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Abstract: Subtropical forests face pressure from both rapidly changing climate and increasing harvest
activity in southern China. However, the interactive effects of various spatial processes on forests
are not well known. The objective of the present study was to answer the question of how forest
aboveground biomass (AGB) changes under alternative climate change and harvesting scenarios and
to determine whether there will be a tipping point for forest AGB before 2300. Our simulation results
show that, although total forest AGB did not reach a tipping point before 2300 under possible climate
change and harvesting scenarios, the slope of the total forest AGB showed a decreasing trend around
2100 and 2200. Moderate climate warming was conducive to AGB accumulation, except for in the
high emissions Representative Concentration Pathway (RCP8.5) scenario. Our results also indicate
that timber harvesting is adaptable to the accumulation of biomass under climate change scenarios.
Harvesting intensity was a key variable affecting forest AGB more than harvesting frequency. Our
findings will help develop more sustainable forest management strategies that can adapt to potential
climate change scenarios, as well as determining the effectiveness of implementing alternative forest
harvesting policies.

Keywords: forest modeling; climate change; harvesting strategies; aboveground biomass; sustainable
logging; subtropical forest

1. Introduction

Global climate change poses a huge threat to forests, and there remains great uncertainty regarding
the extent of future climate change, which will greatly depend on current human activities [1,2].
There are ongoing efforts to mitigate the potential effects of global change and to understand the
effects of 1.5 ◦C warming related to global greenhouse gas emission pathways [3], but specific extreme
changes may occur in different regions across biomes. Many forests are facing pressure from both
rapidly changing climate and increasing timber harvest activity [4]. Global warming has affected forest
productivity [5], tree species abundance [6], and spatial distribution [7], while forest loss represents a
more pervasive land transformation due to excessive harvesting globally [8]. Such changes have been
substantial, but the interactive effects of various spatial processes on forests remains unknown.

As part of the climate change mitigation efforts, many countries have contributed to the greening of
the world by changing land-use management strategies [9]. China has been implementing policies, such
as the Natural Forest Conservation Program [10] and the Returning Farmland to Forest Program [11].
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Some regions have even taken measures to set apart hills for forestry. However, current forest
restoration and greening comes at the cost of substantial capital compensation, which will inevitably
affect the demand for wood at the regional scale. Prohibiting or restricting logging is beneficial for forest
restoration and biomass accumulation in the short term, but whether logging should be completely
restricted under potential future climate change scenarios is worth investigating. In addition, forest
succession and management are long-term processes, and the following questions are the focus of
this paper. How will future climate change affect forest aboveground biomass (AGB)? What is the
interaction between climate change and harvesting during forest biomass accumulation?

To address these questions, we introduce the concept of tipping points to quantitative evaluation.
A tipping point is derived from the theory of forest resilience and may help to understand the
interactions among ecosystems, economics, and climate [12]. Specifically, a tipping point describes a
threshold in conditions at which a small change in conditions leads to a strong change in the state
of a system [13]. In the sustainable management of forests, this concept is more complicated and
refers to the ways in which spatial variation affects the forest ecosystem across multiple spatial and
temporal scales [14]. Recently this theory has been applied to understanding ecosystem change under
global change. Nepstad et al. applied the concept of a tipping point to examine the interactions
among Amazon land uses, forests, and climate [12]. Adams explored the fire-driven tipping points in
different vegetation types and noted the tipping points associated with changing climate and human
management for managing forests in an uncertain future [15]. In our study, we defined the tipping
point as a situation in which there is a decline in the growth of forest AGB in each time interval. We
used this concept to determine the potential tipping point at a certain time under the interference from
climate change and logging.

