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Abstract: The quality of Little Akaki River in Addis Ababa (Ethiopia) is deteriorating significantly
due to uncontrolled waste released from point and diffuse sources. In this study, pollution load
from these sources was quantified by integrating chemical mass balance analysis (CMB) and the
watershed model of pollution load (PLOAD) for chemical oxygen demand, biochemical oxygen
demand, total dissolved solid, total nitrogen, nitrate, and phosphate. Water samples monitored
bimonthly at 15 main channel monitoring stations and 11-point sources were used for estimation of
pollutant load using FLUX32 software in which the flow from the soil and water assessment tool
(SWAT) model calibration, measured instantaneous flow, and constituent concentration were used
as input. The SWAT simulated the flow quite well with a coefficient of determination (R2) of 0.78
and 0.82 and Nash-Sutcliff (NSE) of 0.76 and 0.80 during calibration and validation, respectively.
The uncharacterized nonpoint source load calculated by integrating CMB and PLOAD showed
that the contribution of nonpoint source prevails at the middle and downstream segments of the
river. Maximum chemical oxygen demand (COD) load from uncharacterized nonpoint sources
was calculated at the monitoring station located below the confluence of two rivers (near German
Square). On the other hand, high organic pollution load, biochemical oxygen demand (BOD) load,
was calculated at a station upstream of Aba Samuel Lake, whereas annual maximum total dissolved
solid (TDS), total nitrogen (TN), and phosphate load (PO4-P) from the nonpoint source in Little Akaki
River (LAR) were found at a river section near Kality Bridge and maximum NOX load was calculated
at station near German Square. The integration of the CMB and PLOAD model in this study revealed
that the use of area-specific pollutant export coefficients would give relatively accurate results than
the use of mean and median ECf values of each land use.

Keywords: chemical mass balance; pollution load (PLOAD); nonpoint sources; export coefficient; FLUX32

1. Introduction

Nowadays, urban rivers of developing countries are heavily polluted due to the release of
pollutants from the point and nonpoint sources where the determination of accurate pollution load to
a river is often difficult due to combined factors of financial, data quality and availability, and technical
capability making the river water quality management more challenging [1]. In one way, not only is
the determination of waste load from various sources, such as diffuse sources, difficult to quantify as a
result of complexity in the generation and uneven distribution of wastewater from various sources [2],
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but also as a result of the lack of clear distinction between urban point and diffuse pollution sources [3].
On the other hand, pollutants released from point sources such as industries and institutions to the
rivers are becoming a threat to the aquatic life arising from poor waste load allocation and monitoring
systems, and most importantly, monitoring all the point sources in a watershed is quite difficult due to
economic and time limitations [4]. Despite the wide range of challenges for the estimation of pollutant
loads on different watersheds, scientists have tried to develop different approaches and come up
with various best pollution management practices. The most common approaches for pollutants load
estimation are based on watershed models that require extensive data, which were reported in the
works of [5–8]. Similarly, the application of the land use-based pollutant export coefficient method [9]
and the modified mass balance approach [10] are also alternative pollutant load estimation techniques.
Researchers often recommend the study of pollutant loads rather than the concentration could ease the
river pollution and pollutant load management in a river system [11].

When the data required for the estimation of pollutant loads are limited, it is often necessary to
explore simple approaches that estimate the transport of loads from various land uses to water [1].
Various researchers have hence used different techniques to estimate pollutant loads from diffuse
sources. One such approach, which has been widely used, is through the determination of pollutant flux
based on the base flow separation [12]. However, such an approach could not be feasible for data-scarce
areas like Ethiopia, which has little hydrometeorological and water quality data. Availability of
monitored water quality and hydrological data is central for the accurate determination of the pollutant
load that hence hinders the urban water quality management and pollution load estimation, specifically
in developing worlds. In that case, an indirect approach, such as chemical mass balance (CMB) analysis,
which is often considered as an economical and viable way, is used as a means of preliminary load
estimation. Waseem et.al. [13] recommended the use and importance of detailed information of water
and chemical mass balance analysis approach for the establishment of efficient surface and ground
water management. However, the CMB approach for pollutant load estimation is more accurate if the
time of travel between the river segments of monitoring stations is small and the river is assumed to be
completely mixed. Many studies have been conducted to estimate the pollutant loads in a river using
the CMB analysis. The application of CMB was used by Raj et.al. [14] to determine the subsurface
flow contribution to a river where the load difference between the monitoring stations nearby was that
contributed by the flow from a subsurface source. The method was also used for the estimation of
internal processes in rivers, sediments, and chemical resuspension [15], where bottom sediment usually
plays a key role by acting as both source/sink during mass flux and CMB analysis [16]. The approach
was also used as a means of preliminary pollutant lateral load estimation in different watersheds such
as in India [17], North America [18], and Europe [15].

