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Abstract: At present, the recognition of vehicle flow is mainly achieved with an artificial statistical
method or by intelligent recognition based on video. The artificial method requires a large amount
of manpower and time, and the existing video-based vehicle flow recognition methods are only
applicable to straight roads. Therefore, a deep recognition model (DERD) for urban road vehicle flow
is proposed in this paper. Learning from the characteristic that the cosine distance between the feature
vectors of the same target in different states is in a fixed range, we designed a deep feature network
model (D-CNN) to extract the feature vectors of all vehicles in the traffic flow and to intelligently
determine the real-time statistics of vehicle flow based on the change of distance between vectors.
A detection and tracking model was built to ensure the stability of the feature vector extraction
process and to obtain the behavior trajectory of the vehicle. Finally, we combined the behavior and
the number of vehicle flows to achieve the deep recognition of vehicle flow. After testing with videos
recorded in actual scenes, the experimental results showed that our method can intelligently achieve
the deep recognition of urban road vehicle flow. Compared with the existing methods, our approach
shows higher accuracy and faster real-time performance.
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1. Introduction

A rapid increase in car ownership has aggravated traffic pressure in cities. On urban roads,
traffic jams, an unreasonable control of traffic lights, and many other traffic phenomena often occur.
In order to solve these traffic problems, intelligent transportation systems (ITSs) and intelligent traffic
surveillance systems (ITSSs) have been proposed [1,2]. In the past 10 years, ITS and ITSS have made
great achievements in the field of traffic [3–5], showing that intelligent transportation is an inevitable
trend in the development of human society and an important technological revolution in the future.
As an important part of ITS and ITSS, research into vehicle flow is of great significance to the promotion
of the development of intelligent transportation. There are currently two main avenues of research
into vehicle flow: the short-term prediction of target road vehicle flow and video-based vehicle flow
intelligent statistics. The former requires a large amount of manpower and material resources in the
process of collecting vehicle flow data, while the latter approach is based on straight roads as the
research object. The results have larger errors when applied to complex environments.

The research into the short-term prediction of vehicle flow is currently exhibiting rapid
development. Li et al. acquired vehicle flow data through offline collection and then processed
the acquired flow data in advance, selected the data suitable for their experimental requirements,
and finally used a hybrid model combining support vector regression (SVR) and autoregressive
integrated moving average (ARIMA) to achieve short-term prediction of vehicle flow on a target
road [6]. Liu et al. combined the SVR model with the k-nearest neighbor (KNN) algorithm to propose
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a new KNN–SVR traffic flow prediction model [7]. The rapid development of deep learning has
been tremendously convenient for the development of the transportation field. Ma et al. combined
the restricted Boltzmann machine (RBM) with the recurrent neural network (RNN) to construct a
short-term traffic flow prediction model [8]. Deng et al. used the convolutional neural network (CNN)
to make short-term predictions of the vehicle flow of a target road [9]. Although the above research
methods are able to make short-term predictions of the future vehicle flow on a target road through
certain models, the accuracy of all results must depend on the accuracy of the collected vehicle flow
data, and this requires a great deal of manpower and material resources in the process of collecting
vehicle flow data. In this type of research, the method of collecting vehicle flow data is usually to
install detection equipment on the target road in advance and collect information regarding vehicles
passing along the road [10], and then to analyze the statistics of the collected information according
to artificial methods [11]. However, these methods collect vehicle flow data in a single direction;
when dealing with complex environments such as urban crossroads, there are often repeated statistics.
In urban roads, vehicle flow is a dynamic process of change, with non-linearity and spatial–temporal
variation [12]. Therefore, the real-time recognition of vehicle flow would be preferable. The adoption
of intelligent methods to recognize the actual traffic conditions on urban roads in real time is a difficult
problem in the development of ITS.