The forest landscape disturbance model, LANDIS-II, was used to simulate the effects of climate
change and harvesting on forest AGB under various scenarios [16]. LANDIS-II can simulate spatial
interactive processes, such as forest succession and natural and human disturbance, and it has been
applied to climate change and forest management research globally [16]. For example, Steenberg et al. [2]
simulated the combined influence of climate change and timber harvest on tree species distribution
and productivity in the forests of central Nova Scotia, Canada. They found that disturbance may
drive the range expansion of broad-leaved species, and conifers were favored for pulp production.
In addition, other previous studies focused on the effect of, for example, fire and harvesting [17,18],
forest carbon management [19], and forest ecosystem services [20]. Forest landscape simulations
are helpful for understanding the effect of climate and harvesting on forest AGB, and to formulate
corresponding forest management strategies in advance. However, to our knowledge, most previous
studies focused on northern forests [21,22], especially in North America [23], with insufficient attention
paid to subtropical forests in southern China.

In the present study, we simulated the effects of climate change and harvest on the forest landscape
in southern China using the landscape disturbance model LANDIS-II from 2100 to 2300. Our objective
was to answer the question of how forest AGB changes under alternative climate change and harvesting
scenarios. Moreover, we determined whether there will be a tipping point for forest AGB during
our simulation period, and if so, when the tipping point will occur. Our simulation results identify
the effectiveness of implementing forest harvesting policies and contribute to the development of
sustainable forest management strategies that adapt to climate change.

2. Methods

2.1. Study Area

The study site consisted of an area of 266,700 ha in southern China (Figure 1). The area has a
subtropical humid monsoon climate. Soils are mostly homogeneous and dominated by red soil. The
topography is characterized by hilly terrain (9–1129 m). The forest covered 1632 km2 at a coverage rate
of 61.2% in 2010 according to the forest resources inventory of Jiangxi Province. Forest landscape types
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included broad-leaved, coniferous, and mixed forest and corresponded to forest management zone I,
II, and III, respectively (Figure 1).

Figure 1. Study area with management zones.

The forest type was dominated by second-growth forest and artificial coniferous forest resulting
from heavy logging during 1960–1980 [24]. Following this heavy logging, the forest landscape was
recovered by planting many coniferous plantations, such as Chinese fir, slash pine, and Masson pine,
accounting for more than 60% of the total forested area in 2010. Based on the life span of these dominate
tree species, the current forest community was basically in the early stage of succession and most
coniferous plantations were close to the harvesting age [7]. With the acceleration of urbanization and
townships in China, the demand for land is increasing, and the concomitant climate change will exert
intense pressure on the regional forest management [24]. In 2018, the output of wood production
was valued at 441 million yuan, which considerably contributed to the local economy [25]. The
history of southern forest logging has changed along with China’s economy and energy consumption
structure [26]. The southern forest is facing some problems, such as pure plantations distribution,
unreasonable forest age structure for young forests accounting for a large proportion, lower biodiversity
and ecosystem services due to simple forest structure, forest loss caused by soil erosion, the changes
in carbon sequestration capacity caused by climate change, and excessive logging or overprotection
of forests [27,28]. To adapt to and solve these problems, the current forest management policy of
our forest landscape is close-to-nature silviculture. The main goal of forest management is limited to
national forest restoration and protection policies, focusing on natural restoration accompanied by
artificial management. Therefore, under the overall strategy of natural restoration, adjusting forest
management methods may be an effective way to adapt to uncertainties in the future.

2.2. Climate Data

To find a sustainable way to manage forests to mitigate climate change, we considered four
predicted climate change scenarios, namely Representative Concentration Pathway (RCP), RCP2.6,
RCP4.5, RCP6.0, and RCP8.5. Future climate change data were derived from the multi-model dataset
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) framework proposed by the World
Climate Research Programme, which was compiled from the projections of 17 general circulation
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models (GCMs) that have been averaged, downscaled, and interpolated to a grid of 30” by the
MarkSimGCM weather generator [29]. In addition, we considered the current climactic conditions
(CC) as the baseline. Under CC, we assumed that the climate would stabilize after the initial simulation
year. The climate data of CC were averaged across the past 30 years (1980–2010) and derived from a
local ecological station.

