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Abstract: The role of financial development (FD) in China’s environment has attracted extensive
attention from scholars, but few studies involved the effect of FD on urban electricity consumption
(EC). This paper constructs two spatial panel models to explore the interaction between FD and EC
on the basis panel data of 278 cities in China from 2005 to 2016. The results show that electricity
consumption of urban residents and industrial sector in China has obvious spatial correlation and
unbalanced spatial distribution. Secondly, FD can promote urban industrial electricity consumption
(IEC) and urban residential electricity consumption (REC), and it has a greater impact on REC than
IEC. Thirdly, spatial heterogeneity is established, and the imbalance of REC and IEC among different
regions and urban scales deserves more attention. FD is conducive to enhance REC and IEC in the
eastern and western regions. Meanwhile, FD plays an important role in the increase of REC and IEC
in small cities, large cities, and megacities of China. Considering the above results, this paper puts
forward targeted policy recommendations.

Keywords: electricity consumption; financial development; spatial correlation; heterogeneity
analysis; China

1. Introduction

Electricity is an important energy source for ensuring the normal operation of the economy and
society, which is clean, safe, and convenient. From 1978 to 2018, urban electricity consumption (EC) in
China maintained a high growth rate with an average annual growth rate of 8.85%, and it has increased
from 249.8 billion kWh in 1978 to 678.64 billion kWh in 2018. During the past few decades, China has
become the world’s second-largest power consumer after the United States [1]. As shown in previous
studies, there is a significant relationship between economic growth and EC [2,3]. Hence, as China is in
the stage of industrialization and rapid urbanization, the demand for electricity is expected to be even
stronger in the near future. At present, the Chinese government is exploring the mode of sustainable
development actively. The 13th five-year plan for controlling greenhouse gas (GHG) emissions released
by the Chinese government proposes to vigorously develop green finance and increase investment in
energy conservation and emission reduction industries [4].

Financial development (FD) plays a critical role in economic growth [5–10]. The reform of the
financial system promoted FD. As far as we know, FD can also influence social electricity demand
through credit policies. Moreover, FD can also promote industrial structure improvement and
technological innovation. FD can promote economic growth through these channels. It is well known
that economic growth plays an important role in increasing EC. Hence, does FD have an impact on EC?
Studies have found that ignoring FD variables in the energy consumption model will lead to incorrect
inferences about energy demand. Therefore, it is reasonable to consider the impact of FD on EC.
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The impact of FD on EC is mainly through the following ways: (1) For urban residential electricity
consumption (REC), as the level of FD increases, urban residents can obtain loans more conveniently
and at a lower cost, leading to an increase in urban residents’ purchase of durable consumer goods (such
as housing, household appliances, and automobiles). The purchase and use of these products have
increased the REC. (2) For urban industrial electricity consumption (IEC), on the one hand, companies
can carry out debt financing at a lower cost when the credit market is developed, thereby expanding the
scale of production and increasing IEC; on the other hand, the development of credit market has eased
the financing difficulties of high-tech companies, and improved the electricity efficiency of the industrial
sector. (3) In terms of industrial structure, FD provides financial support for technological innovation
to promote the upgrading of industrial structure and reduce electricity intensity (EI). (4) In terms
of investment and financing channels, FD can provide foreign high-tech companies with financing
channels, thereby promoting urban technological innovation and improving electricity efficiency. (5) In
terms of urban electricity structure, a developed financial market can provide financing support for
green power projects. Through the green electricity credit policy, guide the flow of funds to the green
electricity industry, thereby reducing EC’s dependence on fossil energy and promoting the upgrading
of urban electricity structure.

The above content constitutes the entire impact of FD on EC. The impact of FD on IEC and REC
may be different. Therefore, it is necessary to separately consider the impact of FD on IEC and REC.
Moreover, we investigated the imbalance of urban power consumption in different regions and urban
sizes. We aim to provide policy recommendations to ensure reasonable urban electricity demand and
promote environmental sustainability.

The innovation and contribution of this paper are chiefly reflected in the following aspects.
(1) There are few studies on the impact of FD on EC in energy economics. This paper summarizes the
ways in which FD affects EC. On this basis, we comparatively analyzed the impact of FD on EC, IEC,
and REC. (2) Spatial heterogeneity was established, and the imbalance of EC, IEC, and REC among
different regions (Eastern China, Central China, Western China) and urban scales (small cities, medium
cities, large cities, megacities) was investigated. (3) Investigate the spatial dependence of EC, IEC,
and REC by using spatial economic methods. Ignoring spatial dependence may produce incorrect
inferences on urban electricity demand [11–13]. As far as we know, this is the first time that the spatial
dependence of EC, IEC, and REC in 278 cities in China has been studied.

The remaining parts of the paper are arranged as follows. Section 2 presents the literature review.
Sections 3 and 4 introduce the methodology and data, respectively. Section 5 states and further
discusses the empirical results. Section 6 presents conclusions and policy implications.

2. Literature Review

When studying EC, ignoring the FD factor may lead to bias in the estimation results of the
energy demand model. Sadorsky studied the impact of FD on energy consumption through the
systematic generalized moment estimation method [6]. Coban and Topcu used systematic generalized
moment estimation to study the impact of FD on energy consumption [14]. They found that FD
promoted energy consumption. Chtioui found that there is a causal relationship between FD and
energy consumption [15]. Shahbaz et al. constructed a comprehensive indicator system on FD and
discussed the impact of FD on environmental quality in Pakistan [16]. Yue et al. used the panel
smooth transition regression (PSTR) model to study the nonlinear relationship between FD and energy
consumption [17]. Aslan et al. applied the panel cointegration method and found that the banking
indicators in the Middle East have a long-term impact on energy consumption [18]. Abbasi and Riaz
used the autoregressive distribution lagged (ARDL) model to study the impact of FD and economic
growth on carbon emissions [19]. Ouyang and Li used generalized moment estimation and panel
vector autoregressive models to study the interaction among energy consumption, FD and economic
growth. Chang applied a threshold regression model to study the relationship among economic
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growth, FD, and energy consumption [20,21]. The research results show that there is a threshold effect
between FD and energy consumption.