In Ethiopia, due to combined limitations of finance, monitoring data, and commitment, it is
nowadays becoming difficult to estimate loads from point and nonpoint sources, and hence river water
quality management is neglected. However, the recent initiation of the government to reduce the
point source pollution has led the nonpoint source pollution to be recognized, and it has ultimately
become the primary focus area. It is apparent that pollutant load estimation specifically originating
from nonpoint sources in data-scarce catchments like Ethiopia is challenging. Thus, the use of less
complex, effective, economical, and reliable watershed models is highly important for better pollutant
load estimation in river water quality management. Therefore, the objectives of this research were:
quantification of annual pollutant loads contributions from point and nonpoint sources to the Little
Akaki River (LAR), to identify the possible pollution load hotspots, and calibration of pollutant export
coefficient for the study area by integrating CMB analysis and catchment nonpoint source model of
pollution load (PLOAD).
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2. Materials and Methods

2.1. The Study Area

Addis Ababa is the sprawling city and capital, economic, and political center of Ethiopia, found on
the border of the greater rift valley at the foothill of the Entoto mountain, with a total land area of 520
square kilometers and population of more than 3 million [19]. The study area (Figure 1) is characterized
by a subtropical highland climate with a mean annual maximum and minimum temperature of 24 ◦C
and 12 ◦C, respectively, and a mean monthly rainfall of 260 mm [20]. The main surface water sources
of the city consist of three rivers: Kebena River, Big Akaki River (BAR), and Little Akaki River (LAR),
all originating at the foothills of Entoto and draining down to Aba Samuel Lake. The LAR flows
from the northwest of the city to the most southern Addis Ababa, before joining the BAR at Aba
Samuel Lake, and has a total length of 43 km. The LAR consists of several highly polluted tributaries,
mainly located in the middle of the catchment where untreated household waste, including raw
sewage, and industrial waste that increases pollution load in the river are discharged. Nearly 65% of
the country’s industries, ranging from small-scale to large-scale, are concentrated in and around Addis
Ababa [21], including food and beverage, textiles, tanneries, rubber, and paper products. The location
of most large-scale industries within the vicinity of the LAR that are releasing their wastewater directly
to the river without prior treatment (more than 90%) has augmented the pollution load, making the
river’s water quality unmanageable easily [22]. The river is serving as a natural sewer line for waste
originating from various sources, such as domestic, industrial, institutional, and residential areas [23].
The study area is characterized by trachytes, rhyolites, basalts, and several episodes of pyroclastic
materials of older volcanic rocks, specifically prevailing in the upper catchments, whereas the western,
southwestern, and eastern parts of Addis Ababa are characterized by younger volcanic of trachy-basalt.
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Figure 1. The Little Akaki River (LAR) water quality monitoring stations and point source locations.

2.2. Water Quality Sampling and Flow Simulation

A bimonthly water sample was collected for selected constituents in LAR from April 2018 to
March 2019 during dry and wet seasons. A total of 11 physico-chemical parameters were collected
and analyzed where dissolved oxygen (DO), water temperature, pH, total dissolved solids (TDS),
and conductivity were determined onsite. For the estimation of pollutant load in LAR, water samples
were collected from 15 main channel monitoring stations (Table 1) and 11 tributaries and point sources
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(Figure 1 and Table 2). The samples were collected using a 1.5 L polyethylene bottle, placed in a
cooler box, kept under 4 ◦C, and immediately transported to the laboratory for analysis. Samples of
nitrate and phosphate were prefiltered at site and kept in a cooler box before analysis. The analytical
methods and instruments used for analysis are shown in Table 3. All the analytical methods were done
according to the standard methods for the examination of water and wastewater [24].

Table 1. Main channel monitoring stations and locations in LAR.

Code Station Name Longitude Latitude Area (ha)

M1 LAR at Medhanealem Square 38◦43′14” 9◦03′10.1” 277.15
M2 LAR near Kolfe Atena Tera Taiwan Sefer 38◦43′3.1” 9◦02′38.3” 74.31
M3 LAR at the Back of Coca Cola SC 38◦43′38” 9◦00′53.1” 437.14
M4 LAR downstream of AACRA 38◦44′21” 8◦59′55.5” 343.59
M5 LAR near Kera Beg Tera 38◦44′44” 8◦59′12.7” 400.42
M6 LAR Downstream of Likuanda Bridge 38◦42′7.1” 9◦02′2.13” 1202.13
M7 LAR Upstream of Alert Hospital at Augusta 38◦42′35” 8◦59′18.5” 461.62
M9 LAR at German Square 38◦44′5.1” 8◦57′57.3” 826.42
M10 LAR Upstream of Biheretsige Park 38◦44′57” 8◦57′28.6” 476.48
M11 LAR Downstream of Biheretsige Park 38◦45′32” 8◦56′58.7” 294.63
M12 LAR Downstream of Batu Tannery 38◦45′45” 8◦55′50.1” 777.23
M13 LAR at Kality Bridge 38◦44′44” 8◦54′15.4” 869.91
M14 LAR Upstream of Aba Samuel Lake 38◦44′53” 8◦52′51.8” 1870.96
M15 LAR Downstream of Addis Ababa Tannery 38◦41′20” 9◦02′19.7” 9795.4

Table 2. Identified point sources near LAR, station locations, flow rates, and characteristics.

