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Abstract: Online learning and teaching have become the primary forms of education during the
global pandemic, and online learning systems, which can provide fair educational opportunities
for everyone, are increasingly important for sustainability in education. The amount of time a
student spends on online learning systems affects the fairness and persistence of sustainability in
education. To support personalized learning opportunities, interactive learning, and easy-to-access
resources, we propose a map organization and visualization method called MapOnLearn for online
learning systems. First, we converted tree-like hierarchical course units (HCUs) and knowledge
points (KPs) into a fundamental two-dimensional (2D) map of hierarchically divided polygons and
used the map to form containers to manage all learning resources. Then, we used the zoom feature
of the map to express the hierarchical structures of knowledge and formulated corresponding rules
for displaying information at different levels. Path analysis was applied to express the learning
process, and topological processing was adapted to represent the relationships among HCUs and KPs.
We developed maps for a high-level math course, a course on data structures, and an English course
at a university in China and investigated 264 students and 27 teachers for a semester by using the
technology acceptance model (TAM). We found that the map visualization and organization method
had a positive impact on the way teachers and students use online learning systems and improved the
online learning experience. To attract more students to spend more time on online learning, we hope
our method can promote the sustainable development of education.

Keywords: education sustainability; online learning system; map usage; learning resource
organization and visualization; higher education; TAM

1. Introduction

Massive open online courses (MOOCs) and online learning systems are becoming increasingly
important all over the world, especially due to emergency public health incidents such as COVID-19,
which has strictly limited the actions of teachers and students. Online learning systems can provide fair
educational opportunities for everyone and are increasingly important for sustainability in education.
The amount of time a student spends on online learning systems affects the fairness and persistence of
sustainability in education. However, the clarity of course units and learning content, the simplicity
of visualizations, and the accessibility of adaptive resources for online learning affect the use of
such systems [1].

Hierarchical directory structures and tables cannot be used to sufficiently manage course units
and arrange teaching or learning resources [2]. It is difficult for learners to retrieve the relevant
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resources of the hierarchical course unit (HCU) from tree-like or node-link style diagrams because
small node-based shapes and dense lines are hard to select at small scales. The students and teachers
complained about the terrible experience and the complicated interface, which led to a low completion
rate for online learning courses [3]. Students need to be more active in maintaining their own
progress by, for example, identifying the content that can best help them reach their learning goals [4].
Browsing-based learning and location-based navigation are expected to dominate the online learning
experience [5]. Visualization-based learning for online learning systems has been a popular research
topic for years [6]. Among those applications, the map-based container played an important role in
resource management, and it created a visible framework that can support a browsing-based clickstream
learning method [7]. When online learning adopts features such as zooming, selecting, and panning,
such learning methods will become more attractive, as learning path navigation and personalized
progress maps will increase convenience. Interestingly, maps can be used for hierarchical course units
(HCUs) to support online learning in a manner similar to public map services such as Google Maps [8].
Maps can organize and display HCUs and knowledge points (KPs) as cartographical objects using
geographical metaphors, and the map elements include a series of signs, symbols, graphical primitives,
and location information, such as annotations, shapes, colors, positions, distances, and areas [9].
With the development of location-based services (LBSs), the map method has become increasingly
crucial for the recommendation of learning content [10] and the facilitation of teaching/learning
processes [11], ubiquitous teaching services, and e-learning systems.

Cartographic principles have been applied to build a map-like online learning system [12];
however, HCUs have not yet been mapped to symbols or represented as shapes in the research. In this
paper, we propose MapOnLearn, a mapping method for organizing and visualizing HCUs and KPs for
online learning. MapOnLearn uses a mapping method to generate a location-based map for HCUs,
and it supplies a map navigation learning experience that describes learning progress and redirects to
learning resources.

In view of the existing online learning platforms, we found the tabular style organization of
learning resources in a coarse granularity makes it hard to attract the students, in a lasting way, to finish
the course without mandatory learning requirements. The target of this paper was to try to applying
the usage of maps in daily life into the online learning environments. We first developed the map
method to manage the online learning resources, then we supplied a map-based online learning
platform for serval courses. We hope our map style online learning platform will be more attractive,
more interesting, and more convenient.

The contributions of this paper are as follows. First, we propose a map generation method by using
independent quaternion information to convert HCUs into a fundamental 2D map. The area-based
map units of cells were associated with the HCUs and KPs. The cells of KPs were further divided into
Voronoi polygons, which were then assigned to the related learning resources. Second, we applied
scale visualization, path finding, and topological processing to represent the hierarchical information
and relationships of the CUs. Furthermore, map exploitation operations, such as panning, zooming,
and selecting, were integrated to support learning through a web browser. Finally, we evaluate this
method for education sustainability.

2. Literature Review

2.1. Resource Organization and Visualization in Online Learning

Due to the rapid development of online learning systems, resources and materials must be updated.
Common methods for organizing the resources of online learning systems include syllabi-based tabular
links and pages, which manage HCUs and treat related resources as supplements or appendices in
the form of exercises or homework [13]. Sobreira stated that the syllabi-based tabular organization
and visualization method was a flexible and easy-to-use method for K-12 teachers and university
lecturers [14]. This method is mainly applied in teacher-centered online learning systems such as



Sustainability 2020, 12, 7018 3 of 21

mobile social learning platforms [15], most MOOC platforms [16], and virtual lab education [17],
but it is not good enough for student-centered systems [18]. The materials and content of the
course based on the experience of the teacher are listed in the appendix [1]. Therefore, the teaching
and learning procedures are not adjustable and the resources are based on the experience of the
course instructors. The syllabi-based tabular method is popular for problem-based teaching [19] and
problem-solving environments [20], which aim to collect students’ collaborative study activities and
physical interactions [21], and teaching resources, students’ computational practice, and interaction
results are collected in a table or list [22].

The learning management system (LMS) is a popular method used for learning resource
organization, and it is broadly adopted to support teaching activities [23], to collect students’ online
behaviors [24], and to predict academic performance [25]. These software programs provide learners
with a browser-based environment they can use to review course objectives, download course materials,
and submit assignments through hyperlinks that are dynamically added to or removed from the
webpage based on resource availability [26].