There is no consensus on the effect of FD on energy consumption so far. Some studies found that
FD promotes energy consumption. Sadorsky demonstrated that FD can improve the access to financial
resources and promote the demand for commodities and energy, and pointed out that FD can contribute
to increasing savings, borrowing, and investment [22]. Additionally, consumers tend to buy consumer
durables that increase energy demand with borrowing costs being low. Chang suggested that private
and domestic credit can increase energy consumption in non-high-income countries, and stock trading
volume or market trading volume can increase energy consumption in high-income countries [21].
Some other studies found that FD can help to reduce EC. According to Islam’s study, FD is conducive
to the purchase of energy-saving appliances, thus reducing energy consumption. Farhaniet al. found
that FD could reduce the energy demand of the United States from 1973 to 2014 [23]. Riti’s findings
show that FD can promote the reduction of carbon dioxide emissions; especially, the effect of carbon
emission reduction is more significant when M2/GDP is used as a FD indicator in three countries
with different income levels from 1980 to 2014 [24]. A few studies found that FD has no effect on
energy consumption. Furuoka’s study found that FD did not affect energy consumption by selecting 12
Asian countries to establish different types of groups to study the relationship between FD and energy
consumption [25]. Additionally, there are some innovative studies worth thinking about. For example,
Bekhet used the ARDL method to find a long-term equilibrium relationship between FD and energy
consumption, economic growth, and export variables in Jordan from 1976 to 2011 [26]. Ahmed found a
threshold effect between FD and energy consumption [27].

At present, there are few studies on the impact of FD on EC. Most scholars consider the relationship
between FD and energy consumption. The main research methods include the Granger causality test,
threshold regression model, ARDL method, panel cointegration, etc. There are few studies on the
impact of FD on the spatial heterogeneity of EC. Based on this, we believe that the existing research has
the following shortcomings. First of all, currently, few scholars have studied the impact of FD on EC,
IEC, and REC. Second, there are few studies on the impact of FD on the spatial heterogeneity of EC, IEC,
and REC. Third, for EC, IEC, and REC, there are few studies on whether there is spatial dependence.

Given this, it is necessary to study the influence of FD on EC, IEC, and REC. Meanwhile,
the establishment of spatial heterogeneity, and the imbalance of EC, IEC, and REC among different
regions and urban scales, was analyzed. This paper constructs two spatial economic models to fully
reflect the spatial dependence of EC, IEC, and REC.

3. Methodology

This paper has applied the spatial econometric model to investigate the effects of FD on EC in
China. In addition, the spatial weight matrix used in this paper was also introduced.

3.1. Spatial Correlation Test

The technique of global autocorrelation analysis was used to reveal the spatial characteristics of
urban electricity consumption [28]. The global Moran’s I index has been utilized to identify spatial
autocorrelation [29]. The equation for calculating global Moran’s I index was specified as follows:

Moran′ s Iglobal =
n∑

i(xi − x)2

∑
i
∑

j,i Wi j(xi − x)
(
x j − x

)∑
i
∑

j,i Wi j
(1)

where n is the number of cities, xi and x j represent the observed values of city i and city j, and x refers
to the mean value of x. Wi j indicates the spatial weight matrix. The global Moran’s I index value
ranges between −1 and 1. If the global Moran’s I index value is greater than 0, it indicated that the
urban electricity consumption between local and adjacent cities is spatially dependent. If the global
Moran’s I index value is less than 0, it indicates that there is a significant spatial difference in urban
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electricity consumption between local and adjacent cities. If the value of global Moran’s I index is close
to 0, it implies that there is no spatial autocorrelation in urban electricity consumption.

3.2. Spatial Econometrics Model

In order to explore the spatial effect of EC, the spatial panel model was constructed. The most
commonly used spatial regression models are the spatial lag model (SLM) and the spatial error model
(SEM). The spatial lag model (SLM) measures the impact of dependent variables in adjacent cities on
dependent variables in local cities. The spatial error model (SEM) reflects the impact of the error terms
in adjacent cities on dependent variables in local cities. These two types of spatial econometrics models
are constructed as follows:

SLM:
lnyit = βlnXit + ρ

∑n

j=1
Wi jlnyit + αi + γt + εit (2)

SEM:
lnyit = βlnXit + αi + γt + µ, µit = λ

∑n

j=1
Wi jµit + vit (3)

where W is the spatial weight matrix; β represents the direct coefficient for the independent variable;
ρ represents the spatial autoregressive coefficient; γt refers to the time-fixed effect; αi stands for the
space-fixed effect; εit measures a random error vector, satisfying εit∼N

(
0, δ2

it

)
; λ denotes the impact of

error terms in adjacent cities on error terms in local cities. The yit is the electricity consumption indicator,
represented alternatively by EC (urban electricity consumption), IEC (urban industrial electricity
consumption), and REC (urban residential electricity consumption). The Xit is a set of explanatory
variables, representing FD (financial development), PGDP (economic growth), IS (industrial structure),
EI (electricity intensity), and POP (population). Logarithmic forms are employed for variables on both
sides of the equations to decrease the fluctuation of the data and eliminate the heteroscedasticity.