PS † LongitudeLatitude Q Characteristics

T2 38◦43′6.6”9◦3′8.11” 172.8 A tributary with wastewater from Ethio-marble industry
T3 38◦43′35” 9◦1′7.81” 259.2 A tributary receiving waste mainly from domestic sources

AWF 38◦43′39” 9◦0′47.4” 95.01 Wastewater originating from wine factory
T4 38◦44′24” 9◦0′39.6” 518.4 A tributary carrying hospital and tobacco factory waste

AA_Kerawoch 38◦44′51” 8◦59′16” 362.9 Receive wastewater effluent from abattoirs
T6 38◦43′56” 8◦57′12” 18144 A tributary carrying agricultural and industrial waste
T5 38◦44′59” 8◦57′32” 363.04 Small but heavily polluted Kera stream

W_TAN 38◦45′30” 8◦56′0.6” 181.4 Waste effluent from tannery factory
B_TAN 38◦45′30” 8◦56′0.6” 267.8 Waste effluent from tannery factory

AA_WWTPE 38◦45′9.5”8◦54′51” 4542.4 Addis Ababa waste water treatment plant effluent
M8 38◦43′9.6”8◦58′57” 22982.6 Major tributary load
T1 38◦43′37.1”9◦3′49.2” 86.3 Very small but highly polluted tributary

† Point source; Q is the mean flow rate (m3/d).

Table 3. Analytical techniques used for the analysis of selected constituents in LAR.

No Parameter Analytical Method Apparatus/Equipment

1 BOD Modified Winklers Method BOD Incubator
2 TDS Digital Multiparameter HQ40d
3 COD Titrimetric COD Digester, Heating Block
4 PO4-P Spectrophotometric HACH DR-2800
5 NOx Spectrophotometric UV-VIS Spectrophotometer
6 TKN Kjeldahl Method Kjeldahl

On the other hand, instantaneous flow in LAR was measured at the time of sample collection using
the current meter (Dentan CM-1AX, Tokyo, Japan), and the gauge data for soil and water assessment
tool (SWAT) model calibration were collected from the Ministry of Water, Irrigation, and Electricity.
The SWAT model calibrated on Big Akaki River (BAR) outlet was used to simulate and generate flow
at each of the subcatchment outlets (monitoring stations) and later used for pollutant load calculation
at monitoring stations, along with the instantaneous flow and constituent concentration. The flow
generated by SWAT for each subcatchment outlet was later input to the FLUX32 software for load
estimation at each monitoring station.
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2.3. CMB Analysis and Uncharacterized Nonpoint Source Load

In urban rivers of developing countries, the nonpoint source load estimation is a bit challenging
due to uncontrolled and irregular waste release rates and unknown and uneven distribution of diffuse
sources entry points [25–28]. To overcome such complexities, various software nowadays are developed
to estimate the pollutant loads in a river by taking advantage of simple mathematical equations,
from where the diffuse source loads are estimated. FLUX32 is one such software system, developed by
the Minnesota Pollution Control Agency (MPCA) to estimate the pollutant loads carried by tributaries
and streams. The software requires two data sets: event-based pollutant concentration and respective
instantaneous flow and historical gauge recording or model output of the river flow for the specified
period [1]. The software uses six different methods to calculate the pollutant load/flux and the choice
of each method depends on the sampling approach and variability of flow and concentration [29].
Accordingly, method six (regression applied to individual daily flows) was selected for load calculation
in LAR (Equation (1)).

Wi =
∑

exp[a+(b + 1) ln(Qi) +
SE2

2
] (1)

where Qi = mean flow on day i (m3/s), ci = measured constituent concentration (mg/L), a = intercept of
ln(c) vs. ln(q) regression, b = slope of ln(c) vs. ln(q) regression, SE2 = standard error of estimate for
ln(c) vs. ln(q) regression and q is instantaneous flow (m3/s), Wi = pollutant load/flux (kg/yr).

In LAR, point source load, such as from industries, was calculated by the product of the average
discharge rate of wastewater effluents and the mean concentration, where similar approach was used
by Amaya et.al. [30], whereas the load from tributaries was calculated by using FLUX32. This is partly
because the point source load is often assumed stable and insignificant change occurs seasonally [31,32].
On the other hand, estimation of nonpoint source loads from available monitored water quality data is
quite complex and in LAR it was calculated by using upstream–downstream CMB analysis integrating
with the watershed model, PLOAD. Since it was difficult to explicitly estimate the nonpoint source
load in LAR directly, the term uncharacterized nonpoint source load was used instead, which might
include unidentified point source and unrecognized nonpoint source load, where a similar description
was used by Jain et.al. [17]. A simple upstream–downstream mass balance approach could be used as
an initial estimation of pollution load from lateral sources [33]. Accordingly;∑

QDCD −
∑

QUiCUi +
∑

Losses =
∑

Li (2)

where QD = river flow at the downstream station, CD = downstream constituent concentration,
QUi = flow of a river at a river section upstream, CUi = upstream constituent concentration, Σ Losses =

the sum of all losses in the stream, Li = is the net load.
The above simple approach was used in LAR lateral diffuse pollutant load (differential load)

estimation for two basic reasons. First, the span length between the monitoring stations is very small,
indicating that the loss is minimum and hence neglected. Second, the river constituents are assumed
completely mixed. In the above simple mathematical mass balance equation (Equation (2)), the term
ΣLi does not mean it is only contributed from nonpoint source loads and is not the exact net load at a
point, but the combination of all loads and the losses and/or generations [34], which could be due to
settlement, resuspension, and decay and the generation due to reaction.