Moodle is commonly used in online learning for teacher-oriented course management [27] and
student-oriented learning contents planning [28]. This tool has five kinds of static course materials
and eleven kinds of interactive course materials arranged by the social constructionist pedagogy.
For personal learning management, a dashboard is used as a visual user interface (UI) to provide
a progress overview [29] and statistical information via graphs, gauges, and dials [30]. However,
the visualization of such content on a dashboard is an open issue for various system targets. It is also
difficult to redirect to or access the correct learning resource through the dashboard [31].

2.2. Map Methods for Online Learning

Map organization and visualization methods for online learning can be classified into two
categories. The first category includes diagram representations such as concept maps, mind maps,
cognitive maps, and knowledge maps. A concept map [32] represents a course as a diagram. The nodes
of the diagram represent concepts, and the links show the relationships among nodes [33]. The teaching
and learning resources are attached to the corresponding nodes of the concept map [34]. Therefore,
concept maps can promote learning [35]. Mind maps and brain-main maps depict conceptual content
using short phrases, while arrows, lines, or cross-links are used to represent the relationships between
conceptual phrases. Such diagrams can be used to show knowledge structures or schemas as well
as the student’s progress after instruction [36]. A cognitive map is a map that represents the spatial
arrangement between objects in a physical environment. Such maps are built based on various
contextual cues that represent the visual elements and surrounding elements such as illustrations,
notes and highlights, and hyperlinks are used to organize the text. Cognitive maps benefit online
learning by providing the location of the book, and they promote the retention and recall of textual
information [37]. Knowledge maps (KMs) are receiving increasing attention; however, it is unclear
how to use them to visualize knowledge from different perspectives [38]. The methods used to visually
represent existing information can be categorized into one-dimensional (1D), two-dimensional (2D),
three-dimensional (3D), multi-dimensional [8], and tree-based methods. The 1D method displays
the objects in a linear manner by employing 1D objects to represent abstract information. The 2D
method displays information as 2D visual objects, and the 3D and multi-dimensional representations
use 3D objects and 2D planes to display objects generated by dimensional reduction, respectively.
The tree-base map method, which employs a hierarchical structure that can fully utilize an available
space, has become a popular technique for visualizing hierarchical data. The space-filling generation
approach [39], the cone-tree [40], and other methods use the bounded aspect ratio [41] and Voronoi
algorithm [42] to optimize polygons in terms of stability. The visual forms of KMs can be classified in
terms of hierarchical display mode, network display mode, and map display mode. The hierarchical
display mode can provide users with both global and local views of information by organizing and
representing information in different levels and branches according to concept and approximation [11].
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The network display mode uses nodes to describe concepts and links to represent the relationships
between concepts to help users make inferences [43]. The map display mode can provide a more
comprehensive and convenient view than both hierarchical and network displays [44].

The second category includes digital maps and public LBSs such as Google Maps or ArcGIS map
services. Digital maps have been used for teaching and learning geographical subjects and associated
topics for years [45], and currently, browsing and interpreting maps are considered to be general skills
for tasks in daily life such as taking a taxi and ordering takeout. By using cartographic representations,
geospatial objects can be integrated into learning resources. Many e-learning systems use online
mapping services such as the Google Maps Applications Program Interface (API) to organize and
visualize information. Khan Academy provides a concept-map navigator based on Google Maps API
but fails to balance local and global views [46]. In the domain of bioinformatics, protein interaction [47]
and genome projector [48] visualize multiscale structures by using the map scale of Google Maps API.
Moreover, the functions of location-based systems and services are applied to help the learning systems
to locate resources, track users, make recommendations for learning, and visualize information. Mobile
learning systems apply LBSs to track users [49], especially when users are outside. Wandering platforms
create interactive location-based learning objects that support the exploration of new information and
interactivity with the environment [50]. Fusing sentimental and spatial contexts, Zhao proposed a
personalized location recommendation system [51]. By using location-based social networks to record
the users’ behaviors, NationTelesope can monitor and visualize collective behaviors at a large scale [52].

In summary, online learning systems widely use syllabi-based tabular organization and
visualization methods to manage online learning and map methods with diagram representations or
digital map services are not integrated with the content of the course. These methods fail to support
the increasing demands for personalized learning. Therefore, new management and visualization
methods for online learning are needed to facilitate usage and attract learners.

3. Materials and Methods

Our proposed method uses a 2D map to organize and manage teaching and learning resources.
The main steps and notations of the proposed method are shown in Figure 1.

The first step is to select courses and prepare the data. For most college courses, the units and KPs
are structured as a tree-like table of contents. Considering representative curricula in higher education
in China, we selected a high-level mathematics course, a data structures course, and an English course.
The mathematics course contains all HCUs in higher education, and the data structures and English
course units include many learning elements that are not words.

The second step is map generation. We gave an HCU and KP representation and developed
the division algorithm to convert the knowledge tree into a 2D map. We adapted a representation
of four independent values for each HCU and KP for parameter processing. We first examined the
levels and relationships by designing a data structure for storage. Then, we obtained the pedagogical
information and evaluation information regarding the difficulties of each KP in the courses through
discussions with teachers at the schools. The values reflect the actual pedagogical process based on
years of teaching. We also automated value generation, which avoided a lot of manual work.

The third step is map organization. We first developed a partition method to divide the region
and then applied the positioning method to coordinate each HCU and KP. The hierarchical directory
structure of the HCUs and KPs was mapped into a 2D regional space via top-bottom partitioning.
After that, the area-based map units of cells were associated with the HCUs and KPs. The cells of KPs
were further divided into Voronoi polygons, which were assigned to the related learning resources.

The fourth step is map visualization. A geo-reference system was selected to assign to each object
in the map; therefore, the map could be integrated with public geospatial services such as Google Maps.
We used scale controlling to determine which level should be visualized during the study. A coarse
level corresponds to a small scale and a fine level corresponds to a large scale. A scaling mechanism
was adapted to visualize the appropriate information during the learning process. Then, each polygon
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and line underwent a topology check to ensure uniqueness and to prevent geometrical overlay. Thus,
we can obtained a unique path for the analysis of learning progress. To create a high-quality map
visualization, we balanced the color of the map and ensured that the shapes used to represent KPs
were meaningful. The criteria for color and shape (discussed hereafter) are based on cognitive theories
in cartography and cognitive psychology. In this paper, a commonly used cartographical style was
taken from the GIS software QGIS.