3.3. Economic Weight Matrix

The spatial weight matrix represents the interdependence of spatial elements. Adjacency or
distance is often devoted to identifying the degree of spatial interaction between different spatial
units [30]. The strength of the interaction between the two regions is the same in both matrix forms.
However, it is generally believed that regions with high levels of economic development have stronger
spatial spillover effects than regions with low levels of economic development. Therefore, this study
used the economic distance matrix to describe the spatial interaction, which considers both geographical
and economic factors [31].

Weco = Wdis × diag
(

Y1

Y
,

Y2

Y
, · · · ,

Yn

Y

)
(4)

Yi =
1

t1 − t0 + 1

∑t1

t0
Yit (5)

Y =
1

n(t1 − t0 + 1)

∑n

i=1

∑t1

t0
Yit (6)

Here, Wdis, (Wdis =
1

di j
, i , j) is the geographic distance spatial weight matrix denoting the centroid

distance among cities, and the latitude and longitude data were obtained from the national geographic
information center of China; Yi is the average value of the GDP during the observation period in city i;
Y denotes the average value of all cities’ GDP levels from t0 to t1. Moreover, the analytical framework
of this study is shown in Figure 1.
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4. Data

4.1. Electricity Consumption

Urban electricity consumption (EC): EC represents the total amount of electricity used by the whole
society in a city, including electricity consumption by urban industrial sector, electricity consumption
by urban residents, and other electricity consumption. Hence, this indicator is measured by the
electricity consumption of the whole society in the city each year.

Urban industrial electricity consumption (IEC): The object of research is the electricity consumption
of the urban industrial sector in China. It reflects the electricity consumption except for urban residents
and represents the level of electricity consumption of the industrial sector in different cities.

Urban residential electricity consumption (REC): REC is used to measure the level of electricity
consumption of urban residents in household life, including lighting, cooking, and household
appliances, etc.

4.2. Financial Development

Financial development (FD): In China, the main channel for enterprises to obtain external financing
is banks [32–34]. Since China’s financial system is dominated by banks, the indicators of FD should
be related to banks. As loans are closely related to the activities of enterprises, this paper uses the
proportion of bank loans to GDP to measure the level of FD. This is a common indicator used in
previous studies [35–40].

4.3. Controlling Variable

According to previous studies, this study takes economic growth, industrial structure, population
size, and electricity intensity as control variables.

Economic growth (PGDP): Real per capita GDP is often used to describe the economic development
of a city, and to measure the standard of living of a city [41]. The level of urban economic development
is highly correlated with EC [42]. Generally, the more prosperous the economy of a city, the higher
the electricity consumption of the city [42,43]. The GDP of each city has been converted to 2005
constant prices.

Industrial structure (IS): The changes in the share of different industries in the total economic
volume have an important impact on the EC [42]. China is at a critical stage in the process of economic
transformation. Studying the impact of industrial structure upgrades on EC is in line with the policy
of optimizing industrial structure advocated by the Chinese government at present [44]. This paper
measures the industrial structure by the ratio of the economic output of the tertiary industry to the
secondary industry.
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Electricity intensity (EI): Electricity intensity is related to energy efficiency, which declines with
the development of the economy and the progress of high technology [4]. The improvement of the
production process and the progress of science and technology are conducive to the improvement of
economic production efficiency and the reduction of electricity intensity in China [42]. The decline in
electricity intensity, is the major reason for the decline in China’s electricity use. In this paper, electricity
intensity is measured by the ratio of EC to urban GDP [42,43].

Population (POP): The urban population is the end user of EC. The growth of the urban population
will lead to more EC [44]. Besides, the urbanization process has led to more people being concentrated
in urban areas, which has led to higher electricity demand. Electricity is an important force supporting
urbanization [45]. The urbanization process requires large-scale construction of urban infrastructure
and housing and transportation systems, which will promote the rapid development of energy-intensive
industries and increase electricity demand in the industrial, agricultural, and residential sectors [46].
In this paper, the urban population size is measured by the total population at the end of the year.

4.4. Data Source

In terms of the data availability, this study used a balanced panel dataset of 278 cities in China
from 2005 to 2016. The data were taken from the China City Statistical Yearbook from 2006 to 2017.
The year in which the data were lost is interpolated using the average of adjacent years. The descriptive
statistics of the relevant variables are shown in Table 1.

Table 1. Descriptive statistics of all variables used in this study.

Variables Obs. Mean Std. Dev. Min Max Unit

lnEC 3336 12.85 1.19 8.99 16.51 104 kWh
lnIEC 3336 12.68 1.25 8.47 16.36 104 kWh
lnREC 3336 10.77 1.10 7.08 14.59 104 kWh
lnFD 3336 −0.04 0.54 −6.88 2.19 %
lnPGDP 3336 9.70 0.78 7.66 13.22 Yuan
lnIS 3336 −0.17 0.52 −2.36 1.57 %
lnPOP 3336 4.60 0.77 2.68 8.07 Million
lnEI 3336 −2.05 0.56 −3.89 0.73 kWh/yuan

5. Results and Discussion

5.1. Spatial Distribution Characteristics

Figure 2 reflects the spatial distribution of FD from 2005 to 2016 in China. Figure 2 indicates that
the overall level of FD in China presented a significant upward trend, and FD in the North China
Plain and the eastern coastal areas is significantly greater than that of the central and western regions.
These results show that FD has the characteristics of spatial clustering and spatial heterogeneity
in China.

Figure 3 reflects the spatial distribution of EC from 2005 to 2016 in China. Figure 3 indicates that
the overall level of EC in China presented a significant upward trend, and EC in the eastern regions is
significantly greater than that of the central and western regions. Figure 3 shows that EC has spatial
agglomeration characteristics in economically developed cities along the eastern seaboard.