Climate data comprised monthly maximum and minimum temperatures and monthly precipitation
from 2010 to 2100. From 2100 to 2300, we assumed the climate data held the value at 2100. Although
there were high levels of uncertainty, an additional 200 years of simulation is important to identify
changes in response to climate change, which would exceed the longevity of most species. The range of
increased annual average temperature under the RCP climate change scenarios from 2010 to 2100 was as
follows: RCP2.6 (0.1–1.31 ◦C), RCP4.5 (0.05–2.45 ◦C), RCP6.0 (0.07–2.78 ◦C), and RCP8.5 (0.09–4.93 ◦C).
Changes in annual total precipitation differed little between these scenarios, and the range of total
precipitation was 1382–1481 mm. CO2 concentration data were derived from the RCP database [30].
The photosynthetically active radiation observation data were derived from the local ecological station.

2.3. Forest Landscape Model LANDIS-II

The LANDIS-II model is a forest landscape disturbance and succession model simulating forest
establishment, competition, growth, decomposition, biomass accumulation, and anthropogenic
disturbance [31]. This model can track species–age cohorts to simulate forest landscape change driven
by species life-history attributes, species establishment probability, maximum aboveground net primary
production (ANPP), and forest disturbance at a specified time step [32,33]. Many extensions have
been developed and widely applied to climate change and forest management research. The forest
biomass succession extension (Biomass Succession v3.2, eScience, Tokyo, Japan) and timber harvesting
extension (Biomass Harvest v3.0, eScience, Tokyo, Japan) were used for addressing the effect of climate
change and harvesting on forest biomass in our simulation.

2.4. Model Parametrization

The inputs for LANDIS-II include spatial maps and nonspatial inputs. Spatial inputs were maps
for initial forest landscape, ecoregion, forest management, and forest stand. The spatial maps were
raster data at 100 m cell size. These spatial inputs were derived from the forestry resource survey data
from the subcompartment division in 2010. The nonspatial inputs included life-history attributes of
18 dominant tree species (the species and age cohorts). The species life-history attribute parameters
were mainly compiled from the literature, plot investigation data, and consultations with local forestry
experts. These parameters were calibrated and verified in previous simulations [7,24,34,35].

In addition, the calculations of ANPP and species establishment probability for each species under
specific climate scenarios were derived from the PnET-II for LANDIS-II model. The inputs for PnET-II
included climate data, site conditions, and species parameters [36,37]. The setting of these parameters
was derived from the RCP database, plot investigation data, the database of flora of China [38], and
the literature [34,39,40].

For forest harvesting, forest landscape was divided into three forest management zones based
on the managed forest type (Figure 1). The harvest prescriptions were derived from the local forest
management practices in the last decade. The input parameters included the percentage of harvesting
area, harvesting minimum age, harvesting species, and harvesting cycle. The ranking of the harvesting
at a stand was the maximum cohort age. Since the dominant tree species in each management area were
different, different logging prescriptions were set up in each management area. For management I and
III, the broad-leaved and mixed forest were dominated. Based on our forest management objectives
for protection, current harvesting prescriptions set a lower harvesting area ratio. For management
II, the harvesting area ratio was set higher because the coniferous plantation was the main supply
for local wood production. The minimum harvesting age of different management zones was set
according to different tree species attributes (Table 1). In addition, we set four harvesting scenarios
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to compare the effect of harvesting intensity and harvesting frequency on forest AGB. There was no
harvesting occurring in scenario A. Scenario B involved implementing current harvesting prescriptions.
Specifically, the harvesting cycle was set to 10 years. The harvest intensity of the management areas I, II,
and III were set at 10%, 15% and 5%, respectively. Scenario C involved relatively high intensity logging
(five times the current logging area). Scenario D was at a relatively high frequency (shortening the
logging cycle 5-fold). In addition, each scenario was set to regenerate after harvesting. The harvesting
prescriptions for different harvesting scenarios are shown in Table 2. It needs to be explained that each
scenario of each logging was executed separately, and did not interfere with each other. For example,
if 10% of the logging management area I is used in scenario B for a single harvest, the remaining 90%
area of the management area I will not be harvested.