2.4. Watershed Model Selection

The study of pollutant loads contributing to the pollution of a river is vital for better water quality
management. Sekhar et.al. [34] suggested that the catchment pollution management plan should follow
a complete study of three components: point sources, nonpoint (background) sources, and natural
processes. Though the estimation of point source load is relatively easy, it is challenging to quantify
diffuse source loads, specifically in developing countries, where the estimation is often based on simple



Sustainability 2020, 12, 7084 6 of 18

empirical equations with limited hydro-meteorological and water quality data. To fill such gaps,
many watershed models have been developed and studies were conducted to determine pollutant
loads from diffuse sources at catchment scale such as the hydrological simulation program—FORTRAN
(HSPF) [35], agricultural nonpoint source pollution model (AGNPS) [36], pollution load (PLOAD) [37],
soil and water assessment tool (SWAT) [38], and storm water management model (SWMM) [25].
However, most of the models developed so far are complex and require a large number of data,
and hence are not feasible for data-scarce areas like Ethiopia. However, watershed level nonpoint
source pollution management could be achieved by using a simple but reliable and relatively accurate
model with a reasonable and limited budget. In LAR, hence, we used the PLOAD model due to its
versatility, simple data usage, and ease of applicability for the study area [1], integrating with the CMB
analysis approach based on monitored water quality data. Most researchers prefer the use of PLOAD
due to its cheaper and faster water pollution management of water bodies [2] and the capability
and adaptability of the model in different watersheds [39]. On the other hand, Zinabu et.al. [1]
recommended the use of the PLOAD model in Ethiopia for nonpoint source pollution management.

The PLOAD is a BASINS (better assessment science integrating point and nonpoint sources) model
plugin used to estimate nonpoint source load at catchment level interpreted as an annual load [40].
The model integrates point source and GIS-based land-use data to estimate the nonpoint sources’ load
contribution from each land use using two approaches: the export coefficient and simple method.
Both approaches can be applied based on the data availability and applicability on a watershed,
but generally the simple method is used in smaller watersheds, usually less than 1 square mile,
while the export coefficient method is used in a mixed land uses [41] for the estimation of constituents
such as total suspended solid (TSS), TDS, BOD, COD, NOx (nitrate + nitrite), total Kjeldahl Nitrogen
(TKN), ammonia, feacal coliforms (FC), lead, and zinc [40]. In LAR, we used the export coefficient
approach where pollutant loads in PLOAD are calculated by

Lp =
∑

P

(LPU ×AU) (3)

where Lp = pollutant load (kg/yr), LPU = pollutant export coefficient for each land use (kg/ha/yr),
AU = area by certain land use, ha.

2.5. Pollutant Export Coefficient

The export coefficient (ECf) is the total amount of pollutant load transported from certain land
use per unit area over a specified period of time [42]. When estimating catchment nonpoint source
contribution by ECf, each land use is assumed to contribute to the pollutant load per land area and is
hence expressed in kg/ha/yr. The watershed shape file was delineated by using ArcSWAT, where the
land use in the study area is mostly dominated by urban and agricultural set-ups where informal
settlements prevail (Figure 2). Accordingly, urban land use has the highest percentage coverage with
51.8%, followed by agricultural land (25.72%), forest (10.18%), rangeland (7.2%), bare land (4.63%),
and water (0.46%).

Mathematically, the pollutant load using export coefficient with an inclusion of precipitation
induced pollution can be expressed by

Li,j =
n∑

k=1

(
Ek,i ×Ak,j + Pi,j

)
(4)

where Li,j is calculated load of constituent i at the subcatchment outlet j (kg/yr); n is the number
of land uses contributing; Ek,i is the export coefficient of land use k for the constituent i (kg/ha/yr);
Ak,j is the area of land use k for the subcatchment j; Pi,j is precipitation-induced constituent i load at a
subcatchment j (kg/yr). Pi,j is assumed negligible in LAR.
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Availability of the local pollutant export coefficient is a prerequisite for accurate determination of
pollutants loads in a watershed. However, the study area did not have an established pollutant ECf
and determination for LAR depends on the data on another watershed elsewhere with nearly similar
hydrological, topographical, land use, and climatic set-up. To account for catchment variability and to
select appropriate ECf values, we evaluated coefficients globally (Table 4). For pollutant ECf in PLOAD,
we reviewed literature values from Ethiopia [1], Canada [43], USA [41], China [26], Taiwan [44],
New Zealand [45], Philippines [30], Egypt [46], Lithuania [47], and Japan [11]. Table 4 summarizes the
ECf for pollutants and nutrients in literature and selected for LAR for preliminary estimation.

Table 4. Export coefficient from literature (kg/ha/yr) selected for pollution load (PLOAD) calibration
in LAR.