Sustainability 2020, 12, x FOR PEER REVIEW 4 of 23 

inferences [43]. The map display mode can provide a more comprehensive and convenient view 
than both hierarchical and network displays [44].  

The second category includes digital maps and public LBSs such as Google Maps or ArcGIS 
map services. Digital maps have been used for teaching and learning geographical subjects and 
associated topics for years [45], and currently, browsing and interpreting maps are considered to be 
general skills for tasks in daily life such as taking a taxi and ordering takeout. By using cartographic 
representations, geospatial objects can be integrated into learning resources. Many e-learning 
systems use online mapping services such as the Google Maps Applications Program Interface (API) 
to organize and visualize information. Khan Academy provides a concept-map navigator based on 
Google Maps API but fails to balance local and global views [46]. In the domain of bioinformatics, 
protein interaction [47] and genome projector [48] visualize multiscale structures by using the map 
scale of Google Maps API. Moreover, the functions of location-based systems and services are 
applied to help the learning systems to locate resources, track users, make recommendations for 
learning, and visualize information. Mobile learning systems apply LBSs to track users [49], 
especially when users are outside. Wandering platforms create interactive location-based learning 
objects that support the exploration of new information and interactivity with the environment [50]. 
Fusing sentimental and spatial contexts, Zhao proposed a personalized location recommendation 
system [51]. By using location-based social networks to record the users’ behaviors, NationTelesope 
can monitor and visualize collective behaviors at a large scale [52]. 

In summary, online learning systems widely use syllabi-based tabular organization and 
visualization methods to manage online learning and map methods with diagram representations or 
digital map services are not integrated with the content of the course. These methods fail to support 
the increasing demands for personalized learning. Therefore, new management and visualization 
methods for online learning are needed to facilitate usage and attract learners. 

3. Materials and Methods  

Our proposed method uses a 2D map to organize and manage teaching and learning resources. 
The main steps and notations of the proposed method are shown in Figure 1. 

 
Figure 1. The main steps of the map organization and visualization method for online learning systems.
First, we selected three typical university courses: a data structures course, an English course, and a
high-level math course. Next, we generated the map for the online learning system. Then, we used
the map to organize the resources of the online learning system. We applied scale control, topology
processing, and shape optimization to visualize the online learning system. Finally, we gave examples
of map-based online learning and evaluated feedback from students and teachers.

Finally, we tested the use of the map for online learning with three courses and evaluated feedback
from students and teachers regarding the map-based online learning system.

3.1. Course Selection and Data Preparation

To consider different requirements and learning experiences, we chose three different courses for
online learning. The first was a data structures course, which is the fundamental course for computer
science. The second course was a high-level math course that is a compulsory course for engineering
students. The third course was an English course that is a public course for freshman in universities of
China. These courses form the foundations of different majors. The courses have different requirements
and difficulties, and the learning processes are monotonous and increase in difficulty over the duration
of the term; thus, some students may give up halfway through a course. The resources used for all
students are not appropriate for the different levels of students in a uniform platform.

In this paper, we first constructed the course knowledge graph by analyzing the HCUs and KPs to
represent the different levels of the knowledge graph. We collected learning resources from different
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teachers and then set up the resources related to the KPs. Unlike MOOCs, we collected many learning
resources from different teachers for one KP, including videos, presentations, voice records, textbook
pages, pictures, exercises, and microclasses. These resources need to be organized and managed to
support the requirements of personalized learning.

3.2. Map Generation

3.2.1. HCUs and KPs Representation

In this section, we present a new description model called the independent quaternion structure
(IDS) for HCUs and KPs. The four elements of this model are independent, and they are not correlated.

Q (H, R, V, C) (1)

Equation (1) defines the structure as a set description. Here, Q is the quaternion structure,
H represents the hierarchical relationship information of HCUs or KPs, R represents the association
relationship of HCUs or KPs, V represents the information volume of HCUs or KPs, and C represents
the category of the HCUs or KPs.

The hierarchical relationship information represents the level numbers of the HCUs in the
hierarchical levels, which range from 0 to the largest number of levels. The contained relationship of
the HCU is also described with this parameter.

The hierarchal structure is typically visualized using a tree view, such as a directory tree. In the
textbook, the hierarchy includes grade, semester, chapter, section, and unit levels. Herein, grade is the
root level; semester, chapter and section are levels 1 to 3, respectively; and the unit is the leaf level.
The root and leaf levels are fixed for most of the highest and lowest levels, respectively. The numbers
of the middle levels (i.e., levels 1 to 3) depend on the method used.

To automate this process, the hierarchical relationship for every node in the tree is described as a
constructing number. Initially, the root level is set to 0. Travelling in a breadth-first manner, the child
will add the parent code first, and then, the sequence of numbers will be added following the parent
number. For example, grade will be set to 0, semester will be set to 01, and third chapter will be set to
013 (see Figure 2).
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Figure 2. A sample of the code generation for the hierarchical information: 0 is the topmost level,
and the child levels will add the code of the parent level before the code in each level. This method will
generate H for each unit.

The association relationship information includes the time-series relationship and dependency
relationship between HCUs on the same level. Specifically, it reflects the order in which the HCU
should be taught or studied. The time-series and dependency relationship in this paper was defined
as the order and dependency of the HCUs on the same level of the hierarchical structure. We used
numerical order to represent the value of the relationship. For example, if there are 5 HCUs in the
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current level, and the HCUs are arranged in order, then the values will be set from 1 to 5 for the HCUs
based on the sequence.

The information volume (IV) is used to represent the content in each HCU. IV is used instead
of entry or other information, and it functions as a measurement, like the length of time spent on
teaching or studying. We defined the information volume as a uniform value that can be compared
and measured in application. The information volume of one HCU is its number of HCUs. The value
of each HCU can be assigned during the second stage when the teachers evaluate each HCU. Then,
the values of the parent HCUs can be calculated in a bottom-up manner.

