingly, efficient monitoring and evaluation of the impact of the agri-environment measures supported
by the RDP on water resources are crucial for efficient policy design and adaptation.

According to the guidelines [27], the most appropriate source so far is the Eurostat—Survey
on Agricultural Production Methods. However, the data included in Eurostat for the annual water
abstractions by source and sector [79] are of questionable accuracy, and the corresponding data sources
behind these data are unclear. Specifically, for the years 2011 to 2015, the total water abstractions in
agriculture reported in Eurostat are 8282.54 hm3, which are considerably higher from the estimations
of the current study (6387.98 hm3 for 2015 and 6634.03 hm3 for 2018) as well as from the estimations
included in the Master Plans on Water Resources Management [78] (6875.7 hm3) or from other previous
studies [5] (6447.7 hm3). There is also a significant delay in the available data in the Eurostat database
regarding agri-environmental indicators, and data collection level is, in most cases, only national.

Previous studies indicated that policy-driven monitoring and evaluation usually does not match
the ideals of what is needed to inform adaptive management and that there is a tendency to focus on
understanding state and trends rather than tracking the effect of interventions [88].

For the present study, a specially developed model-based approach using multisource data,
which is directly relevant to the evaluation of agricultural water policies, was applied to overcome
the problems of small-sized and fragmented farms, vast spatial and temporal variability, and severe
data scarcity. The study also developed an algorithm that links each parcel in the spatial database
of IACS (over 6,000,000 polygons) with the nearest corresponding grid cell of the simulation model



Sustainability 2020, 12, 7137 20 of 25

with the same crop and the same conditions. In this way, the proposed approach can provide detailed
information at parcel level and facilitates the precise estimation of water abstractions in agriculture
utilising all the pertinent information included in the IACS database (e.g., applied agri-environmental
measures, irrigation system, water source). Hydrological modelling has also been proven to be a useful
tool for the estimation of irrigation water needs in previous studies [5,32,41].

The obtained results indicated that even if specific water abstractions per hectare of irrigated land
were lower in 2018 after the implementation of the supported agri-environmental measures, the total
water abstractions were higher. This result was due to the increase in the irrigated area. This fact
should be taken into account in the design of future policies targeting a reduction in the footprint
of agriculture on water resources. An important observation is also that total water abstractions for
irrigation were much higher at the eastern and more dry part of the country, which should also be
considered in future management plans. In general, the results of this study highlight the significant
problem caused by the high spatial and temporal variability of available water resources and water
requirements. As an example, even in the water district with the biggest total water abstractions for
irrigation (Thessaly), these abstractions represent about 50% of the theoretical annual available water
resources [78]. Previous studies highlighted that optimising cropping patterns of the existing crops can
result in an improvement of irrigation settings and in significant water savings [9].

The applied methodology is efficient and fast, and it provides considerable flexibility that allows
the investigation of several crop distribution patterns and climate scenarios. It produced valuable
information concerning agricultural water use. It may additionally act as a useful assessment tool for
the evaluation of land use or climate change impacts, and the assessment of adaptation and mitigation
strategies. The provision of detailed information at the parcel level for the entire country makes it a
powerful tool for policy design and evaluation.

Precise information on cultivated and irrigated area as well as on crop patterns is a crucial
requirement for any detailed irrigation water abstractions assessment. IACS was proven to be a
valuable database on this matter. It provides detailed information on the exact boundaries of all
cultivated parcels in the country (more than 6,000,000 parcels) and detailed information on the
cultivated crop, the applied agri-environmental measures and other relevant information. The results
of the validation of the farmers’ declared crops database also indicate a high accuracy in the farmland
declaration process. However, the current study also highlighted some remaining significant problems
in the IACS spatial database that hinder its broader utilisation. The main problems are:

• The IACS spatial database in Greece provides information only at the parcel level without any
information on how parcels link to farms. Typically, the farm is the decision-making unit because
farmers optimise the farm’s resource use by taking into account constraints on a parcel basis.
This lack of information caused additional difficulty.

• Different polygons and codes for the parcels are used by the IACS database each year. Therefore,
direct interannual comparisons are not feasible.

• Some agricultural areas are not included in the IACS database, and thus, the area included in the
IACS differs each year.

• There is a lack of metadata/documentation for the IACS spatial database. For this reason, it was
difficult to interpret some of the cultivation codes, the meaning of more than one cultivation codes
for one parcel, or some additional information on irrigation.

Even though, the main alternative, which is CORINE land cover, does not provide sufficient
resolution and accuracy on agricultural areas. Additionally, a very high percentage of the area is
characterised by complex patterns (e.g., crops/natural vegetation).

The more prominent use of secondary data and more transparency in data-sharing are essential in
enabling adaptive management to safeguard socioecological systems [88].

A limitation of the current study is due to the lack of available water abstractions data with
adequate documentation and metadata that would allow a more detailed calibration and validation
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of the model. Future research should focus on exhaustive calibration and validation to specific pilot
sites as more detailed data are becoming available. These detailed data are crucial, especially for crops
like olive groves or vineyards, where deficit irrigation is the norm as well as for the estimation of
“conveyance” and on-farm losses.
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