With the rapid development of visual detection algorithms, it is possible to realize this intelligent
approach, and video-based vehicle flow recognition has begun to develop rapidly [13]. Based on video
images, detection-tracking statistics of moving vehicles have been analyzed to achieve vehicle flow
recognition. Peng S. and Ling G. et al. adopted a visual detection algorithm, first setting the region of
interest (ROI) in the video image and then detecting the state of a vehicle passing through the ROI to
achieve the recognition of vehicle flow [14,15]. Yingqin X.; Shiva K.; and Jiajia Y. et al. first set up a
virtual detection line or ROI in the video image and then used the visual detection algorithm to judge
the position of the vehicle detection bounding box and virtual detection line or ROI, thus achieving
the recognition of vehicle flow [16–18]. However, this type of visual detection algorithm has higher
requirements regarding the lighting conditions of the video, and its detection accuracy is relatively
low. With the rapid development of deep learning, visual detection algorithms based on deep learning
have shown good results in terms of accuracy and real-time performance. Girshick et al. proposed
the R-CNN detection algorithm, which uses CNN to extract target features, but the training steps of
this model are more cumbersome [19]. In order to improve these defects of R-CNN, faster RCNN
has been proposed [20]. Although the detection accuracy and operation speed are improved by this
method, real-time detection cannot be achieved for some complex scenarios. In order to improve the
accuracy of detection algorithms, researchers have begun to combine detection and tracking. Liu et al.
used a neural network-based target detection algorithm and Kalman filter algorithm to achieve vehicle
detection and tracking [21]. Wu et al. proposed an improved, fast, online multi-target track method
and established an adaptive track mechanism [22]. Henriques J.F et al. used the kernel correlation
filter track algorithm to achieve the continuous tracking of multi-motion targets, which showed good
track stability [23]. With the development of tracking algorithms, the combination of detection and
tracking has begun to be introduced into video-based vehicle flow detection. Liu et al. used the
yolov1 detection model and mean shift tracking algorithm to detect and track vehicles in the ROI to
achieve vehicle flow recognition [24]. Bouvie C. et al. combined the visual detection algorithm with
the particle filter tracking algorithm and achieved vehicle flow recognition by detecting and tracking
the vehicles in the target area [25]. Muhamad S. et al. combined the visual detection algorithm with
the Hungarian tracking algorithm to detect and track vehicles in the video by counting the number
of times a vehicle crosses the virtual counting line; thus, traffic flow recognition was achieved [26].
However, these existing video-based vehicle flow recognition methods are only applicable to straight
roads and for complex scenes, such as intersections, the results exhibited high errors. Meanwhile,
when the tracking target is blocked, tracking failure occurs in these models, which causes errors in the
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vehicle flow statistics results. However, in urban roads, the block phenomenon is common; therefore,
it is necessary to construct an appropriate model to accurately recognize the vehicle flow.

In order to intelligently obtain accurate statistics of the vehicle flow on urban roads, this paper
is based on the Cosine distance metric [27]. For different feature vectors, the directionality is more
important than the value and the traditional Euclidean distance metric is only sensitive to the value [28],
and does not use the directionality between the feature vectors. Compared with the Euclidean distance
metric, the Cosine distance metric pays more attention to the difference in the direction. At present, the
cosine metric is mainly used in the field of person re-identification (Re-ID) [29].

Based on deep learning, this paper first constructs a detection model (DEM) to detect vehicles
on the road. In order to ensure the detection stability of vehicles in the process of motion, a behavior
tracking model (TRM) is constructed to continuously track the movement process of the vehicle, and to
continuously extract the movement behavior information of the vehicle, as well as to display the
movement behavior of vehicles with the trajectory. Next, a feature extraction network (D-CNN) is
constructed to extract the feature vector of the vehicle. Finally, the cosine distance change is used
between vectors to intelligently achieve the real-time statistics of vehicle flow and trajectory behavior.
The number of vehicle flow are combined to achieve in-depth recognition of vehicle flow. Finally, we
experiment with our method through actual road videos.

2. Methods

In order to solve the shortcomings of existing vehicle flow recognition methods, we proposed
a deep recognition model (DERD) of vehicle flow based on deep learning. Based on surveillance
video, a method that combines detection-tracking-feature vector and extraction-statistics of vehicles
on the road was carried out to achieve the deep recognition of vehicle flow. The model mainly
includes vehicle flow information extraction module (DEM), behavior tracking module (TRM), and
flow statistics module (STM). The overall structure is shown in Figure 1. FEL is the detection status
of the vehicle, Zi and Xi are status parameters, B(i, j) and IOU and D(i, j) are conditional parameters,
Li is the behavior trajectory of the vehicle, TEL is the tracking status of the vehicle. DCNN is a deep
feature extraction network. RA(r1, . . . , rn) is the feature vector of the vehicle, Q and M are the number
of vehicle flow.
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Figure 1. The overall structure of the deep recognition model (DERD) model. 