Table 1. Forest harvesting minimum ages and species in different management zones in Taihe County.

Management Zones Harvesting Minimum Ages (Year) Harvesting Species (Minimum Cohorts
Removed)

I 20

Broad-leaved forests:
Longpeduncled Alder (>20)

Fortune Chinabells (>20)
Chinese Sassafras (>20)
Chinaberry Tree (>20)

Poplar (>20)
Crenate Gugertree (>30)

Beautiful Sweetgum (>30)
Shinybark Birch (>30)

Eyer Evergreenchinkapin (>50)
Farges Evergreenchinkapin (>50)

Faber Oak (>50)
Myrsinaleaf Oak (>50)
Camphor Tree (>60)

II 15

Coniferous forest:
Chinese Fir (>10)

Masson Pine (>20)
Slash Pine (>10)

III 20

Mixed forest:
Chinese Fir (>10)

Masson Pine (>20)
Camphor Tree (>60)

Faber Oak (>50)
Farges Evergreenchinkapin (>50)

Longpeduncled Alder (>20)
Zhennan (>60)

Notes: The cohort stands for tree species are grouped into age classes. The span of an age class is equal to the
succession time step (10-years in the simulation).

Table 2. Forest harvesting prescriptions for different harvesting scenarios in Taihe County.

Harvesting Scenarios Management Zones Harvesting Area (%) Harvesting Cycle (Year)

B
I 10%

10II 15%
III 5%

C
I 50%

10II 75%
III 25%

D
I 10%

2II 15%
III 5%
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2.5. Experimental Design

Based on the main goal of improving forest management, we simulated total forest AGB for
18 dominant tree species from 2010 to 2300 using a 10-year time step under climate and harvesting
scenarios, specifically the five climate scenarios (CC, RCP2.6, RCP4.5, RCP6.0, and RCP8.5), four
harvesting scenarios (A: no-harvesting, B: current harvesting, C: high-intensity harvesting, and D:
high-frequency harvesting), and the interactions between climate change and harvesting scenarios.
In addition, to determine the tipping points of forest AGB under different climate change and forest
harvesting scenarios, we calculated the slope of total forest AGB during the simulation period. A
negative slope indicated a downward trend in the forest growth rate of AGB in this period. Then, we
characterized and mapped forest AGB under the combination of climate and logging scenarios and
compared the amount of deforestation in different management zones.

While calibrating and validating the simulation, it is difficult to verify forest landscape dynamics
under future scenarios. Therefore, we calibrated the model by comparing with the simulated results at
the initial year in the forestry inventory data from 2010 [7]. For forest harvesting, the effectiveness of
the model behavior and results was also validated in our previously reported simulations [24,35]. We
have carried out extensive field investigations and consulted relevant local forestry experts to ensure
parameter rationalization.

3. Results

3.1. Total Forest AGB

Total forest AGB increased under all climate and harvesting scenarios from 2010 to 2300 (Figure 2).
However, we also found that the increase rate gradually decreased, especially after 2200. The results
demonstrated total forest AGB gradually approaching the maximum forest AGB but without reaching
the tipping point until 2300. There was little difference in the change in total forest AGB under the
different climate change scenario. Appropriate climate warming was conducive to AGB accumulation.
For example, total forest AGB under the current harvesting scenario was ranked as RCP6.0 (28.14 Tg) >

RCP4.5 (27.50 Tg) > RCP2.6 (26.46 Tg) > CC (25.83 Tg) in 2300. However, under RCP8.5, the tipping
point for total forest AGB appeared around 2080. After which the increase rate of total forest AGB
significantly decreased. Total forest AGB under current harvesting and RCP8.5 scenarios was lower
than that under the other climate scenarios, reaching 20.61 Tg.