We established the following code for the main categories (C) and subcategories: 1 for factual
knowledge, 2 for conceptual knowledge, 3 for procedural knowledge, and 4 for metacognitive
knowledge. The values set for the activities were 1 for remembering, 2 for understanding, 3 for
applying, 4 for analyzing, 5 for evaluating, and 6 for creating. For example, conceptual knowledge to
be remembered would have a code of 21, while metacognitive knowledge to be analyzed would have a
code of 44. The categories were set during the teachers’ evaluation in the first stage.

In the preparation stage, the evaluation information of the HCU will consist of the information
volume and HCU category. The teachers will provide a value based on the definition. We will clearly
state that, if the values for the information volume and HCU category are set at random, then a map
can be generated; however, we used the teachers’ values based on their experience to generate a more
reasonable map. This method does not need guaranteed values for the parameters.

3.2.2. Map Generation Algorithm

In the beginning of the map generation stage, we determined the map area using four corner
points with longitude and latitude values. Theoretically, one can choose any value from [−180, 180] for
the longitude and from [−90, 90] for the latitude based on the requirement that the four points form a
rectangle. Taking the projection into account, the latitude will be limited to [−65, 65] because larger
projection errors are associated with values between [−90, −65] and [65, 90]. We used World Geodetic
System 1984 (WGS 84) as the geo-reference system.

The algorithm begins by traversing the hierarchical tree along its breadth. Then, the area is
partitioned based on the node. For the top node, the area is the total area, which can be partitioned into
several small parts based on the number of children. The coordinate of each child node is calculated via
a space-filling curve based on V. The shape of the child map is determined by the category information
c. Finally, each map element is decorated based on cartographic principles.

The area partition follows a top-down approach to divide the map area into different parts based
on level. That is, at the top level, there is only one root node, which is set to the total area. At the second
level, suppose there are 3 children or subunits, then, the area will be divided into 3 parts, and each part
will be assigned to one child or subunit. For each subunit, the same steps will be followed to partition
the area into parts based on the number of subunits. The process will terminate when all leaf units
have corresponding areas.

To avoid an extremely narrow area for the HCUs at each level, additional rules are added.
These rules are related to the ratio of the length and width of the resulting shapes and specify that the
resulting area should correspond to the number of subunits; thus, as the number of subunits increases,
the area also increases. In the partition method, the summation of the areas of the subunits is set equal
to the unit area. Therefore, we can use the volume to simplify the calculation.

The coordinate generation step will determine the coordinates for each HCU. A space-filling curve
method is employed to calculate the position in 2D, in which V is one of the most important values for
identifying the position in the curve. The curve can be any type of 2D space-filling curve, such as the
Hilbert Curve or Z Curve. We implemented the Hilbert Curve in our study. The coordinates of the
HCU can also be generated by using a grid partition; we implemented this method as an alternative,
as it is simple, with low computational complexity, especially when the regular cell partition method is
used. The coordinates (x, y) represent the position of the center point of the grid.
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Once we obtained the area and position of the HCU in the final map, the shape of the map
object needed to be formatted based on the category information and volume information. Previously,
we used a simple shape, such as a rectangle, circle, triangle, or regular polygon. We bound one shape
to each category, and the size of the shape was determined by the volume.

We provide examples of the definitions used in our implementation in Table 1. In this table,
factual knowledge is represented by a regular triangle, conceptual knowledge by a regular rectangle,
procedural knowledge by a regular pentagon, and metacognitive knowledge by a regular hexagon.
It should be noted that the shapes can be different; here, we are simply providing an example for
demonstration. For a regular shape, a public polygon generation method is used.

Table 1. Binding shape definitions.

Category Shape

1 (Factual Knowledge) Regular Triangle
2 (Conceptual Knowledge) Regular Rectangle
3 (Procedural Knowledge) Regular Pentagon

4 (Metacognitive Knowledge) Regular Hexagon

Factual knowledge is represented by a regular triangle, conceptual knowledge by a regular rectangle, procedural
knowledge by a regular pentagon, and metacognitive knowledge by a regular hexagon.

The size of the shape is determined by the information volume of each unit, which is used to
calculate the bounding box of the shape. The size of this box limits the radius of the circumscribed
circle, and the radius is used to calculate the length of the regular polygon.

3.3. Map Orgnizatoin and Learning Resource Organization

After map generation, the tree-like directory is converted into a 2D map. The finest polygon
represents one KP. As described previously, the learning resources are related to the KP; thus, we needed
to assign containers to hold the resources of the KP. For the polygon of the KP in the map, we needed
to generate small items to corresponding to the learning resources.

There are several ways to build the items for one polygon to hold the resources. In this paper,
we applied two methods to produce two different outputs, as shown in Figure 3. First, we generated
many small rectangles in the polygon of the KP (Figure 3 (left)). The number of rectangles is equal to the
number of resources, and the size of each rectangle was calculated according to the ratio of the numbers
and areas of the polygon of the KP. The more resources, the smaller the rectangles and the worse the
result. Second, we divided the polygon of the KP into Voronoi polygons based on the quantities of the
learning resources. Figure 3 makes an example of the higher math KP of scale. We collected serval
learning resources, such as presentations, videos, and exercises, and we dynamically partitioned the
cell into Voronoi polygons that correspond to the resources (Figure 3 (right)).
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Voronoi polygons are dynamically regenerated when the number of learning or teaching resources
changes. The size of the Voronoi polygon can be adjusted according to the importance of the resources.
In our implantation, we set the number of visits as the value for each resource, and the more students,
the larger the polygon. We used the recommended value of the teachers to initialize the size of the
Voronoi polygons. In addition, we classified the resources, and the class was used to assign the color
so that learners could focus on the items recommended for a class.

Specifically, the Voronoi polygons are generated based on the personalized information of the
students, such as the visit information and the learning process. Therefore, the result of the map in
the finest grain will be different for everyone; there will be the same number of polygons, but they
will differ in terms of shape and color. We set a combination weight value to each resource of the
KP when the resources for one KP had been decided. Then, we generated a lot of points so that
the number was equal to the counts of the resources. We summed the weight value and made this
value an integer, then got two integer numbers that produced just more than the sum value. The two
numbers represented the row and column to divide the rectangle of KP. We scattered the points into
cells according the weight value. After the Delaunay triangulation of the points, we generated the
Voronoi polygon for the finest resource of the KP, and the point representing the resource was the center
of the Voronoi polygon. A personalized polygon can be more suitable for personalized online learning.