2.1. Vehicle Flow Information Extraction Module (DEM) 

The vehicle flow information extraction module is equivalent to the human visual system, which 
can quickly locate and recognize vehicles on the road. It takes the video picture as input and the 
vehicle’s detection status, FEL, as output. We built the vehicle flow information extraction module 
based on the YOLOv3 network [30]. However, due to the classification requirements of the original 
YOLOv3 model, the loss function consisted of three parts. However, in the process of vehicle flow 
recognition, detection targets can be divided into one category, so we modified the loss function of 
the YOLOv3 to build a loss function suitable for us. Therefore, the model can better serve the 
detection of vehicle flow information. Figure 2 is a schematic diagram of the principle of the DEM 
module. 
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2.1. Vehicle Flow Information Extraction Module (DEM)

The vehicle flow information extraction module is equivalent to the human visual system, which
can quickly locate and recognize vehicles on the road. It takes the video picture as input and the
vehicle’s detection status, FEL, as output. We built the vehicle flow information extraction module
based on the YOLOv3 network [30]. However, due to the classification requirements of the original
YOLOv3 model, the loss function consisted of three parts. However, in the process of vehicle flow
recognition, detection targets can be divided into one category, so we modified the loss function of the
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YOLOv3 to build a loss function suitable for us. Therefore, the model can better serve the detection of
vehicle flow information. Figure 2 is a schematic diagram of the principle of the DEM module.Sustainability 2020, 12, x FOR PEER REVIEW 4 of 15 
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Figure 2. Schematic diagram of the principle of vehicle flow information extraction module.

The vehicle flow information extraction module is mainly composed of Darknet-53 feature
extraction network, DBL network, multi-scale fusion feature network, and more. Darknet-53 is the
backbone network and is mainly composed of 53 convolutional layers, using a large number of 3 × 3,
1 × 1 convolutions kernels. It constructs residual blocks between convolutional layers and creates
short-cut connections. There is no pooling layer and fully connected layer that accelerates the network
operations. YOLOv3 generates three different scale features (Y1, Y2, Y3) for the detected target and each
feature has three different candidate boxes in size. Finally, according to the confidence requirements,
the most accurate candidate box was selected as the actual detection bounding box of the detected
target and the detection state FEL (center coordinate and width and height) of the target was the output.

The loss function of YOLOv3 is composed of three parts, i.e.; LR bounding box loss, LP confidence
loss, and LF category loss. However, in our DERD model, the loss function of the vehicle flow
information extraction network is mainly composed of LR and LP [31,32].

2.2. Behavior Track Module (TRM)

The movement information of the vehicle on the road is continuous, so we built a behavior tracking
module to ensure the stability of vehicle detection and feature vector extraction during the movement.
The TRM mainly includes two parts: prediction of the vehicle motion model and detection-tracking
matching. Taking the vehicle detection state FEL as input, we predicted the tracking state of the vehicle
based on the motion model and then matched the predicted tracking state of the vehicle with the actual
detection state to achieve continuous vehicle tracking. The output of the TRM module is the actual
tracking state TEL and trajectory Li of the vehicle. The continuous tracking process of the vehicle is
shown in Figure 3.

The motion trajectory of the vehicle is a sequence of its centroid coordinates connected at different
times during the motion of the image plane. The trajectory Li is represented by Equation (1).