When comparing changes in total forest AGB under different harvesting scenarios (Figures 2 and 3),
the results showed that harvesting scenario C had the most timber, indicating that the harvesting area
is a more important disturbance parameter affecting forest AGB. Total forest AGB was higher under
relatively high-frequency harvesting (scenario D) than under scenario C. Compared with no-harvesting
(scenario A), the average difference in total forest AGB under different harvesting scenarios was 2.5 Tg
(scenario B), 5.8 Tg (scenario C), and 4.4 Tg (scenario D). In addition, the range of high-frequency
harvesting boxes was larger, indicating that the data are relatively discrete. Our results show that a
higher harvesting frequency results in a more highly fluctuating total forest AGB curve (Figure 3).
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Figure 2. Total forest aboveground biomass (AGB; Tg) under various climate and harvesting scenarios
from 2010 to 2300. (a) Climatic conditions (CC), (b) Representative Concentration Pathway (RCP)2.6,
(c) RCP4.5, (d) RCP6.0, and (e) RCP8.5. A: no-harvesting, B: current harvesting, C: high-intensity
harvesting, and D: high-frequency harvesting.

Figure 3. Differences in total forest aboveground biomass under three harvesting scenarios and
no-logging scenarios from 2010 to 2300. (a) Climatic conditions (CC), (b) RCP2.6, (c) RCP4.5, (d)
RCP6.0, and (e) RCP8.5. A: no-harvesting, B: current harvesting, C: high-intensity harvesting, D:
high-frequency harvesting.

3.2. Phase of Total Forest AGB Accumulation

The results of the slope of total forest AGB showed which phase had a decreasing trend (Figure 4).
The rate of increase in total forest AGB decreased year by year and fluctuated. When comparing the
differences in the effects of climate change without logging, the slope showed a reduction phase of
biomass accumulation around 2190 under CC and RCP2.6. However, this reduction phase disappeared
under RCP4.5 and RCP6.0. Under RCP8.5, the range of the reduction phase was larger and advanced
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to around 2090, indicating that excessive warming of the climate may accelerate the reduction in forest
biomass accumulation and may advance the tipping point.

Figure 4. Slope of total forest aboveground biomass (AGB) from 2010 to 2300. Gray background
represents the reduction phase of biomass accumulation. A: no-harvesting, B: current harvesting, C:
high-intensity harvesting, D: high-frequency harvesting.

With the intervention of harvesting, the frequency of this gray area that represents the reduction
phase of biomass accumulation was higher, and the range was wider. High-intensity and high-frequency
harvesting had a greater effect in the early simulation, showing as a significant reduction in biomass
accumulation. Around 2100 and 2200, more gray areas appeared under various climatic and
harvesting scenarios.

3.3. Spatial Distribution of Forest AGB

The spatial distribution of forest AGB in 2300 is shown in Figure 5. We found that the spatial
pattern of forest AGB was consistent with the management zone. Management zone III (mixed forest)
had higher forest AGB (>250 t/ha) followed by management zones II (broad-leaved forest) and I
(coniferous forest). Climate change had little effect on forest biomass patterns. However, under the
RCP8.5 scenario, the forest biomass of management zone II was significantly reduced. The results of
forest AGB under different harvesting scenarios showed that high-intensity harvesting had the greatest
effect. The average 0–50 t/ha biomass under multiple climate scenarios accounted for 53.96% of the
total area of management zone II. The effect of high-frequency harvesting was relatively weak, and the
area with biomass of 0–50 t/ha accounted for 42.96% of management zone II.
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Figure 5. Spatial distribution of forest aboveground biomass (AGB) under climate change and
harvesting scenarios. A: no-harvesting, B: Current harvesting, C: high-intensity harvesting, D:
high-frequency harvesting.

The total timber harvesting in different management zones under different climate and harvesting
scenarios from 2010 to 2300 is shown in Table 3. There was little difference in the harvesting volume
of the three management zones under different climate change scenarios. However, the harvesting
volume increased with total forest AGB accumulation. For different management zones, the change in
harvesting intensity mainly occurred in management zone II. For example, Chinese fir is an important
tree species for local wood production. In this area, the high-intensity harvesting (scenario C) volume
was close to four times the current harvesting volume (scenario B), whereas the high-frequency
harvesting (scenario D) was twice that of scenario B.