Figures 4 and 5 reflects the spatial distribution of IEC and REC in China from 2005 to 2016.
Figures 4 and 5 show that the overall level of IEC and REC presented a significant upward trend,
with IEC and REC in the eastern regions, central regions, and western regions decreasing sequentially.
Figure 4 shows that the cities with high IEC are concentrated in the North China Plain and the eastern
coastal areas of China. Figure 5 shows that REC has spatial agglomeration characteristics in the
central regions and eastern coastal areas of China. These results show that REC and IEC have the
characteristics of spatial clustering and spatial heterogeneity in China.
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Therefore, in order to test whether EC, IEC, and REC are spatially dependent, we used
global Moran’s I index to test the spatial autocorrelation characteristics of EC, IEC, and REC in
the following chapters.
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5.2. Global Spatial Autocorrelation

The positive spatial autocorrelation of EC, IEC, and REC have been exhibited in Table 2. The global
Moran’s I index of EC, IEC, and REC have passed the significance test at the 1% significance level from
2005 to 2016, which indicates that EC, IEC, and REC are spatially dependent. That is, increasing the
EC, IEC, and REC in surrounding cities can bring along EC, IEC, and REC in local cities. Under the
economic distance matrix, the global Moran’s I index for EC, IEC, and REC generally presented an
upward trend from 2005 to 2016, indicating that the spatial autocorrelation of EC, IEC, and REC have
experienced an enhancement process. Hence, there is a positive spatial autocorrelation in EC, IEC,
and REC, implying the necessity to taking spatial econometric model into consideration.

Table 2. Test results of spatial autocorrelation.

Year EC IEC REC

2005 0.071 *** 0.071 *** 0.077 ***
2006 0.076 *** 0.080 *** 0.019 ***
2007 0.082 *** 0.085 *** 0.032 ***
2008 0.076 *** 0.079 *** 0.034 ***
2009 0.078 *** 0.081 *** 0.038 ***
2010 0.078 *** 0.081 *** 0.037 ***
2011 0.075 *** 0.078 *** 0.040 ***
2012 0.091 *** 0.096 *** 0.044 ***
2013 0.097 *** 0.102 *** 0.052 ***
2014 0.104 *** 0.107 *** 0.066 ***
2015 0.109 *** 0.113 *** 0.066 ***
2016 0.104 *** 0.110 *** 0.054 ***

Notes: *: p < 0.10, **: p < 0.05, ***: p < 0.01.

5.3. Spatial Regression Analysis

The Moran’s I index tests confirm that there is an obvious spatial autocorrelation in the EC, IEC,
and REC of China. In this case, the least squares linear (OLS) regression model may bias the estimated
results. Thereby, it is necessary to introduce the spatial panel regression model.

Prior to the regression analysis, the LM (Lagrange multiplier) and Robust LM tests were performed
to determine which model is better, the spatial lag model (SLM) or the spatial error model (SEM).
The results show that the results of LM-lag and LM-error are significant at the significance level of
more than 1%. Meanwhile, the test results of Robust LM-lag and Robust LM-error are significant at
the significance level above 5%. Since the SLM has a higher goodness of fit for regression results,
it indicates that the SLM model is a better choice. In addition, Hausman’s results suggest that fixed
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effects should also be selected. Based on the above test results, this paper finally selected the spatial lag
model (SLM) under the fixed effect to study the impact of FD on EC, IEC, and REC in China. Table 3
shows the estimation results of SLM. Considering the robustness, the estimation results of SEM are
also shown.

Table 3. Estimation results of SLM and SEM at the national level.

Variables
EC IEC REC

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a)

ρ/λ 0.065 *** 0.846 *** 0.076 *** 0.852 *** 0.247 *** 0.899 ***
(5.792) (55.515) (6.442) (58.183) (15.508) (90.484)

lnFD 0.079 *** 0.072 *** 0.061 *** 0.044 *** 0.244 *** 0.281 ***
(5.939) (5.295) (4.139) (2.911) (13.918) (16.098)

lnPGDP 0.866 *** 0.910 *** 0.914 *** 0.963 *** 0.534 *** 0.609 ***
(93.368) (95.592) (88.080) (90.426) (44.467) (49.607)

lnIS −0.182 *** −0.193 *** −0.229 *** −0.241 *** 0.084 *** 0.089 ***
(−13.061) (−13.518) (−14.658) (−15.108) (4.597) (4.848)

lnPOP 0.865 *** 0.864 *** 0.868 *** 0.872 *** 0.871 *** 0.876 ***
(97.422) (95.691) (87.486) (86.327) (73.736) (75.390)

lnEI 0.858 *** 0.878 *** 0.987 *** 1.005 *** 0.045 *** 0.109 ***
(73.917) (74.439) (75.791) (76.204) (2.991) (7.195)

R2 0.929 0.928 0.919 0.918 0.856 0.844
Log-L −912.236 −733.147 −1286.847 −1106.944 −1835.499 −1576.418

LM-lag 43.704 *** 53.187 *** 258.424 ***
Robust LM-lag 4.999 ** 6.355 ** 16.873 ***

LM-error 821.392 *** 870.414 *** 2149.438 ***
Robust LM-error 782.687 *** 823.583 *** 1907.887 ***