Land Use
Pollutants Export Coefficient of Different Land Uses from Literature, kg/ha/yr

TN TDS BOD COD NOx † PO4-P

Urban 4.38–36.86 a 292–2263 a 2199.6 e 2343.4 e 91.44 e 1.73 s

Agriculture 2.1–79.6 d 2280 e 68.4 e 90.9 p 34.32 e 9 r

Forest 0.9–38 s 250 j 50 n 50 n 2.12 s 0.71 s

Bare land 0.51–6 b 100 n 3.46 q,o 1–5 * 67.29 r 4.81 r

Water 21.96–73.45 h 10–150 n 50 n 50 n 0.46 s 10.11 r

Rangeland 3.2–14 b 24.02–100.99 j 0.5 s,g 0.5 s,g 0.46 s 2 r,g

Export coefficients selected for PLOAD calibration in LAR, kg/ha/yr

TN TDS BOD COD NOx
† PO4-P

Urban 36 2260 2195 2340 91 1.7
Agriculture 79 2250 68 90 34 9

Forest 38 250 50 50 2 0.70
Bare land 6 100 3.4 5 67 4.8

Water 73 150 50 50 0.45 10
Rangeland 14 100 0.5 0.5 0.45 2

a [48]; e [46]; s [11]; p [47]; b [1]; h [26]; j [43]; r [49]; q [40]; * Approximated from PLOAD user guide for BOD [40];
d [41]; n [30]; † reported in literature as NO3 + NO2; r,g estimated from grassland value [49]; s,g estimated from
grassland value [11]; q,o value taken for open land from PLOAD user guide [40].
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2.6. Calibration and Validation of PLOAD

PLOAD uses GIS-based input data such as land use, watershed boundary, pollutant loading rate
(ECf), rainfall depth and optional best management practices (BMPs), terrain imperviousness, and point
sources load based on the type of the approach used for estimation. In PLOAD, nonpoint sources
from each land use were calculated based on the ECf for each land use. In LAR, once the ECf for
each land use was assigned, the PLOAD was calibrated by using the uncharacterized nonpoint source
load calculated by CMB analysis and validated using another set of data using an optimized ECf
and measured nonpoint load through CMB. The PLOAD model performance was then evaluated
by comparing the measured pollutant load (CMB analysis) with the model output until the total
percentage error between the measured and model-predicted value became zero or close to zero.
Since the model has no direct calibration option, an Excel (2016)-based optimization on Excel Solver
was used. In the Excel Solver, the objective to be optimized was set to minimize the percentage total
relative error with a possibility of zero value. We selected a GRG nonlinear optimization in Solver due
to its faster performance, which uses the local optimum solution. Accordingly, the performance of the
model was checked by;

% ES =
MPL − PPL

MPL
(5)

where ES is an error of estimation, MPL is measured pollutant load, PPL is PLOAD predicted load.

3. Results and Discussion

The results in this section are presented in a way that the pollutant load for selected segments
of the LAR and monitoring stations of the catchment outlets are represented. The discussion mainly
focuses on the major pollution hotspots in the watershed and the pollutant contribution of various
land uses were quantified.

3.1. Point Sources Load in LAR

The pollutant load from point sources in LAR was much smaller than the tributaries load
due to the relatively higher flow rate and pollution level of the tributaries than the point sources.
However, stations M3 to M11 (Figure 1) were heavily loaded by point source pollution that contributes
significant pollutant loads to LAR including, the soft drink industry, wine industry, abattoir, tobacco
factory, and hospitals. Similarly, the heavily polluted Mesalemya stream that joins the main river
upstream of outlet M3 and a tributary that crosses densely populated urban center, Merkato, and receives
many wastewaters from industries joining the main river at M4 have highly augmented the pollutant
load in LAR. Besides, the load contributed by the Addis Ababa Abattoir near Kera Beg Tera (M5)
was found to be very high due to significantly higher water consumption from the slaughterhouse
that generates wastewater with a higher flow rate. Table 5 summarizes the load contributed by point
sources to the LAR. Almost all of the point sources near LAR discharging the wastewater directly to
the river have either no treatment plant or couldn’t fully operate. From the point source load summary
on Table 5, it can be apparently seen that the contribution of stations T6, AA_Kerawoch, AA_WWTPE,
and M8 were quite significant for the LAR organic and nutrient pollution.
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Table 5. Summary of point source loads of selected physico-chemical constituents in LAR (t/yr).

Point Source MS †
Constituents Load in LAR (t/yr)

COD BOD NOx PO4-P TDS TN

T2 M2 37.73 8.32 0.017 0.312 26.52 2.48
T3 M3 185.74 59.89 0.013 1.388 89.75 14.74

AWF M4 13.69 6.39 0.12 0.447 33.76 0.585
T4 M4 189.45 98.28 0.056 1.180 178.36 10.18

AA_Kerawoch M5 821.20 105.96 0.073 3.338 306.68 5.298
T6 M10 2867.46 1005.59 1.39 26.20 3185.59 342.65
T5 M10 341.95 98.13 0.115 3.999 358.87 22.07

W_TAN M12 60.75 3.48 0.740 0.616 49.42 7.076
B_TAN M12 27.32 14.53 1.912 1.767 103.46 7.617

AA_WWTPE M13 622.17 217.12 1.005 8.137 440.96 147.26
M8 M9 11,661.75 1052.19 16.35 15.50 5874.30 223.04
T1 M1 82.624 19.99 0.023 0.584 42.69 5.275

MS † is downstream monitoring station where the point source load is contributing; T = tributary; AA = Addis
Ababa; WWTPE = wastewater treatment plant effluent; M = main channel.