Li =
{
(u1, v1, f1) , (u2, v2, f2), · · ·, (un, vn, fn)

}
(1)

(ui, vi, fi) is the coordinate and frame number of the vehicle in the image plane when the tracking
module (TRM) tracks the vehicle for the i-th time.
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2.2.1. Vehicle Motion Model Prediction

On urban roads, vehicles usually travel at low speeds. In video images, the position of the vehicle
changes slightly between video sequences. Therefore, this paper assumes that the vehicle’s motion
process is linearly related, which system satisfies Equations (2)–(4).

xi = A · xi−1 + Wi (2)

zi = H · xi + Vi (3)

FEL = x = ((u, v), s, r) (4)

xi, xi−1 are the tracking state of the vehicle at the i-th and (i−1)-th frames, respectively; zi is
the vehicle detection state at the i-th frame; A and H are the state parameter matrices of the system;
Wi and Vi are the process noise and detection noise of the i-th frame in the process of vehicle tracking
and detection, respectively; (u, v), s, r represent the center position, area, and aspect ratio of the track
bounding box.

Assuming that Wi and Vi follow the Gaussian distribution and their covariance matrices are
O and S, respectively, the entire motion model is divided into prediction and update.

(1) Prediction part: The same target vehicle is detected in three consecutive frames, which means
that the target vehicle is not a false detection vehicle. It is necessary to predict the track state and its
covariance matrix based on the detection state, as shown in Equations (5) and (6).

x̂i = Ax̂i−1 (5)

P̂i = APk−1AT + O (6)

x̂i is the i-th predicted frame of vehicle tracking state based on the i−1th frame of the vehicle
tracking state. P̂i is the covariance matrix of x̂i and Pi−1 is the covariance matrix of xi−1.

(2) Update part: After the detection state and tracking state of the target vehicle are successfully
matched in the system, the tracking state of the vehicle and its covariance matrix needs to be
continuously updated in every frame, as shown in Equations (7)–(9).

Ki = P̂i ·HT
·

(
H · P̂iHT + S

)−1
(7)

xi = x̂i + Ki(zi −H · x̂i) (8)

Pi = (1−KiH)P̂i (9)

Pi is the covariance matrix of xi; Ki is the Kalman gain of the frame i.
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2.2.2. Detection and Tracking Matching

On urban roads, the occlusion phenomenon often occurs when the vehicle is moving. In order
to achieve the detection and tracking when the vehicle is occluded, we adopted two methods:
motion position matching based on the Mahalanobis distance and Intersection over Union (IOU)
matching based on the Hungarian algorithm. The matching state is divided into two types: verified
and unverified.

First, the matching relationship of movement position is established and the Mahalanobis distance
between the predicted tracking state and the detection state of the vehicle is calculated, as shown in
Equations (10) and (11).

B(zi, xi) =
(
z j − x̂i

)T
Si
−1

(
z j − x̂i

)
(10)

B(zi, xi) ≤ T1 (11)

Si is the covariance matrix between xi and zi, and T1 is the threshold determined in the experiment.
When Equations (11) and (12) are satisfied, the matching is considered successful and the goal is in the
state of being confirmed.

IOU matching based on the Hungarian algorithm is performed for the vehicles whose matching
status has not been determined after the motion position matching.

To establish the IOU matching relationship, the IOU value between the vehicle detection bounding
box and the tracking bounding box is calculated, as shown in Equations (12) and (13).

(zi, xi) = Max
Q∑

i=1

IOU (12)

IOU ≥ T2 (13)

Q represents the number of all detection targets, i (1 ≤ i ≤ Q(i, Q ∈ N+)); T2 is the threshold
determined in the experiment to ensure that some match results with low correlation are deleted.

2.3. Flow Statistics Module (STM)

The flow statistics module intelligently achieves the real-time statistics of the vehicle flow based
on the changes in the distance between the feature vectors of the vehicles [33]. In order to accurately
and quickly extract the feature vectors of vehicles in urban roads, we construct a deep feature extraction
network (D-CNN). Its structure is shown in Figure 4.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 15 

2.2.2. Detection and Tracking Matching  

On urban roads, the occlusion phenomenon often occurs when the vehicle is moving. In order 
to achieve the detection and tracking when the vehicle is occluded, we adopted two methods: motion 
position matching based on the Mahalanobis distance and Intersection over Union (IOU) matching 
based on the Hungarian algorithm. The matching state is divided into two types: verified and 
unverified.  

First, the matching relationship of movement position is established and the Mahalanobis 
distance between the predicted tracking state and the detection state of the vehicle is calculated, as 
shown in Equations (10) and (11). 