3.4. Map Visiualization Method for Map-Based Online Learning

When the map is built and the resources are managed, the map can be used to support online
learning with the help of map operations. The zooming operation can be used to display different levels
of detail. For a fine-grain view of the KP, we zoom in, while for coarse HCU, we zoom out. Selecting
and querying operations can be used to get a special KP or HCU. By clicking the leaf mouse on the
map, learners can select a unit, a KP, or the resource at different scales or in the target scale. The map
service supports name querying and position querying, and users can easily locate the resource.

To support complex usage, we used path-find to express the learning process or represent the
learning path. The path-finding method was applied to get the learning path for the learner from a
starting KP to an ending KP, as shown in Figure 4. We recorded the learning processes of the learners
and then linked the sequence of the KPs to get the path. For the unlearned KPs, we used the hierarchical
relationship information and the association relationship to find the neighbor KPs and the neighbor
parent units from the start KP to the end KP. The linked line segments represent the path the learners
should take.

To create a suitable map, the shapes and colors of the polygons in the map must be optimized by
cartography. In fact, different colors may have different cognitive effects. However, there is a standard
for maps in the field of cartography, especially for maps that are to be published. MapOnLearn aims to
provide an online map service, and the color of each polygon adheres to the following rules: pink or
light brown for residential areas, purple or light yellow for roads, blue for water systems, light green
for vegetation, and dark green for annotations or labels.

During implementation, we used the information volume to identify the color, with higher values
corresponding to darker colors. Polygons in darker colors were more difficult to learn, whereas
those in lighter colors were easier. When polygons in the same color were adjacent to one another,
cartographic principles were used to adjust the brightness or color component so that the polygons
met the four-color separation principle.

To avoid obtaining the same shape for all HCUs, we applied fractal processing to the geometry to
perturb the edges of the polygon. In this paper, a random number between 1 and 10 was generated
to determine the number of times that the fractal of the edges was calculated. The perturbations of
the edge may require further discussion. However, this paper describes only a possible, automatic
method, not the reasoning behind it.

Another important component of cartography is symbol representation. In traditional methods,
cities are represented by points of different sizes or other symbols based on their importance.
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For example, the capital of the country and large metropolises are shown as different types of
circles: the capital is shown as a pentacle, and the metropolises are shown as concentric circles.
Similarly, railway lines are shown as dashed lines to distinguish them from highways, which are drawn
as parallel lines. Taking pictographic cognition into account, cartoon-like symbols can be useful for
different age groups. Thus, cartoon-like symbols that consider gender and age can be developed based
on widely known stories for such systems.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 23 
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4. Experiments and Results Analysis

4.1. Data Description

During the development of a map organization and visualization method for online learning for
college students, we tested three courses: a high-level mathematics course, a data structures course,
and an English course. Figure 5 shows part of the hierarchical tree of the data structures course. The top
node is the root, which identifies the course (e.g., data structures). We represented the data with
several levels (i.e., grade, semester, chapter, section, HCU) according to the organizational structure.
As mentioned, the method presented herein considers only the hierarchical structure, not the meaning
of each level. The hierarchical tree of the original data was the table of contents of the course, which was
extracted from the textbook published by the government education press of China. The levels of
the tree may vary by book. We used an XML structure to store the information assigned by teachers.
The tags of the XML file corresponded to the hierarchical levels. We added independent quaternions to
each HCU as attributes. The values of the attributes could be assigned either manually or automatically.

We attempted to create the values for independent quaternions in two ways. First, we invited
several well-known teachers with more than five years of teaching experience from the university in
Wuhan to discuss their respective fields. We evaluated the category and volume information of each
HCU. Second, automatic generation methods were developed for each course. To this end, we set up a
random combinational generator. The first random number generator produced numbers between 1
and 4 to identify the categories, and the second random number generator produced numbers between
1 and 6 to identify the subcategories (e.g., factual, conceptual). The volume information is the total
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amount of time needed to teach an HCU in minutes. With the automatic method, values between 30
and 60 were randomly assigned.

The last data preparation step is the value check procedure. It is important to confirm that all HCUs
have been assigned and that each node of the hierarchical tree has a correct value. Using a bottom-up
approach, the sum of the volumes of the children was assigned to the parent node. The existing
values for the knowledge category, associated relationship information, and hierarchical relationship
information were checked. If no value exists or if the existing value was out of range, then the automatic
method generated a reasonable value for the parameter. To ensure data reusability, we stored the
results in XML files. Thus, when others use the configuration files, they can obtain the results of the
test, and they can change the values to produce a new map.
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4.2. Map Results

A test platform was developed for this paper. We provided free copies of the software for different
teachers. The teachers used the platform to prepare the original data and to automatically generate the
map by importing the XML files.

Figure 6 displays the map generated for the mathematics courses. Different levels are shown on
different scales. Thus, the map shows the first level (i.e., the root level) at a coarse scale, as shown
in Figure 6A. When one zooms in while navigating the map, the middle levels will be displayed
at a certain scale, as shown in Figure 6B–F, which correspond to levels 1, 2, 3, and 4 and the leaf
level, respectively. The HCU is shown at the finest scale, and the area of this region must be further
partitioned into small parts by using the Delaunay method. In this example, we simply set the shape of
the middle levels as rectangles and assigned colors to different levels, with each part at the same level
having a color that was determined by the volume information. The map elements are annotated at
the levels that display the name of the node. At the leaf level, symbols are used to represent resources.
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Figure 6. The map generated for the mathematics course. (A) is the top level, which corresponds to the
root; (B) is level 1, which shows the grade level of the hierarchical tree; (C) is level 2, which shows the
semester; (D) is level 3, which shows the chapter; (E) is level 4, which shows the section; and finally,
(F) is the leaf level, which corresponds to the HCUs.