3.2. Flow Simulation and Pollutants Flux in LAR

The SWAT calibrated at BAR was used to generate flow in LAR subcatchment outlets where the
model output along with the instantaneous flow and constituent concentration was used in FLUX32
software to calculate the pollutant flux (load). Accordingly, the SWAT simulated the flow quite well in
Figures 3 and 4 with an R2, NSE, and RSR value of 0.78, 0.76, and 0.49 during calibration and 0.82,
0.8, and 0.45 during validation, respectively. The model performance indicators above (R2, NSE and
RSR) were good enough to interpret the model output for any purpose. From Figure 3, it can be seen
that the deviation between the SWAT model simulated and observed peaks. This could primarily be
due to the model performance. The hydrological model performance determined by the Nash-Sutcliff
(NSE) was found to be 0.76 and 0.78 during calibration and validation in the study area, which is good
enough to interpret the model output [50] and the deviation between the observed and simulated
flow is interpreted by the error. Similar results were reported elsewhere with similar trends between
the model simulation and observation in the works of Abbaspour et.al. [51], Rostamian et.al. [52],
and Shawul et.al. [53]. Sometimes the time lag between the small rainfall event and the main rain event
could dictate the variation between the model simulation and observed values. This explanation is
supported by the study conducted by Li et.al. [35], who used hydrological and water quality model,
HSPF, where a similar trend with this study between the model simulated and observed flow was
observed. The spatial location of rain meters and the heterogeneity among rainfall stations could also
determine the deviation. Though there was deviation between model simulated and observed values
at some peak points, the model performance indicators (specifically the Nash-Sutcliff) could suggest
that the model output can be interpreted with a good accuracy. The SWAT-generated subcatchment
outlet flow was used to calculate the load in FLUX32. Accordingly, the flow-weighted concentration
calculated by method 6 (Equation (1)) was < ±20% of all other methods in FLUX32. The residual plot
of bias (as slope) for flow, date, and month at each catchment outlet in LAR was in the range of 0–0.05,
which is quite acceptable. Similarly, the plot of slope significance was in the range of 0.88–0.99 ≈ 1.
The coefficient of variation (CV) is recommended to be in the range of 0–0.2 during flow-weighted
load calculation and in LAR, the CV has resulted in the range of 0.03–0.101, which is quite good.
During pollutant load calculation in LAR using FLUX32, the presence of the outlier was checked
statistically by testing the significance level, p ≤ 0.05.
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3.3. Chemical Mass Balance and Pollutants Differential Load in LAR

Once the loads were calculated at each of the subcatchment outlets by FLUX32, a CMB analysis was
performed following an upstream–downstream mass balance approach (Equation (2)) to determine the
differential load. A similar approach was also followed by [33,34,54]. From the calculated CMB analysis
at each monitoring station (Table 6), we found that the prevalence of differential uncharacterized
nonpoint source load at the middle and downstream segment of the LAR with highest calculated
differential load were BOD, COD, and TDS, which had shown highest loads at segment outlets M9,
M10, M12, M13, and M14, and the influence of uncharacterized nonpoint sources were found to be
significantly high (Figure 5). The areas were dominated by urban set-ups (industrial with both large
and small scale), residential settlement (usually informal), and agricultural (predominantly small scale)
land uses. The organic pollution contribution from the nonpoint sources prevailed in the study area
where the maximum calculated differential BOD load was observed at M9 with 1833.2 t/yr, where the
station is located downstream of two highly polluted but large streams that make a confluence. On the
other hand, the maximum COD differential load from the nonpoint source was observed at the
same station with a calculated load of 5588.7 t/yr contributed by the subcatchment having an area of
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826.419 ha, followed by M13, M12, and M10, which had contributed an annual load of 3217.2 t, 2306.9 t,
and 1859.55 t, respectively. Similarly, high BOD depletion was observed at downstream stations
M10 (1867.49 t/yr), M11 (738.49 t/yr), and M14 (1007.76 t/yr), where the impacts of nonpoint sources
were assumed to be insignificant, showing that the river is going through a high rate of recovery,
possibly due to morphometric effects and the improved self-purification capacity of the river [55].

Table 6. Uncharacterized (differential) nonpoint source pollutants load at LAR monitoring stations,
chemical mass balance (CMB) analysis.

Pa
Catchment Outlet Differential Load, t/yr

M1 M2 M3 M4 M5 M9 M10 M11 M12 M13 M14

BOD 27.8 12.7 † 269.69 94.15 † 51.9 1833.2 1867.49 † 738.49 † 395.15 157.65 † 1007.76 †

COD 181.6 87.7 471.93 108.8 65.5 5588.7 1859.55 3228.62 † 2306.9 3217.2 192.12
NOx * 0.05 0.04 † 0.61 0.18 0.04 6.05 † 15.11 2.15 † 10.59n† 0.17 6.10
PO4 0.72 0.12 † 0.43 0.24 1.99 12.43 13.92 7.46 23.63 11.79 7.82 †

TDS 80.7 6.60 162.18 54.06 36.8 581.9 59.67 † 558.85 730.78 1916.2 389.62
TN 1.77 5.39 10.22 11.38 † 15.92 157.2 674.79 97.02 708.88 † 227.65 † 76.82

Pa = parameters; differential load = incremental load of the downstream station relative to the upstream station/s;
NOx * = reported as NO3+NO2; † deficit (sink).