Table 3. Total forest harvesting biomass (Tg) in different management zones under different climate
and harvesting scenarios from 2010 to 2300.

Harvesting Scenarios Climate Scenarios
Management Zones

I (Tg) II(Tg) III(Tg)

B

CC 14.98 18.83 0.82
RCP2.6 15.60 18.65 0.84
RCP4.5 16.91 18.38 0.78
RCP6.0 17.57 18.96 0.77
RCP8.5 16.17 13.61 0.77

C

CC 7.07 82.64 1.22
RCP2.6 7.18 81.59 1.21
RCP4.5 7.76 83.43 1.26
RCP6.0 8.05 85.83 1.29
RCP8.5 7.51 59.30 0.89

D

CC 9.10 37.31 1.13
RCP2.6 9.58 36.74 1.16
RCP4.5 11.26 37.19 1.24
RCP6.0 11.67 38.62 1.26
RCP8.5 8.82 27.23 1.06
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4. Discussion

4.1. Interpretation of Results

Our simulations predicted that climate change may increase total forest AGB dependent upon the
projected climate scenarios with or without harvesting. Our simulation without harvesting indicated a
potential increase in forest AGB from 195% to 301% during the simulation period. For forest landscape,
such an increase can be explained as the current total forest AGB having not reached the maximum
biomass of each tree species. The coniferous plantations, including Masson pine, slash pine, and
Chinese fir, account for a large proportion of our forest landscape, which can compete for more light
and nutrient resources, resulting in higher productivity and faster biomass accumulation during early
succession. Similar results have also been found in other studies [41].

We found that appropriate climate warming will promote plant growth in our forest landscape.
However, we also found that the slope of the increase in total forest biomass was gradually decreasing,
especially under the RCP8.5 scenario. Such a decline was also reported by previous studies [7,39,42].
This change was a deterministic consequence of ANPP inputs to LANDIS-II, which in turn were
driven by the response of tree species attributes to climate change. This decline can be explained
by excessively high temperatures inhibiting photosynthesis and even reducing carbon absorption,
consequently leading to a decline in forest productivity [35].

Harvesting also influenced changes in forest AGB over time. Direct climate effects on forest
biomass may have a lag time, but harvest activity produces a sudden and significant change [4].
Based on our forest management objectives for protection, the harvesting scenarios were setting as
close-to-nature silviculture. Our simulation showed that a relatively stable forest AGB difference
formed between harvesting and no-harvesting, which indicates the interaction and adaptability of
harvesting and climate change. In addition, different harvesting prescriptions also greatly affect
total biomass. Harvesting frequency and intensity driven by human demand and behavior showed
significant differences in forest AGB. Our simulation predicted that harvesting intensity was a more
critical variable affecting forest AGB. Under the same logging area every 10 years, high-intensity
logging has a greater effect on forest biomass than harvesting frequency. Changes in forest AGB may
have been due to this high-intensity harvesting, which may have harvested more than the available
annual allowable cut. We think that these simulation results could help to develop forest harvesting
strategies that can adapt to climate change.

For total forest AGB, our forest landscape did not reach the tipping point under possible climate
change and harvesting scenarios during our simulation period. However, our results of the slope of
total forest AGB showed a decreasing trend in some years, such as in 2100 and 2200. These decreasing
phases of biomass accumulation were all linked to climate warming trends and harvesting. First, the
slope of total forest AGB showed a negative trend around 2200 under RCP2.6 and CC scenarios, or
2100 under RCP8.5. This decline can be explained by the limited lifespan of most coniferous tree
species. Our simulation calculated forest AGB using the existing biomass, ANPP, and aboveground
mortality for each species [43,44]. Aboveground mortality related to species lifespan reduced living
AGB. In addition, excessive temperature, such as under RCP8.5, will advance the gray area. Second,
the gray area appeared at the beginning of the simulation under harvesting scenarios C and D. This
is because there are more forests suitable for harvesting (age or tree species) in the beginning, and
the model performs more harvesting AGB during this period. In fact, the process of forest biomass
accumulation is a complex process, which is affected by species establishment, forest succession (shade
tolerance), climate change, and even forest harvesting. Although the process of biomass accumulation
is complicated, we can also conclude that climate warming and human disturbance will inevitably
cause the decline of forest biomass, or advance this declining trend.
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4.2. Adaptation to Climate Change for Sustainable Forest Management