Figure 7 presents the maps for the data structures (A) and English (B) courses. As we can see
from Figure 5, the first level can be partitioned into two parts for the data structures course and three
parts for the English course. The data structures course consists of one left and one right pattern,
while the English course includes two left parts that are tiled horizontally and one right part. At the
second level, the data structures and English parts have the same partition results. We assigned a
different color to level 3, and we assigned the leaf level according to the volume information of the
node based on the categorization. Due to the fact that the same structure was used for the hierarchical
structures of the data structures and English courses, the maps of these courses have the same number
of levels and can thus use the same scale to display the levels corresponding to grade, semester, chapter,
section, and HCUs. When the map is generated, the colors can be assigned based on the target of
the application. That is, any of the cartographic rules can be applied to the target map or to maps on
different scales.
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4.3. Analysis

The statistical information of the test courses is listed in Table 2. The levels of the maps are the
same. The regions of the resulting map differ due to the numbers of HCUs. In this test, we set the
region as a rectangle by defining the upper point on the left side and the bottom point on the right side.
The test map for higher mathematics covered 873 HCUs, whereas those for data structures and English
covered 223 and 61, respectively. Point (0, 0) is the center point for the mathematics and data structures
maps, while it is the lower left point for the English map. Obviously, we could set the region for all
the courses as follows: [−180, 65] for the top, left points and [180, −65] for the bottom, right points.
However, the HCUs at the finest scale would correspond to different sizes, which would introduce
substantial errors in the projection when mapping this map to a spheroid-like Earth. How HCUs
should be mapped to a geospatial scope should be discussed further.

Table 2. Statistics for test courses.

Course Map Levels HCU Region

Higher Math 5 873 UL(−10, 10)
DR(−5, 5)

Data Structure 5 223 UL(−5, 5)
DR(−2, 2)

College English 5 61 UL(0, 5)
DR(0, 2)

The tests courses were mathematics, data structures and English courses from textbooks published by China. Here,
MapLevels is the number of hierarchical trees, KU is the finest knowledge unit, and Region reflects the upper-left
(UL) and lower-right (DR) position in terms of longitude and latitude.

The most important attributes for the map display indicate the level of detail (LOD) at different
scales. In the tree view, all the items are listed together, while in the map view, only the specific
levels on certain scale can be seen. This method can achieve lower cognitive confusion and recall
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by reducing unnecessary and irrelevant information in specific circumstances. The map display can
provide a more comprehensive and convenient view than the hierarchical tree view [8]. However, the
intrinsically hierarchical visual features presented while zooming in and out reflect the procedures
involved in cognition. Thus, presenting the hierarchical structure of knowledge to teenage students is
a good choice.

The map elements are presented as polygons within the area as the background rather than as
nodes and linked lines. Thus, a spaced container is provided to hold related materials and resources in
separate locations in the same region, which meets the need for LBS exploration. The Google-Maps-style
exploration of knowledge is acceptable for the countries, cities, and counties in a region. The geospatial
mapping of hierarchical directory HCUs can achieve this functionality by assigning a region to different
levels of units. By using an exploration procedure similar to that used for geospatial maps, the HCUs
can be revealed widely and deeply. The geospatial map is expected to become a new mapping style for
online learning systems. Therefore, applications based on geospatial maps should be further developed
and tested.

The aim of this paper was to propose a universal method for map generation; thus, the serviceability
of the parameters and the flexibility of the meaning for the original data are not limited in this work.
Additionally, no rules about diversity were employed to check the data during preparation.

We provided three methods for partitioning the region at the finest level. The simplest and most
basic method was the grid cell method. The second method was the K-D tree method, and the third
method was the Delaunay method. It should be noted that partition methods are not limited to these
three implementations; we merely wanted to provide variation for the map at the finest level to reduce
monotonicity, especially for online learning systems based on maps.

5. Evaluation and Discussion

5.1. Research Hypotheses and Methodology

5.1.1. Research Hypotheses

In this study, the original technology acceptance model (TAM) was chosen as the framework of
measurement to investigate the acceptance of the MapOnLearn method by two university students in
China. The questionnaire consisted of three constructs: perceived usefulness (PE), perceived ease of
use (PEU), and behavioral intention (BI).

Previous TAM studies have shown that perceived usefulness and perceived ease of use are key
factors in predicting the acceptance and use of new technologies [53]. In this study, the perceived
usefulness of MapOnLearn was defined as the degree to which the user believes that using MapOnLearn
would boost his or her learning performance. The perceived ease of use of MapOnLearn was defined
as the degree to which the user believes that using MapOnLearn will be effortless.

TAM assumes that perceived ease of use and perceived usefulness have a direct impact on users’
attitudes towards using new technologies. Behavioral intention was defined as the degree to which
a user is interested in a particular system and is considered to be a direct determinant of his or her
intention to use such a system in the future [54]. The frequency of use of the system is affected by the
intention of use. In addition, existing research has shown that the use of the system is also affected by
perceived ease of use and perceived usefulness. Therefore, the following assumptions based on TAM
were proposed:

H1: Perceived usefulness has a positive effect on the perceived ease of use of MapOnLearn.

H2: Perceived usefulness has a positive effect on behavioral intention to use MapOnLearn.

H3: Perceived ease of use has a positive effect on the perceived usefulness of MapOnLearn.

H4: Perceived ease of use has a positive effect on behavioral intention to use MapOnLearn.



Sustainability 2020, 12, 7018 15 of 21

5.1.2. Methodology

The survey tool for this study included a nine-item questionnaire (see Table 3) to evaluate the four
hypotheses of the proposed MapOnLearn. These items were based on previously published scales and
were adjusted, if necessary, for the specific study context. For perceived usefulness, perceived ease of
use and behavioral intention, the items used were based on the scales of Viswanath and Hillol [55].

Table 3. Items for technology acceptance model (TAM) constructs.

Constructs Items

Perceived Usefulness

PU1: Using the MapOnLearn improves understanding about the relationships of
the course units in my learning or teaching.

PU2: Using the MapOnLearn enhances effectiveness of path finding in my
learning or teaching.

PU3: I believe the MapOnLearn to be useful in my learning or teaching.