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

Table 3 shows that the spatial autocorrelation coefficients ρ of EC, IEC, and REC are significantly
positive at the 1% significance level. This shows that China’s EC, IEC, and REC are spatially dependent.
This is consistent with Moran I’s above conclusion. According to the estimation results of SLM,
for every 1% increase in EC, IEC, and REC of adjacent cities, the EC, IEC, and REC in local cities increase
by 0.065%, 0.076%, and 0.247%, respectively. Notably, REC has a greater spatial dependence than IEC.
The reasons why the EC is spatially dependent can be explained as follows: (1) Local cities imitate and
copy the economic development mode of neighboring cities. Therefore, EC has spatial dependence
due to “imitation effect”. (2) Due to the continuous development of transportation systems, frequent
trade, and similar consumption preferences between local cities and neighboring cities, the EC trend of
local cities and neighboring cities is consistent. The reason for the spatial dependence of the IEC is
that, due to the inter-regional industrial transfer and trade, IEC in local cities is inevitably affected
by EC in surrounding cities. The reasons why the REC is spatially dependent can be explained as
follows: (1) Local urban residents may be affected by the energy conservation awareness and green
environmental protection behavior of residents among adjacent cities. (2) The spatial correlation of
REC is also reflected in the strong dependence of some residents on the economic development of
the surrounding cities. Urban residents in local cities may imitate the use of household appliances
by urban residents in surrounding cities, resulting in the spatial autocorrelation of the REC. (3) The
economic development of each city is closely linked. The economic development and energy policy of
a city will also have an impact on neighboring cities. This estimation results provide a clear basis for
the implementation of joint power-saving actions among cities.

In the results of SLM, the elasticity coefficients of FD to EC, IEC, and REC are 0.079, 0.061, and 0.244,
respectively, which are significantly positive at the 1% significance level. The results show that FD is
closely related to EC, IEC, and REC. From the perspective of the industrial sector, the main channel for
Chinese enterprises to obtain external financing was bank loans for a long time [47]. Bank loans allow
companies to build new production lines, buy large equipment, expand production, and carry out
more production activities, thus increasing IEC. Hence, FD provides support for the industrial sector to
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obtain external financing and expand investment scale. From the perspective of urban residents, as the
level of FD increases, urban residents can obtain loans more conveniently and at a lower cost, thereby
promoting urban residents’ purchase of durable consumer goods (such as household appliances,
housing, and automobiles). The empirical results show that FD plays a critical role in promoting
the growth of EC in China. Therefore, FD should be taken into consideration when the Chinese
government formulates the future EC plan.

In the SLM results, the elastic coefficients of economic growth (PGDP) to EC, IEC, and REC are
0.866, 0.914, and 0.534, respectively, which are significant at the 1% significance level. At present,
urban economic development is increasingly dependent on EC, and the proportion of EC in the final
energy consumption continues to rise. Overall, compared with other variables, PGDP has the greatest
impact on EC, IEC, and REC. Therefore, from the perspective of economic development, supporting
power supply is the foundation of economic development. At present, economic development
still depends on energy consumption. To promote economic growth while reducing fossil energy
consumption, green electricity (such as hydropower, wind power, solar photovoltaic cells, etc.) must
be promoted and used to reduce dependence on fossil energy. Green electricity not only has the same
effect as thermal power, but also helps to improve air quality and promote environmental sustainability.

The results of SLM, the elasticity coefficients of industrial structure (IS) to EC, IEC, and REC are
−0.182, −0.229, and 0.084, respectively, which are significant at the 1% significance level. This indicates
that the larger the ratio of tertiary industry to secondary industry, the less electricity China’s cities use.
In China, the EC of different industries varies greatly [44]. From 2005 to 2016, the EC of the secondary
industry was the largest, accounting for more than 70%, while that of other industries was less than
30%. The EC structure in the developed countries is more reasonable, with transportation, construction,
and manufacturing each consuming about one third of the electricity. At present, the secondary
industry is energy-intensive. Therefore, in terms of the experience of developed countries, through
the upgrading of the industrial structure, specifically, vigorously develop the tertiary industry and
reduce the development of the secondary industry, which promotes the reduction of electricity
consumption [44].

Population size (POP) has a significant role in promoting EC, IEC, and REC. In the SLM results,
for each 1% increase in population size, EC, IEC, and REC increased by 0.865%, 0.868%, and 0.871%,
respectively. The urban population is the main end user. The growth of urban population will directly
drive the growth of REC, which is in line with the reality. Electricity is an important force supporting
the urbanization process [45]. The urbanization process requires the construction of large-scale urban
infrastructure, housing, and transportation systems, which will promote the rapid development of
energy-intensive industries, thus increasing the electricity consumption in the industrial and residential
sectors [46]. In addition, the urbanization process has increased the urban population, making more
people concentrated in the city, which promotes the increase in EC.

In the results of SLM, the elastic coefficients of electricity intensity (EI) on EC, IEC, and REC
are 0.858, 0.987, and 0.045, respectively, which are significantly positive at the 1% significance level.
This result shows that the reduction of EI can effectively inhibit the rapid growth of EC [48,49].
China’s energy endowment determines the energy structure dominated by fossil fuels, especially coal
energy [50,51]. Efficient use of electricity can indirectly reduce coal consumption and further reduce
pollutant emissions [44]. Notably, the impact of EI on IEC is greater than that of REC. Since China
has set energy-intensity restriction targets in the “Eleventh Five-Year Plan” and “Twelfth Five-Year
Plan”, various local governments have adopted measures to reduce EC per unit of GDP. For example,
local governments have vigorously supported and developed low-energy enterprises and imposed
rectification requirements and restrictions on high-energy enterprises. The secondary industry is
an energy-intensive industry in China, which accounts for a large proportion compared with other
industries. Therefore, the improvement of industrial electricity utilization efficiency promotes the
reduction of IEC.
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5.4. Region-Scale Analysis

China is a vast country with diverse natural environments and different levels of economic
development in different regions. In order to compare the impact of FD on EC, IEC, and REC in
different regions of China, this paper divided 278 prefecture-level cities into three regions: eastern,
central, and western. There are 113 cities in the eastern regions, 108 in the central regions, and 57 in the
western regions. Tables 4–6 reports the estimated results of the impact of FD on EC, IEC, and REC in
different regions via SLM. Considering the robustness, the estimation results of the impact of FD on
EC, IEC, and REC in different regions via SEM are also shown.