( ) ( ) ( )1ˆ ˆ,
T

i i j i i j iB z x z x S z x−= − −  (10) 

( ) 1,i iB z x T≤  (11) 𝑆௜  is the covariance matrix between  𝑥௜ and 𝑧௜ , and 𝑇ଵ is the threshold determined in the 
experiment. When Equations (11) and (12) are satisfied, the matching is considered successful and 
the goal is in the state of being confirmed. 

IOU matching based on the Hungarian algorithm is performed for the vehicles whose matching 
status has not been determined after the motion position matching.  

To establish the IOU matching relationship, the IOU value between the vehicle detection 
bounding box and the tracking bounding box is calculated, as shown in Equations (12) and (13).  

( )
1

,
Q

i i
i

z x Max IOU
=

=   (12) 

2IOU T≥  (13) 

Q represents the number of all detection targets, i (1 ≤ 𝑖 ≤ 𝑄(𝑖, 𝑄 ∈ 𝑁ା)); 𝑇ଶ is the threshold 
determined in the experiment to ensure that some match results with low correlation are deleted. 

2.3. Flow Statistics Module (STM) 

The flow statistics module intelligently achieves the real-time statistics of the vehicle flow based 
on the changes in the distance between the feature vectors of the vehicles [33]. In order to accurately 
and quickly extract the feature vectors of vehicles in urban roads, we construct a deep feature 
extraction network (D-CNN). Its structure is shown in Figure 4.  

Feature
ri

 

Figure 4. Deep feature network model (D-CNN). 

The deep feature network is mainly composed of convolutional layers, pooling layers, and 
residual blocks [34]. Each residual block contains two convolutional layers. As shown in Figure 4, the 
layers in the network structure is named according to their category and their order in the entire deep 
feature network. For example, Conv1 represents the first convolutional layer in the deep feature 
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The deep feature network is mainly composed of convolutional layers, pooling layers, and residual
blocks [34]. Each residual block contains two convolutional layers. As shown in Figure 4, the layers in
the network structure is named according to their category and their order in the entire deep feature
network. For example, Conv1 represents the first convolutional layer in the deep feature network and
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Residual 5 indicates that the fifth layer in the deep feature network is a residual block. The feature
network contains 5 residual blocks. Firstly, the input image is scaled to 256 × 128 and transmitted to
the network’s convolutional layer in Red as Integer, Green as Integer, Blue as Integer (RGB) format.
First, the features extraction of the whole range of the detected image with Conv1 is started and the
output are 64 × 256 × 128. The output features are then subjected to two more consecutive pool
layer operations to perform more specific sample process on the feature and the pooled feature is
then processed by a convolutional layer. The outputs have 32 × 64 × 32 features and the Sigmoid
function is used as the activation function of all layers. The output features are continuously processed
with 5 residual blocks and the structure of the residual block is shown in Figure 5, where x is the
input, H(x) is the expected output, ReLU is the linear rectification function, F(x) = H(x) − x is the
learning objective, and an identity mapping is added to convert the original learned function H(x)
to F(x) + x. By introducing the residual blocks, the degradation problem caused by the increase of
the number of network layers could be solved and its training error is lower than other networks
with the same number of layers. The input features are processed through a series of convolutional
layers and pool layers to reduce the size of the feature map to 16 × 8. Finally, the dimension reduction
process is performed through Dense11 (fully connected layer) to extract the global feature vector with
a dimension of 128.
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First, the feature vectors (ri) extracted by D-CNN are regularized to meet ‖ri‖ = 1. Meantime,
a feature set Ri is created for each target that is successfully tracked and matched, and the latest 100
frames ri are saved. Finally, calculate the minimum cosine distance between the feature vector set of
the i-th tracking target vehicle and the j-th detection target vehicle in the current frame, as shown in
Equations (15) and (16).