Perceived Ease of Use

PEU1: My interaction with the MapOnLearn is clear and understandable in the
hierarchical information and relationships of the course units.

PEU2: Interacting with the MapOnLearn does not require a lot of my mental effort.
PEU3: I find the MapOnLearn to be easy to use in my learning or teaching.

PEU4: I find it easy to get the MapOnLearn to do what I want it to do.

Behavioral Intention BI1: Assuming I had access to the MapOnLearn, I intend to use it.
BI2: Given that I had access to the MapOnLearn, I predict that I would use it.

For sample characteristics, we both used online questionnaires and conducted interviews, so the
quantitative samples were mainly from Normal University, while the qualitative sample were mainly
from a comprehensive university in Wuhan, China. In the sample of quantitative research, teachers and
students from different courses were investigated with an online questionnaire. In total, 264 students
and 27 teachers participated during the winter semester of 2019. The average age of the students was
between 22 and 24 years old. The average age of teachers was 45 years. The participants are described
in Table 4. A total of 291 questionnaires were issued, and 285 valid questionnaires were recovered. Six
questionnaires were incompletely filled in, so they became invalid.

Table 4. Respondents of the questionnaire.

Disciplines Teachers Students Total Number Percentage

Data Structure 6 56 62 18.62%
Higher Math 12 143 155 46.55%

College English 9 65 74 22.22%
Total Number 27 264 291 1

In the sample of qualitative research of those who chose to teach this course and students who
are studying this course, we interviewed four teachers and five students in the data structure course,
three teachers and four students in the higher math course, and five teachers and six teachers in the
college English course.

5.2. Acceptance Evaluation

We propose MapOnLearn, a new map organization and visualization method for online learning.
However, we needed to determine if this method is useful to students and teachers. For the evaluation,
both quantitative and qualitative methodologies were employed to collect data. To evaluate acceptance
and intention, we used validated items to test TAM, which was developed to predict the adoption and
use of new IT methods. Questionnaires based on a 7-point Likert scale (from (1) strongly disagree to (7)
strongly agree) and including three items (perceived usefulness, perceived ease of use, behavioral
intention use) are reliable (see Table 4).



Sustainability 2020, 12, 7018 16 of 21

5.2.1. Evaluation of Descriptive Metrics

In this research, we applied SPSS v20 software for data analysis. The data analysis considered the
core variables of TAM (i.e., perceived usefulness, perceived ease of use), along with relevant outcome
variables (i.e., behavioral intention).

As shown in Table 5, our findings regarding perceived usefulness were encouraging. If MapOnLearn
is useful, then students/teachers believed that it could promote learning/teaching in the courses. PU1,
PU2, and PU3 for the math teachers had the highest ratings, whereas PU1 and PU3 for English teachers
had the lowest ratings. We discussed these findings with several teachers and students to understand
the results. They told that the map used for online learning was similar to maps used day to day
and an attractive way to interact with learning materials; thus, they could easily understand and
remember what they learned. In addition, the subject logic of mathematics is stronger than that of
English and data structures. Furthermore, the students and teachers were curious about the new
approach and showed great passion for maps. Moreover, the map service could provide students with
fair and personalized learning opportunities by making all the related resources accessible through a
click, allowing students to use self-pace learning and providing fair services for lifelong learning and
development. Therefore, learning time increased without the students realizing it, which can perhaps
improve learning efficiency.

Table 5. Items from SPSSv20.

Constructs Items

Data Structure Courses Higher Math Courses College English
Courses

CR AVET S T S T S

M SD M SD M SD M SD M SD M SD

Perceived
Usefulness

PU1:
PU2:
PU3:

5.00 1.91 5.03 1.79 5.33 1.25 5.13 1.66 4.92 2.02 4.61 1.24
0.81 0.635.42 1.71 4.93 1.74 6.33 0.74 5.25 1.45 5.56 1.34 4.48 1.67

5.33 2.05 5.11 1.38 5.42 1.71 5.09 1.64 4.44 2.59 4.69 1.30

Perceived
Ease of Use

PEU1:
PEU2:
PEU3:
PEU4:

4.98 1.52 5.33 2.05 4.67 2.56 5.24 1.56 4.58 1.56 5.78 1.40

0.90 0.62
4.61 1.35 5.00 1.41 4.58 1.83 5.75 1.01 4.13 1.58 4.44 1.26
4.91 1.40 5.33 1.89 5.00 1.68 6 0.91 4.27 1.67 5.44 1.26
4.75 1.40 5.67 1.11 4.91 1.66 5.67 1.31 4.04 1.78 5.11 1.37

Behavioral
Intention

BI1:
BI2:

5.83 1.21 4.95 1.43 5.75 1.23 5.02 1.65 5.44 1.42 4.77 1.37
0.82 0.596.16 0.90 4.88 1.32 6 0.91 4.94 1.67 5.33 1.56 4.52 1.37

In terms of perceived ease of use, compared with teachers, more students believed that
MapOnLearn was easy to use (see PEU1–4). After interviewing several teachers, we found that
older teachers were not good at using information technology; such problems did not occur for young
teachers. Furthermore, students are more receptive to new technologies. Maps are convenient and
easy for students to use, which can promote lifelong learning and the active acquisition of knowledge
to meet the needs of the individual and society.

Behavioral intention refers to the intentions of teachers and students to use MapOnLearn in the
future. As described in Table 6, BI1 and BI2 for the data structures course had the highest ratings
while those for English had the lowest ratings. A teacher told us that these results may be due to the
nature of the data structures course: because the course is the basis of computer science, teachers of
this course are likely accept new technologies to help students learn.

Table 6. The intercorrelations among constructs.

Variables. Perceived Usefulness Perceived Ease of Use Behavioral Intention

Perceived Usefulness -
Perceived Ease of Use 0.701 ** -
Behavioral Intention 0.665 ** 0.700 ** -

** p < 0.001.
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The results also showed that CR and AVE fit their respective factors quite well. The reliability
value (CR) was above the threshold of 0.7; therefore, the reliability of MapOnLearn was confirmed.
The average extracted variance (AVE) satisfied the recommended level of 0.5; therefore, the convergent
validity was acceptable in the study. Both metrics indicated good internal consistency.