Adaptive forestry includes sustainable forest management strategies that focus on climate
change [45]. Appropriate harvesting strategies can adapt to climate change and support regional
forestry economic development [46]. China’s current forest management strategy has considerably
contributed to the world’s greening efforts [9,27]. However, we have to think about whether the
current protection measures and forestry policies are sustainable, and how long such protective forestry
policies will last. As the demand for local forestry production increases, more economic benefits will
surely stimulate changes in harvesting strategies.

We believe that our simulations are significant to the adjustment of forest carbon management
strategies. First, our simulations show that appropriate logging will be possible under certain climatic
conditions, but in extreme climate scenarios (RCP8.5), such logging will accelerate this decline over the
next 200 years. Second, our simulation results can also provide suggestions for how to manage different
forest types. Coniferous forests (management II) play a vital role in forest landscape management and
occupied a larger area, but the biomass per unit area was insufficient. In fact, the important role of
artificial coniferous forest was not only for our forest landscape but also extended to the entire red
soil hilly area in southern China [27,47]. Therefore, solving the problem of artificial coniferous forests
is an urgent issue for the sustainable management of southern forests. Third, our results also show
that high-frequency logging will promote the accumulation of biomass. It is undeniable that such
logging will inevitably consume more manpower and financial resources. Therefore, it is particularly
important to weigh the timber harvesting volume against market demand.

A limitation of our simulations is the simplification of the complex forest landscape dynamic
processes. Our simulations did not consider disturbances such as wind [33], fire [48], and insects
because forest fires and insect outbreaks are strictly controlled in Chinese forests. We also did not
include species migrating from outside the landscape, CO2 fertilization, or ozone pollution, which
may significantly interact with other global change effects [49,50]. In addition, we recognize that there
are some uncertainties in the climate change data, which is averaged, downscaled, and interpolated
from multiple GCMs. Owing to the restrictions in data sources, the climate data from 2100 to 2300 are
assumed constant. Although there is so much uncertainty after 2100, we consider that analyzing an
additional 200 years, which would exceed the longevity of most tree species in subtropical forests, is
important to identify species changes [35]. For the results after 2100, we focused on the comparison of
biomass changes under different climate scenarios, rather than more accurate prediction. Therefore, we
considered these measures to be the trade-offs between the technical and ecological insights [51]. Our
alternative harvesting strategies will contribute to dynamic management priorities, market fluctuations,
and policy restrictions. Adaptation to climate changes in forest management refers to adjustments in
ecological, social, and economic systems in response to the effects of climate change [45]. For future
work, we will conduct quantitative trade-off studies between regional harvesting and carbon storage
management and strive to identify the relative role of climate change in carbon storage management.

5. Conclusions

Based on our results, we are able answer the question that though the total forest AGB has not
reached the tipping point until 2300 under possible climate change and harvesting scenarios, our
results for the slope of total forest AGB showed a decreasing trend around 2100 and 2200. Moderate
climate warming was conducive to AGB accumulation. However, excessive temperature increase
will significantly reduce biomass, such as under the RCP8.5 scenario. Our results also indicate that
timber harvesting is adaptable to the accumulation of biomass under various climate change scenarios.
Harvesting intensity is a key variable which affects forest AGB more than harvesting frequency.
Coniferous forests are favored for timber production in future forest management. We believe that
moderate harvesting in our forest landscape will be allowed in the coming decades. Simulating the
effects of climate change and close-to-nature silviculture on the forest landscape provides insights into
the interaction between climate change and forest management in southern China. Our findings can
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guide forest management strategies that adapt to potential climate change scenarios, as well as identify
the effectiveness of the implementation of forest harvesting policies.
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