D(i, j) = min
{
1− r j

Tri
(k)

∣∣∣ri
(k)
∈ Ri

}
(15)

D(i, j) ≤ T3 (16)

r j is the unit feature vector of the j-th detection target. r(k)i represents any feature vector of the i-th
track target feature set. T3 is the threshold determined in the experiment. When Equations (15) and (16)
are satisfied, it is considered that the detected vehicle and the tracked vehicle are the same target, and
no new target appears in the current field of view; thus, vehicle ID will not change. According to the
ID number of detected-tracked vehicles on the road, the real-time statistics (M) of the current vehicle
flow on the road is achieved. When Equations (15) and (16) are not satisfied for three consecutive
frames, it is considered that a new target appears. Then, a new ID is assigned to the target and the
statistical of the total vehicle flow (Q) through the road increases by one.
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2.4. Detail

2.4.1. Data Set Description

In our DERD model, our data set contained two parts: a DEM data set and D-CNN model data set.
The data set of the DEM model includes: Pascal VOC2007, a part of the vehicle pictures from Pascal
VOC201, and a self-recorded road traffic video at Yanta Road in Xi’an. Then, the video was processed
into a single-frame image through python and 15,000 pictures in VOC format data set were made by
LableImg. Each picture in the VOC format data set had a corresponding label file, which gave the
bounding box and class label of the objects appearing in the picture. The data set had a total of 21,000
pictures, as shown in Figure 6a.
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Figure 6. Example of sample set: (a) is an example of the DEM part of the training data set; (b) is an
example of the D-CNN part of the training data set.

The data set of the deep feature network (D-CNN) included a total of 10,000 pictures of the vehicle
pictures in the vehicle recognition data set VeRi776 [35], as shown in Figure 6b. The data set images in
VeRi776 were captured in real-world unconstrained surveillance scenes and marked with different
attributes, such as type, color, and brand. Each car was photographed by multiple cameras under
different viewpoints, lighting, resolution, and occlusion. It also marked enough license plate and
space-time information, such as the BBox of the plate, the license plate number, the shooting time, and
the distance between adjacent cameras.

2.4.2. Model Training

In our DERD model, the training of the network model mainly included DEM and D-CNN.
We show our process from the setting of training parameters and training results, respectively.

The training network parameter settings are as follows. When training the DEM network
model and the D-CNN model, we need to set the relevant parameters according to our experimental
requirements. The training parameters are shown in Table 1a,b, respectively.

Figure 7 shows the training process of the DEM model and D-CNN training. It can be seen from
Figure 7a that the loss of the DEM network model dropped to about 15% after 350 epochs and then
it started to converge. As shown in Figure 7b, it can be seen that the loss of D-CNN dropped faster
before 50,000 steps, whereas it started to decline steadily after 50,000 steps. When it reached 350,000
steps, the model tended to converge.
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Table 1. Training parameters.

(a)

Name Value

Classes 1
Filters 18
Batch 64
Decay 0.0005

Learning rate 0.001
Epoch 500
Scales 0.1,0.1

(b)

Name Value

Steps 400,000
Batch 100
Decay 0.0008

Learning rate 0.0015
Epoch 200

TS 4
SW 4
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In our DERD model, we chose the parameters T1, T2 to combine the actual experimental effect with
the pedestrian multi-target tracking [36] model and finally confirmed T1 = 9.4877 and T2 = 0.5. In the
selection process of parameter T3, the size of T3 determines whether the feature vectors of different
vehicles can achieve accurate classification and the accuracy of traffic flow statistics. We conducted an
experimental test on the correspondence between the value of the threshold T3 and the classification
accuracy S%. The result is shown in Figure 8. From the experimental result, we can see that when
T ≥ 0.6, the classification accuracy S% had a rapid drop. T3 was set as 0.6 in our DERD model.
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3. Experimental Results and Analysis

First, we compared the performance of the trained detection model (DEM), RCNN [19], faster
RCNN [20], a detection model [24], and the YOLOv3 [30] model for vehicle detection. Taking the visual
detection algorithm performance evaluation index mAP% (average accuracy rate), recall% (recall rate),
and FPS as reference standards, we tested it in our test data set. The results are shown in Table 2.

Table 2. Comparison results of vehicle detection effects of different models.