5.2.2. Evaluation of Intercorrelation

As described in Table 6, correlation analyses showed that perceived usefulness, perceived ease of
use, and intention of use were highly correlated (p < 0.001). Hypotheses 1, 2, 3 and 4 postulated that
perceived usefulness has a positive effect on the perceived ease of use (H1) and behavioral intention
(H2), perceived ease of use has a positive effect on perceived usefulness (H3) and behavioral intention
(H4). The results showed that perceived usefulness had a moderate significant effect on the behavioral
intention to use MapOnLearn (r = 0.665, p < 0.001). Perceived ease of use had a positive effect on the
use of MapOnLearn (r = 0.700, p < 0.001). We also found out that usefulness had a strong positive
relationship with ease of use (r = 0.701, p < 0.001). Overall, of the four postulated hypotheses, four were
confirmed in various significant levels.

5.3. Discussion

Combined with the questionnaire and interview of teachers and students, the usefulness and ease
of use of resources represented by maps were evaluated, and the results showed that the organization
of knowledge expression and resources via maps could attract teachers and students to participate in
teaching or learning. Some mathematics teachers pointed out that this map method made abstract
knowledge concrete, which could reduce cognitive load, and a 2D hierarchical structure was to be able
to be flattened to 1D knowledge; thus, students with poor logical abilities could quickly understand the
knowledge hierarchy. This method could also cultivate students’ creative thinking and higher-order
thinking. In addition, the location characteristics of the map organized knowledge and established the
correlation between knowledge and resources; that is, the flat position of knowledge was associated
with its learning resources, which enabled students to have fair and personalized learning opportunities.
The map’s location features could not only visualize the data with graphics and meters but also fully
explored various high-quality resources for knowledge.

Although the results indicate that MapOnLearn had a certain effect on behavioral intention,
the expected behavioral intention was not high due to the heavy course load and time constraints of
students and the pressure put on teachers; however, an acceptable level was reached. In addition,
we checked the higher education courses in China, and most courses with a textbook can be converted
to a map expression. The method is also suitable for university courses. Therefore, we believe that,
with the widespread application and improvement of MapOnLearn, students could be provided with
richer resources and the allocation of educational resources and the ability to participate in lifelong
learning could be improved.

Perceived ease of use of MapOnLearn had a positive impact on the behavioral intention of teachers
and students. Through further interviews, this method was found to be conducive to teaching: not
only is it a convenient representation of knowledge, but more importantly, knowledge was linked to
relevant learning materials, including syllabi, slides, videos, and assignments. During the learning
process, students could self-regulate according to their own progress, and subsequent learning would
not be affected because they had not learned the prepared KPs. This paper concentrated on the
comprehensive use of educational resources; thus, we tried to access various learning materials via
click-browse behavior to improve the quality of education, promote the balanced development of
education, and achieve equality and justice in education.

As for online teaching, MapOnLearn can also help the teachers in many ways. First, the map
method and demo platform collected a lot of high-quality resources for the three test courses.
The teachers can easily prepare the teaching materials. Secondly, the teacher can have a clear overview
about what the student had learned, including the learning path and all the resources during the
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learning procedure. Third, the map-based method can support a navigating style tour teaching mode,
the teaching procedure is like the tour conductor to introduce the view scene. We hope the teacher will
empower more ability to support the personalized learning.

This paper focused on the generation of a map prototype, not the convenience and integrity of the
whole online learning system. In other words, our method of representing learning materials can be
integrated with existing learning systems. However, a map generation method is not enough. Teachers
from different disciplines are also required to accept this knowledge generation and representation
method and apply it. This research showed that teachers of mathematics and English have had a
high degree of acceptance, and students from the digital age showed great enthusiasm for this kind of
method due to its attractiveness and interactivity. Further research will improve the expression of this
method and study its effectiveness in teaching.

Currently, MOOC is the dominant form for online learning. The management and presentation
of resources by MOOC is mainly based on the linear structure of the course catalog. The method
proposed in this study is to express the management of resources through maps. This improvement
has three advantages. The first is turning linear text into schematic content can improve students’
attention to a certain extent; second, the color of the map conforms to the cognitive laws of the brain,
and can enhance students’ impression of the knowledge framework; third, it is possible to improve
learners’ interest in knowledge, which unconsciously increases the length of online learning.

6. Conclusions

In this paper, we proposed a map method for online learning resource representation that converts
the course hierarchy into a geo-referenced 2D map. The map was tested for three college courses.
The map becomes a portal for online learning that can be used to locate the resources related to
the course unit by a location-based map service. The visual control of map levels by scales reveals
the hierarchical relationships of the courses and the units. We used topological processing and a
path-finding method to represent the complex relationships between units, which is suitable for some
fixed and explicit relationships. We mimicked the cognitive experience of exploring the geospatial
map of a hierarchical course unit and a geographic map service, such as Google Maps. The evaluation
results show that the area-based maps are suitable to serve as the basis for location-based online
learning systems. Indeed, users can simply and easily receive study resources and materials related to
HCUs by exploring a Google-Maps-style system. The area-based filled map is more user-friendly than
the sharp shapes, dense lines, and crowded diagrams used for online learning. Thus, we hope that
the mapping method can result in new styles of knowledge maps, which could lead to a new online
learning style and meet the individual needs of students.

Few general rules are employed during map generation. Thus, sharp shapes, unexpected
colors and unreasonable relationships among map objects are unavoidable. The rules used for map
generation should be further studied and combined with 2D topological relationships to achieve a
linear hierarchical tree view. High-quality organization and rich learning materials must be combined
to improve courses from all disciplines.

This prototype needs to be further developed to serve online learning users of different ages,
genders, and personalities by evaluating more students over a longer period in comparison with
common methods. Furthermore, the effect of the map-based browsing learning style for online learning
needs to be verified. We hope to carry out further testing with cognitive scientists and neuroscientists.
Regarding the limitations of research design, new technologies can be used to solve these problems in
the future. For the samples of quantitative and qualitative studies, the sample size was relatively small,
and it was not representative of the limitations. I hope that the sample size will be expanded based on
improving this method in the future.
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