High PO4-P differential load was calculated at most downstream stations characterized by
small-scale urban agricultural activities prevailing at M12 (23.63 t/yr), followed by M10 (12.92 t/yr)
and M9 (12.42 t/yr). Besides, the area is characterized by a large number of small-scale industries,
dumping sites for informal solid waste including bio-waste, wastewater treatment plant effluent,
and animal remains. On the other hand, from Table 6, it can be seen that high differential TN load from
uncharacterized nonpoint source was calculated at monitoring stations M9 (157.2 t/yr), M10 (674.79 t/yr),
and M11 (97.02 t/yr), whereas stations M4, M12, and M13 were identified as areas with TN sink.
COD, BOD, TDS, and TN were found to be dominant nonpoint source load contributions and were
found in large quantities prevailing in the middle and downstream segments, indicating the increased
impact of washouts from agricultural and urban land uses. The CMB analysis in LAR revealed that
most of the organic waste load were concentrated at the middle segment of the river, whereas the sink
for these pollutants was found far downstream. The CMB analysis in LAR also showed that NOx,
TN, and BOD had sinks at most of the LAR monitoring stations calculated at outlets. Stations M9–M14
are the recognized sink areas for organic pollutants and nutrients located in the middle and downstream
segments of LAR. A similar finding was reported by Elósegui et al. [56], where most of the nutrient
load in river Agüera in Northern Spain was retained in the middle of the river. The station M11 is a
place where the organic pollutants are highly degraded and hence the area was identified as a major
nutrient sink. It is a place where a public protected park (Biheretsige Park) is located, which could
reduce the impact of nonpoint source load contributions. Relative to the downstream and middle
catchments, the upstream segments have low nonpoint source load contributions, where a similar
result was also found by Jain et.al. [33] on Hindon River, India. This could be due to relatively low
flow, less anthropogenic influence in the area, and the presence of buffer zones such as grass strips and
urban forests.

From the CMB analysis (Figure 6), it can be seen that most of the constituents in the upstream
section of the LAR (M1–M5) had minimum differential load, showing reduced impact of nonpoint
source pollution. Conversely, differential loads of BOD, TN, and NOx have shown most of the sinks were
observed at the middle and downstream segment of LAR, where riversides are protected by grasses
and plants, predominantly at M10 and M11. Maximum loads of nutrients, such as TN, NOx, and PO4-P,
were recorded at M10, which was also identified as a major sink for BOD. Similarly, M14 was found
as an area where both TN and NOx have shown a positive differential load. The station is found
downstream of the discharge point of wastewater treatment plant effluent and is also characterized by
small-scale urban agriculture.
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Figure 5. Nonpoint source pollutant loads at selected catchment outlets of LAR (t/yr).
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3.4. Integration of CMB-PLOAD and Uncharacterized Nonpoint Source Load

Loads calculated at selected LAR subcatchment outlets (monitoring stations) by CMB were used
for PLOAD calibration and the selected ECf for LAR was used as an initial estimation for calibration.
During the calibration of PLOAD in Excel Solver, the ECf were used as independent variables and
the ranges were constraints by setting the upper and lower bounds of the ECf based on the literature
for optimization. At the initial stage of calibration and preoptimization, the total percentage error
between the model-predicted and measured load at all monitoring stations for COD, BOD, TDS, NOX,
PO4-P, and TN were 3680.6%, 2965.64%, 767.97%, 446.8%, 750.40%, and 899.36% respectively. After the
optimization of the ECf in Solver, the average percentage relative error dropped to 12.16%, 3.98%, 0.53%,
26.86%, 8.9%, and 29.22%, respectively. On the other hand, the sum of errors in COD was found to be
higher than BOD, which resulted in a total sum of error at 3680.6% preoptimization, where much was
attributed by station M5, at which point the PLOAD underestimated both constituents at the station.

The PLOAD prediction for TDS was relatively accurate, where the total relative error at all
monitoring stations before optimization was found to be 767.97%, which sharply dropped to 0.53%
after optimization. Unlike other parameters, the PLOAD model has overestimated the TDS load in
the upstream section of the LAR (M1–M5, and M9), whereas the model underestimated the PO4-P
load in LAR at the downstream segment of the river. High total errors were recorded at smaller
catchments of LAR than the bigger catchments, and Zinabu et.al. [1] also came up with a similar finding
in Kombolcha catchment, Ethiopia. From the optimized ECf, we found that urban and agricultural
land use ECf varies greatly with varying urban land-use types and has shown a significant variation
spatially. The water body land-use showed minimum change over the loading of constituents across
the monitoring stations, which could be due to less area coverage in the watershed.

The PLOAD was rerun using the median and mean value of the optimized and calibrated
ECf. Though the median ECf gave minimum total percentage error relative to the mean value,
high variation in the ranges of the ECf made the load vary greatly, and hence the loads calculated by
both mean and median ECf were not acceptable. The optimized ECf values revealed that the use of
average and median value resulted in an underestimation of pollutant load at some catchment outlets,
whereas overestimation on others. Thus, the use of area-specific ECf was relatively acceptable and was
found effective in better estimation of pollutant loads in LAR. The study conducted by Shrestha et al. [11]
also recommended the use of area-specific, and development of local, ECf for effective pollutant load
calculations. The optimized values can then be interpreted well for LAR and used for the management
of the nonpoint source pollution load in the catchment. Similarly, the PLOAD was validated for a
different data set without change in the optimized export coefficient and the error calculated from the
model was acceptable enough for further interpretation. Accordingly, the percentage error between the
PLOAD predicted and measured values for COD, BOD, TDS, NOx, PO4-P, and TN during validation
were found to be 16.41%, 7.06%, 1.77%, 13.23%, 5.4%, and 18.83%, respectively.