Model mAP% Recall% FPS

RCNN [19] 90.5 76.8 10.17
Faster RCNN [20] 94.3 82.7 13.68
Liu et al. [24] 86.7 72.4 12.84
YOLOv3 [30] 94.6 85.3 15.72
DEM 94.8 86.4 16.87

It can be seen from Table 2 that our DEM model shows the highest accuracy rate for vehicle
detection and the fastest detection speed. Compared with YOLOv3, although the vehicle detection
accuracy only increased by 0.002, the FPS increased from 15.71 to 16.87.

In an urban road traffic scene, the real-time detection of vehicle flow played an important role in the
adjustment of signal lights, emergency rescue, and solving the problem of traffic congestion. In order
to verify the accuracy and real-time performance of our DERD model on the recognition of vehicle
flow on urban roads, we recorded multiple sets of videos on different roads for experiments. Firstly,
we compared the recognition effect of the DERD model and the traditional vehicle flow recognition
model. Secondly, we conducted an experimental analysis on the stability of the vehicle flow recognition
process. Finally, we conducted experimental tests on the DERD model from different scenes such as
roads with smooth traffic and congested roads.

Figure 9 shows the effect of our experiment. In the output, we directly showed the number (M)
of vehicles currently driven on the road, which can provide data reference for judging the degree of
congestion on the road. Meanwhile, we also showed the number (Q) of all vehicles passed on the road.
Secondly, we directly showed the detection effect and behavior tracking effect (FEL, TEL) of vehicles in
the current traffic flow, as well as the behavior change trend of vehicles at the road (Li). As shown in
Figure 9, in the real-time DERD model, each vehicle had a fixed ID attribute when passing through the
road. The white bounding box was the detection status (FEL) of the vehicle and the colored bounding
box was the behavior tracking status (TEL) of the vehicle.
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As shown in Figure 10b, the area inside the black bounding box was the ROI. In Figure 10c, the 
red line was the vehicle flow counting line. It can be seen from Figure 10 that our method had a more 
obvious advantage on road vehicle recognition. Compared with the existing methods based on the 
ROI model and counting line model, our method not only counted all the vehicles that passed on the 

Figure 9. Experimental effect display.

As shown in Figure 10b, the area inside the black bounding box was the ROI. In Figure 10c, the red
line was the vehicle flow counting line. It can be seen from Figure 10 that our method had a more
obvious advantage on road vehicle recognition. Compared with the existing methods based on the
ROI model and counting line model, our method not only counted all the vehicles that passed on the
road, but also accurately counted the vehicles driving on the road. Compared with existing methods,
our method showed the fastest recognition speed.
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Figure 10. The comparison graph of different model test results. (a–c) respectively represent the
experimental results of the DERD, ROI model [22], and counting line model [24].

Figure 11 is an experimental diagram of the stability of the DERD model in actual scenes. Figure 11
shows the vehicle detection and tracking effect of our method when the vehicle was occluded. It can be
seen from the Figure 11a that the vehicle with ID 24 was blocked in a large area and the DERD model
correctly tracked the behavior of the vehicle. It can be seen from Figure 11b that the vehicle with ID 24
was almost completely occluded, but the DERD model still accurately detected and tracked the vehicle.
Figure 10 shows the process of the vehicle with ID 24 being blocked to leave the crossroad. In such an
instance, the DERD model achieved a good tracking result on the movement of the vehicle. There was
no failure to extract the feature vector of the vehicle because the vehicle was occluded, which caused
the ID of the vehicle to change, resulting in traffic flow statistical errors. After analysis, the DERD
model had high stability in the recognition of urban road vehicle flow.
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Figure 12 is an experimental diagram of the DERD model at the scene of different straight roads.
It can be clearly seen from Figure 12 that our method showed good results in the real-time recognition
of vehicle flow on straight roads.
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It can be seen from Table 3 that although the existing method showed good accuracy in the 
vehicle flow statistics of straight roads, the accuracy of the vehicle flow statistics was greatly reduced 

Figure 12. Results of vehicle flow deep recognition in simple scenarios: (a–f) are different straight
road scenes.