Table 4. Estimation results of SLM and SEM for EC at the regional level.

Variables
Eastern China Central China Western China

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a)

ρ/λ 0.075 *** 0.676 *** 0.192 *** 0.919 *** 0.060 *** 0.613 ***
(5.224) (19.707) (8.308) (78.789) (2.792) (14.093)

lnFD 0.097 *** 0.104 *** −0.012 −0.007 0.306 *** 0.288 ***
(4.980) (5.241) (−0.594) (−0.389) (8.731) (8.289)

lnPGDP 0.762 *** 0.800 *** 0.862 *** 0.994 *** 0.763 *** 0.786 ***
(58.530) (61.377) (39.928) (44.314) (32.564) (34.471)

lnIS −0.118 *** −0.121 *** −0.120 *** −0.116 *** −0.358 *** −0.418 ***
(−4.964) (−4.899) (−5.737) (−5.875) (−10.555) (−11.705)

lnPOP 0.874 *** 0.866 *** 0.822 *** 0.849 *** 0.882 *** 0.911 ***
(65.400) (65.532) (50.487) (55.884) (41.329) (41.574)

lnEI 0.819 *** 0.819 *** 0.757 *** 0.818 *** 0.937 *** 0.995 ***
(39.678) (37.802) (39.913) (47.556) (44.272) (48.260)

R2 0.942 0.940 0.901 0.895 0.929 0.926

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

Table 5. Estimation results of SLM and SEM for IEC at the regional level.

Variables
Eastern China Central China Western China

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a)

ρ/λ 0.097 *** 0.696 *** 0.248 *** 0.921 *** 0.084 *** 0.621 ***
(6.629) (21.470) (10.519) (80.966) (3.791) (14.547)

lnFD 0.073 *** 0.075 *** −0.025 −0.019 0.306 *** 0.294 ***
(3.480) (3.499) (−1.059) (−0.841) (7.956) (7.796)

lnPGDP 0.791 *** 0.832 *** 0.916 *** 1.075 *** 0.805 *** 0.830 ***
(56.644) (59.038) (36.496) (40.840) (31.230) (33.464)

lnIS −0.150 *** −0.159 *** −0.171 *** −0.166 *** −0.389 *** −0.479 ***
(−5.901) (−5.935) (−7.024) (−7.148) (−10.482) (−12.322)

lnPOP 0.888 *** 0.878 *** 0.797 *** 0.833 *** 0.857 *** 0.895 ***
(62.061) (61.408) (42.593) (46.719) (37.351) (37.539)

lnEI 0.945 *** 0.940 *** 0.862 *** 0.946 *** 1.051 *** 1.120 ***
(42.561) (40.158) (38.845) (46.857) (45.032) (50.027)

R2 0.937 0.934 0.884 0.874 0.923 0.919

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.
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Table 6. Estimation results of SLM and SEM for REC at the regional level.

Variables
Eastern China Central China Western China

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a)

ρ/λ 0.122 *** 0.785 *** 0.411 *** 0.805 *** 0.153 *** 0.758 ***
(5.699) (33.191) (12.401) (29.793) (5.013) (26.965)

lnFD 0.260 *** 0.290 *** 0.085 *** 0.126 *** 0.381 *** 0.275 ***
(9.285) (11.039) (3.540) (5.075) (7.792) (5.643)

lnPGDP 0.532 *** 0.588 *** 0.363 *** 0.457 *** 0.481 *** 0.596 ***
(28.883) (33.870) (15.214) (15.835) (14.771) (18.677)

lnIS −0.153 *** 0.122 *** 0.162 *** 0.179 *** −0.063 0.014
(−4.531) (3.695) (6.614) (6.930) (−1.287) (0.280)

lnPOP 0.784 *** 0.854 *** 0.844 *** 0.950 *** 0.965 *** 1.009 ***
(41.066) (48.361) (41.551) (48.198) (29.460) (32.655)

lnEI −0.049 * 0.015 0.009 0.083 *** 0.170 *** 0.250 ***
(−1.674) (0.525) (0.418) (3.688) (5.863) (8.772)

R2 0.874 0.870 0.822 0.800 0.831 0.818

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

From the perspective of IEC: (1) Table 5 reflects that ρ in eastern, central, and western China are
0.097, 0.248, and 0.084, respectively, which are significant at the 1% significance level. The estimated
results reflect that IEC is spatially dependent in eastern, central, and western China. Moreover, Table 5
shows that IEC has a stronger spatial dependence in the central regions than in the eastern and western
regions. (2) The impact of FD on IEC is heterogeneous in different regions of China. In SLM (1a) and
SLM (3a), the elastic coefficients of FD on IEC are 0.073 and 0.306, respectively, which are significant
at the 1% significance level. Table 5 reflects that FD can promote the IEC of cities in the eastern and
western regions, which is similar to the conclusion of the national sample. Meanwhile, the effect of FD
on IEC is not significant in the central regions. (3) The estimation results of the control variables are
similar to the national sample.

From the perspective of REC: (1) Table 6 reflects that ρ in eastern, central and western China are
0.122, 0.411, and 0.153, respectively, which are significant at the 1% significance level. The estimated
results reflect that IEC is spatially dependent in eastern, central, and western China. Moreover, Table 6
shows that REC has a stronger spatial dependence in the central regions than that of the eastern
and western regions. (2) The impact of FD on REC is heterogeneous in different regions of China.
In SLM (1a), SLM (2a), and SLM (3a), the elastic coefficients of FD on REC are 0.260, 0.085, and 0.381,
respectively, which are significant at the 1% significance level. Table 5 reflects that FD can promote the
IEC in different regions, which is similar to the conclusion of the national sample. In particular, FD has
a greater impact on REC in the western regions than in other regions. (3) Except for the indicators of IS
and EI, the estimated results of the remaining control variables are similar to the national sample.