The calibrated pollutant ECfs showed that the urban land uses had significantly varying export
coefficients. Accordingly, the pollutant loading rate for urban land use ranged from 42.1–2083 kg/ha/yr,
63.3–2012 kg/ha/yr, and 0.49–1.6 kg/ha/yr for COD, TDS, and PO4-P, respectively, varying with the
subtype of urban land use (such as residential, commercial, industrial) and location. The urban land
uses dominated by residential settlements and industries do have high loading rates, whereas other
urban land uses have relatively lesser rates. Similarly, the urban land use pollutant ECf for BOD and
NOx also vary greatly, ranging from 120–1950.55 kg/ha/yr and 0.1–47.32 kg/ha/yr respectively. The high
variation in ECf spatially is due to the high difference in the impact of nonpoint sources among various
urban land uses. The upstream urban land uses have less pollutant loading than the middle and
downstream catchments (Table 7). The agricultural land use for all the constituents was sensitive in
controlling the impact of the pollutants load on the LAR. Though the contribution of agricultural land
for nonpoint COD load was quite constant with a range of 79.64–81 kg/ha/yr, an appreciable magnitude
of ECf for TDS with 76.4–2005 kg/ha/yr would suggest that the agricultural land use varies spatially in
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contributing the TDS loading rate. Similarly, PO4-P, NOx, and BOD have an annual loading rate of
7.72–8.1 kg/ha, 0.1–30.16 kg/ha, and 60.25–60.8 kg/ha/yr from the agricultural land use.

Table 7. Uncharacterized nonpoint source load in LAR by integrating CMB and PLOAD, t/y.

R ‡ TDS BOD COD PO4-P TN NOX

M1 80.77 27.82 189.96 0.72 1.768 0.102
M2 6.56 132.09 † 62.432 0.155 † 5.391 0.572 †

M3 162.18 269.69 482.89 0.431 10.217 1.352
M4 54.055 644.28 † 14.31 0.243 11.232 † 4.063
M5 36.76 51.91 585.64 1.993 15.913 0.083
M9 581.95 1540.12 5319.119 12.428 157.242 67.168 †

M10 910.12 † 792.220 1119.375 13.921 674.791 33.304
M11 558.85 581.51 † 1367.92 † 7.460 97.018 34.825 †

M12 730.78 1504.80 † 2170.24 23.627 30.462 † 6.529 †

M13 1916.16 1511.69 † 308.91 23.628 35.453 † 6.791 †

M14 389.72 2664.75 † 2551.43 7.717† 76.825 13.454
† Loads where the deficit was calculated by CMB analysis but PLOAD estimated the value from nearby
subcatchment ECf; ‡ catchment outlet where PLOAD was calibrated, and hence represents catchment nonpoint
source load contribution.

4. Conclusions

In this study, conjunctive application of chemical mass balance and watershed model, PLOAD,
was used to estimate the nonpoint source load in the data-scarce Little Akaki River, Ethiopia, which was
found effective. The approach proved to be more efficient in the study area, which ultimately focused
on the determination of organic pollutants and nutrient loads based on a continuously monitored water
quality data in the river. The following major conclusions were drawn from the research findings.

• The impact of nonpoint sources in the upstream segment of the LAR catchment was relatively less
than the downstream and middle segments, primarily due to the reduced impacts of unrecognized
point sources, less urban settlements, better land-use protection and management. Moreover,
lesser flow rate in the upper segment of the river could be playing a critical role for the lower
diffuse source load in the area.

• The integration of CMB and catchment nonpoint source pollution models such as PLOAD could
be an effective and alternative pollutant load estimation approach in data scarce areas.

• The nonpoint source pollutant load was found to be very high in areas where urban land uses
prevail, followed by agricultural and barren land uses, indicating the nonpoint source pollution
management focus areas. Mitigation measures involving these land uses is recommended.

• Area-specific (local) pollutant export coefficients were found to be more effective and accurate
load estimation approach than the use of mean and median export coefficients, which ultimately
give a lower error during pollutants load calculation. Despite higher accuracy of CMB for the
estimation of differential uncharacterized nonpoint source load estimation, integrating with a
simple watershed model was found to be a good alternative for a more accurate representation of
the diffuse source load.

• Under- and overestimation of the PLOAD for pollutant load estimation was observed at
some catchment outlets, which when integrated with CMB analysis gave a promising result.
But adaptation of global export coefficient to the local condition with different hydro-climatic
setup is the limitation of the integral modeling approach.

• The pollutant and nutrient export coefficients developed in LAR catchment could be transferred to
other catchment elsewhere in the country for similar application for preliminary nonpoint source
pollutant load management. The accuracy and effectiveness of the CMB for nonpoint source
load estimation highly depends on a number of factors, such as frequency of data collection,
distance between the monitoring stations, and identification of the major point sources to the river.
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It could be concluded that the integral application of chemical mass balance and watershed
models such as PLOAD could be a better option for the estimation of nonpoint source pollutant loads
in areas with few monitored water quality data. Future studies incorporating the vast and long-term
monitoring program at larger catchment scale would be helpful for better pollution load management
in the river.
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