Figure 13 is an experiment diagram of vehicle flow recognition of the DERD model in a complex
scene, including four different intersection scenes. Figure 13a,b show the same scene. Figure 13c,f also
show the same scene. It can be seen from Figure 13 that our method not only accurately achieved the
vehicle flow statistics of the intersection, but also clearly obtained the real-time vehicle flow movement
trend of the intersection. From the vehicle trajectory in Figure 13e, it can be seen that some vehicles
had obvious straight motion behavior, while some vehicles had no obvious motion behavior; their
trajectories were in a dot state, meaning that the behavior of these vehicles mainly awaited a green light.
Therefore, at this moment, there were two main traffic trends at this intersection: one went straight
and the other waited for a green light. After analysis, it can be seen that the DERD model achieved a
good real-time recognition result on the vehicle flow in different complex scenes and the vehicle flow
in different lighting scenes. In order to verify the accuracy of the DERD model for real-time statistics
of the number of intersection traffic flows, the average accuracy a% was selected as the evaluation
indicators of DERD, as shown in the following equations.

a =

∑
A∑
D

(17)

where A is the number of vehicle flows counted by DERD and D is the number of actual vehicle flows.
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We took all the road videos collected (including two scenes of straight roads and intersections)
as materials and compared the vehicle recognition results of the DERD model, ROI model [24], and
counting line model [26]. The results are shown in Table 3.

Table 3. Comparison of vehicle recognition results of different methods.

Model
a% FPS (avg)

Straight Road Intersection

Liu et al. [24] 96.4 80.7 13.146
Muhamad S et al. [26] 97.5 72.6 12.743
DERD 98.1 97.8 15.684

It can be seen from Table 3 that although the existing method showed good accuracy in the vehicle
flow statistics of straight roads, the accuracy of the vehicle flow statistics was greatly reduced for
the complex scene, i.e.; intersections. However, our method showed high accuracy in traffic flow
statistics both on roads with little traffic and congested roads. Moreover, our method had the highest
accuracy and the highest recognition speed in vehicle flow recognition on urban roads, and its real-time
performance was the best.

4. Discussion

Through the experimental results and analysis, it can be seen that our DERD model shows the
best results compared with the existing methods in vehicle flow recognition on urban roads. The main
reasons are as follows:

(1) Existing video-based vehicle statistics models used straight roads as the research object. These
models judged the number of times a vehicle passed the ROI or counting line to achieve the statistics
of the vehicle flow. However, in complex scenes, the probability that the vehicle did not pass through
the ROI or counting line would significantly increase, resulting in a large number of false counting
phenomena. For different scenes, choosing the ROI or counting line position in the image had a great
influence on the repeated counting and false counting of vehicles.

(2) Different vehicles have different feature vectors and the cosine distance between the feature
vectors of different states of the same vehicle is in a fixed range. The DERD model extracted the
feature vectors of all detected and tracked vehicles on the road and then used the cosine distance
changes between feature vectors to achieve vehicle flow statistics, which solved the problems of false
counting and repeated counting in complex scenes, so that it had the highest statistical accuracy in
different scenes.
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(3) We built a more accurate, faster, and more stable vehicle detection model and tracking model
to improve the speed and accuracy of the traffic information extraction process, resulting in the DERD
model with the fastest vehicle flow identification speed. Our method combined the vehicle behavior
and the number of vehicles, showing a more intuitive vehicle flow recognition effect. Vehicles with
abnormal behavior were easily judged on the basis of the trajectory flow.

However, our DERD model also has weaknesses. When vehicles with the same appearance and
color appeared in the inspection field at the same time, the feature vectors extracted by the DERD
model experienced a high degree of similarity, which could potentially lead to false statistics. Therefore,
in future research, we will try to solve this problem.

5. Conclusions

Based on the deep learning and detecting-tracking model, this paper proposed a vehicle flow
depth recognition model (DERD). Through detecting-tracking-feature extraction of vehicles, we used
cosine distance as the method of vehicle statistics and made full use of the motion behavior of vehicle
flow on the road. Therefore, the real-time deep recognition of vehicle flow was achieved. In the
experimental section, based on the video in the actual scene, we tested the stability of the DERD model
in the process of vehicle flow recognition and the recognition result of the DERD model in different
scenes, and we compared it with other methods. The results showed that the DERD model not only had
the highest accuracy rate for vehicle flow statistics but also intuitively showed the behavioral trend of
the current vehicle flow. Compared with the existing methods, it showed the fastest recognition speed.
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