5.5. City-Scale Analysis

As a high-end service industry, the development of the financial industry depends on the city
scale. The bigger the city, the more abundant the capital and the more diversified the market. In order
to test the influence of FD on urban EC under a different city scale, the urban population at the end of
the year is selected to represent the city scale. According to the population size in 2016 as the standard
for dividing the city size, the city size is divided into four categories: megacities with a population
of more than 2 million, large cities with a population of 1 million to 2 million, medium-sized cities
with a population of 500,000 to 1 million, and small cities with a population of less than 500,000 [52].
There are 60 megacities, 93 large cities, 86 medium cities, and 39 small cities in China. Tables 7–9
report the estimated results of the impact of FD on EC, IEC, and REC in different urban sizes via SLM.
Considering the robustness, the estimation results of the impact of FD on EC, IEC, and REC in different
urban sizes via SEM are also shown.
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Table 7. Estimation results of SLM and SEM for EC at the city scale.

Variables
Small City Medium City Large City Megacity

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a) SLM (4a) SEM (4a)

ρ/λ 0.271 *** 0.854 *** 0.039 0.880 *** 0.141 *** 0.868 *** 0.136 *** 0.698 ***
(7.467) (32.930) (1.187) (39.631) (6.447) (40.166) (7.199) (17.356)

lnFD 0.106 *** 0.092 ** −0.011 −0. 047 ** 0.072 *** 0.124 *** 0.115 *** 0.077 ***
(2.616) (2.564) (−0.468) (−2.043) (3.358) (5.728) (4.824) (2.929)

lnPGDP 0.648 *** 0.805 *** 0.841 *** 0.978 *** 0.856 *** 0.889 *** 0.773 *** 0.817 ***
(21.215) (29.202) (33.843) (41.130) (57.557) (62.053) (52.041) (48.507)

lnIS −0.236 *** −0.248 *** −0.260 *** −0.246 *** −0.191 *** −0.250 *** −0.037 −0.043
(−6.554) (−7.854) (−10.193) (−9.462) (−8.823) (−10.802) (−1.213) (−1.327)

lnPOP 0.379 *** 0.295 *** 0.764 *** 0.843 *** 0.651 *** 0.676 *** 0.823 *** 0.839 ***
(7.439) (6.345) (17.676) (18.865) (26.008) (26.002) (45.929) (42.104)

lnEI 0.798 *** 0.891 *** 0.909 *** 0.926 *** 0.841 *** 0.865 *** 0.821 *** 0.862 ***
(27.127) (36.922) (42.495) (46.576) (40.495) (41.937) (33.594) (30.737)

R2 0.881 0.862 0.849 0.842 0.896 0.890 0.951 0.946

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

Table 8. Estimation results of SLM and SEM for IEC at the city scale.

Variables
Small City Medium City Large City Megacity

SLM (1a) SEM (2a) SLM (2a) SEM (2a) SLM (3a) SEM (3a) SLM (4a) SEM (4a)

ρ/λ 0.259 *** 0.856 *** 0.103 *** 0.881 *** 0.145 *** 0.863 *** 0.166 *** 0.720 ***
(7.245) (33.439) (3.066) (39.995) (6.519) (38.511) (8.884) (19.174)

lnFD 0.081 * 0.069 * −0.028 −0.064 ** 0.046 * 0.100 *** 0.090 *** 0.036
(1.894) (1.812) (−1.008) (−2.349) (1.908) (4.090) (3.602) (1.301)

lnPGDP 0.680 *** 0.842 *** 0.862 *** 1.047 *** 0.920 *** 0.950 *** 0.802 *** 0.852 ***
(21.318) (28.843) (29.799) (37.119) (55.634) (58.633) (51.436) (47.861)

lnIS −0.256 *** −0.273 *** −0.332 *** −0.309 *** −0.236 *** −0.313 *** −0.084 *** −0.074 **
(−6.774) (−8.161) (−11.030) (−10.028) (−9.760) (−11.944) (−2.668) (−2.198)

lnPOP 0.365 *** 0.262 *** 0.732 *** 0.810 *** 0.673 *** 0.691 *** 0.828 *** 0.843 ***
(6.819) (5.328) (14.393) (15.276) (24.035) (23.492) (44.361) (40.220)

lnEI 0.892 *** 0.981 *** 1.050 *** 1.074 *** 0.984 *** 1.007 *** 0.931 *** 0.971 ***
(28.675) (38.365) (41.350) (45.553) (42.105) (43.133) (36.035) (32.961)

R2 0.887 0.871 0.834 0.825 0.892 0.886 0.949 0.942

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

Table 9. Estimation results of SLM and SEM for REC at the city scale.

Variables
Small City Medium City Large City Megacity

SLM (1a) SEM (1a) SLM (2a) SEM (2a) SLM (3a) SEM (3a) SLM (4a) SEM (4a)

ρ/λ 0.667 *** 0.815 *** 0.382 *** 0.845 *** 0.528 *** 0.869 *** 0.106 *** 0.774 ***
(15.823) (25.197) (8.889) (29.703) (17.280) (40.502) (3.450) (25.153)

lnFD 0.290 *** 0.293 *** 0.119 *** 0.146 *** 0.352 *** 0.358 *** 0.279 *** 0.307 ***
(5.521) (5.192) (4.280) (5.098) (11.584) (11.639) (7.819) (8.342)

lnPGDP 0.320 *** 0.497 *** 0.499 *** 0.645 *** 0.434 *** 0.564 *** 0.576 *** 0.624 ***
(8.399) (11.586) (17.090) (21.715) (22.064) (27.703) (26.620) (26.052)

lnIS −0.084 * −0.068 0.103 *** 0.098 *** −0.037 0.023 0.277 *** 0.240 ***
(−1.792) (−1.378) (3.444) (3.034) (−1.208) (0.710) (5.922) (5.359)

lnPOP 0.398 *** 0.413 *** 0.716 *** 0.871 *** 0.580 *** 0.668 *** 0.762 *** 0.837 ***
(5.971) (5.665) (13.903) (15.621) (16.377) (18.066) (27.384) (29.834)

lnEI 0.069 ** 0.127 *** 0.028 0.072 *** 0.039 0.100 *** 0.054 0.152 ***
(2.034) (3.376) (1.193) (2.911) (1.430) (3.399) (1.510) (3.862)

R2 0.536 0.342 0.556 0.520 0.655 0.597 0.889 0.884

Notes: t-statistics in parentheses. *: p < 0.10, **: p < 0.05, ***: p < 0.01.

From the perspective of IEC: (1) Table 8 reflects that ρ in small cities, medium-sized cities,
large cities, megacities are 0.259, 0.103, 0.145, and 0.166, respectively, which are significant at the 1%
significance level. The estimation results reflect the spatial dependence of IEC in different urban sizes.
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Moreover, Table 8 shows that IEC has a stronger spatial dependence in small cities than in other types
of cities. (2) The impact of FD on IEC is heterogeneous in different urban sizes of China. In SLM (1a),
SLM (3a), and SLM (4a), the elastic coefficients of FD on REC are 0.081, 0.046, and 0.090, respectively,
which are significant at the 10% significance level. Table 8 reflects that FD can promote IEC for small
cities, large cities, and megacities, but not for medium-sized cities. In particular, FD has a greater
impact on IEC in megacities than in other urban sizes. The reason is that there are more abundant
financial services and resources in megacities. (3) The estimation results of the control variables are
similar to the national sample.

From the perspective of REC: (1) Table 9 reflects that ρ in small cities, medium-sized cities, large
cities, and megacities are 0.667, 0.382, 0.528, and 0.106, respectively, which are significant at the 1%
significance level. The estimation results reflect the spatial dependence of REC in different urban
sizes. In particular, Table 9 shows that REC has a stronger spatial dependence in small cities than
in other types of cities. (2) FD can promote REC in different urban sizes. The impact of FD on REC
is heterogeneous in different urban sizes of China. In SLM (1a), SLM(2a), SLM (3a), and SLM (4a),
the elastic coefficients of FD on REC are 0.29, 0.119, 0.352, and 0.279, respectively, which are significant
at the 1% significance level. In particular, FD has a greater impact on REC in large cities than in other
urban sizes. (3) Except for the indicators of IS and EI, the estimation results of the remaining control
variables are similar to the national sample.

6. Conclusions and Policy Implications

6.1. Conclusions

Based on SLM and SEM under the economic distance spatial weight matrix, the research has
adopted a city-level panel data of 278 cities from 2005 to 2016 to investigate the impacts of FD on IEC
and REC in China. The estimation results summarized in this paper are as follows:

Firstly, FD, IEC, and REC keep a rising trend on the basis of the results of temporal and spatial
patterns of FD, IEC, and REC in China from 2005 to 2016. There was a significant imbalance between
FD and IEC (or REC) of different areas. Meanwhile, FD, IEC, and REC of the cities on the North China
Plain and the eastern coast are larger than that in the central and western regions. The evolution of the
time–space pattern of EC is similar to that of IEC and REC.

Secondly, IEC and REC are spatially dependent in national samples and different regions (or urban
sizes). The estimation results show that the spatial dependence of REC is slightly stronger than that of
IEC via the spatial economic model.

Thirdly, the regional level results indicate that FD has enhanced IEC in the eastern and western
regions, whereas the impact of FD on IEC is insignificant in the central regions. The descending order
of the impact of FD on REC is western, eastern, and central in China.

Fourthly, the urban size results show that the descending order of the impact of FD on IEC is
megacities, small cities, and large cities in China. Meanwhile, the impact of FD on IEC in medium-sized
cities is insignificant. The descending order of the impact of FD on REC is large cities, small cities,
megacities, and medium-sized cities in China. The research also provides evidence for the increase in
IEC and REC caused by FD in different regions and urban sizes.

Finally, per-capita GDP, electricity intensity, and population have a significantly positive relationship
with IEC (or REC) in the national sample as well as FD indicator. Moreover, the upgrading of industrial
structure is conducive to reducing IEC and REC.

6.2. Policy Implications

Based on the above conclusions, the policy implications in this paper are as follows:
Firstly, encourage cooperative development among cities and establish a power monitoring system

and information sharing mechanism. IEC and REC are spatially dependent in China. Local governments
need to formulate urban electricity consumption policies on the basis of the spatial distribution pattern
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of IEC and REC. This empirical result provides a clear basis for accurately predicting the growth of
electricity consumption in urban residents and industrial sector.

Secondly, improve green electricity credit business. A developed financial market can provide
financing channels for green electricity projects. From the perspective of the economic development,
supporting power supply is the foundation of economic development. In order to reduce the
dependence of economic growth on fossil energy, financial institutions should provide financing
services for the development of green electricity (such as hydropower, wind energy, solar photovoltaic
cells, etc.). Financial institutions should guide the flow of funds to the green electricity industry,
leading to the upgrading of urban electricity consumption structure and promoting the sustainable
development of the environment.

Thirdly, promote optimize industrial structure. The Chinese government should optimize
industrial structure to reduce electricity consumption by actively developing the tertiary industry.
Meanwhile, local governments should promote the upgrading of industrial structure through
technological innovation, thereby optimizing the electricity structure.
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