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Abstract: This paper assessed the impact of soil and water conservation practices on farm productivity
and risk exposure using data from 1204 plots in the semiarid tropics of India. A probit model was
used to assess the determinants of adoption of soil bunds. We employed a moment-based approach
for estimating crop revenue, its variability and downside risk exposure, i.e., crop failure. Furthermore,
we also used a doubly robust method for assessing the impact of soil bunds on crop revenue,
its variability and downside risk. Matching and propensity-based methods were also used to check
robustness. The results show that training, access to credit and extension services are key determinants
of adoption of soil bunds. Furthermore, the results also suggest that soil bunds not only improve
the crop revenue but also reduce its variability. Most interestingly, we show that soil bunds also
reduce the chances of downside risk, i.e., crop failure. Therefore, in view of increasing climate change
and variability in the semiarid tropics, it can be suggested that soil bunds could be an important
adaptation strategy for improving productivity and reducing risk exposure. This paper supports the
investment in soil and water conservation technologies for sustaining the livelihood of resource-poor
farmers of ecologically fragile regions such as the semiarid tropics.
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1. Introduction

The negative impacts of climate variability and change on agriculture are being witnessed all
over the world, particularly in the countries like India, which is highly vulnerable because of its high
dependence on agriculture and excessive pressure on natural resources [1,2]. Rainfed agriculture,
which accounts for 67% of the net sown area, contributing 44% of food grains and supporting 40% of the
population, is highly vulnerable to climate variability and change. Its high vulnerability can be attributed
to fact that rainfed agriculture suffers numerous climatic (low and erratic rainfall, extreme rainfall
variability, occurrence of unpredictable droughts, high temperatures), biophysical (land degradation,
poor soil fertility) and socioeconomic constraints (inadequate infrastructure, high population pressure,
high levels of poverty, low levels of input use and technology adoption, resource-poor farmers and
inadequate credit availability, etc.) adversely affecting the productivity of the farming system [3,4].
Moreover, it is projected that the frequency of extreme weather, particularly droughts, is increasing [2,5].
However, sustaining crop production in rainfed areas is of critical importance to maintain India’s food
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security [6] since even after achieving full irrigation potential, nearly 50% of the net cultivated area
will remain dependent on rainfall [7]. In the SAT (semiarid tropics) region, variability of rainfall is a
principal source of production risk [8]. Production risk in the form of crop failures is a major barrier
to making rainfed agriculture sustainable. Moreover, the incidence of crop failure is on the rise as
the frequency of droughts over the years has been on the rise in the semiarid areas. Production risks
influence agricultural production decisions, particularly a farmer’s technology adoption decisions [9,10],
and can worsen the sustainability of crop production systems through their downside (crop failure)
effects [9,11]. Farmers understand the risks and uncertainties of production risk and try to manage it
by taking up appropriate practices, including soil and water conservation measures. In this regard,
empirical evidence shows that farmers are risk-averse [12], suggesting that suitable technologies can
help in reducing farmers’ exposure to production risk. Furthermore, there is evidence that most of
the farmers exhibit decreasing absolute risk-aversion [13]. This implies that farmers are averse to
“downside risk” [14], implying that farmers are especially averse to being exposed to unexpectedly
low crop yields or returns.

To improve the productivity, stabilize the yields and to reduce the chances of crop failures, soil and
water conservation (SWC) practices are considered one of the key strategies. Moreover, in the rainfed
areas, SWC practices are crucial to sustain crop production in view of growing water shortages,
deteriorating soil health and increasing incidence of drought and desertification, and also to moderate
the negative effects of climate change and variability [15]. The common in situ moisture conservation
practices for the region are broad beds and furrows, contour bunding, graded bunding, compartment
bunding, ridges and furrows, tied ridging, contour cultivation, set-furrow cultivation, etc. [16–18].
Among these measures, contour bunding is the most widely practiced soil conservation measure in the
semiarid tropics in India having medium- to low-rainfall areas (<700 mm) and on permeable soils with
<6% slope [16,19]. Bunding helps in reducing the soil loss and runoff and improving the soil moisture,
which in turn leads to higher productivity [20,21]. Keeping this in view, soil bunds or bunding was
chosen for detailed investigation in this paper. This is an earthen embankment constructed on a contour
to intercept runoff and hold the rainwater for conserving soil moisture.

A substantial literature has examined the impact of SWC practices on productivity, but very
few studies attempted to examine the impact of SWC practice adoption on crop yield variability
and downside risk exposure, i.e., crop failure. Most importantly, the influence of SWC practices on
downside risk exposure (on the probability of crop failure) remains poorly explored in the rainfed
areas [13]. To fill this research gap, this paper investigates how adoption of soil and water conservation
practices, i.e., soil bunds, can contribute to improving farm productivity and how it affects the variability
of crop production/yields and the risk of crop failure. In addition, the paper also identifies the key
determinants of adoption of soil bunds. The paper employed the probit model for explaining the
factors affecting the adoption behavior of soil bunds. For assessing the impact of soil bunds on the crop
revenue, variance and skewness, inverse-propensity-weighting regression adjustment (IPWRA) is used
as a main method. Furthermore, IPW (inverse propensity weighting) and propensity score matching
(PSM) approaches (coarsened exact matching, optimal and nearest-neighbor matching) were used to
confirm the robustness of the results. We followed the moment-based approach for estimating the
mean-variance and skewness of crop revenue using the plot-level data. This paper will provide useful
insights for policy makers for improving the adoption of SWC practices and also provide empirical
evidence of how SWC not only sustains crop production in drought-prone semiarid areas and in
degraded lands, but also it could be instrumental in reducing the risk exposure, which is expected to
be increasing in view of increasing climate variability and droughts.
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2. Materials and Methods

2.1. Data and Sampling Procedure

We collected data from 530 households and 1204 plots, of which 44.4% and 55.8% of farmers were
adopters and nonadopters, respectively. Karnataka is a state in the southwestern part of India, which is
one of the most drought-prone areas of the country. Around 77% of the area of the state is arid and
semiarid, facing severe climatic and resource constraints. The occurrence of drought is common [22],
and rainfall is less than 750 mm per annum, which is also erratic and uncertain, with higher spatial
and temporal variability. In the region, most of the farmers are resource-poor, having limited capacity
to invest in soil and water conservation. Consequently, the region is in the grip of a vicious circle of
land degradation, hunger, and poverty. The region having drought-prone districts of the Karnataka
state was purposively selected. Then, from the drought-prone districts, four districts (Tumkur, Bidar,
Koppal and Gadag) were randomly selected; then, from each selected district, two subwatersheds
were again randomly selected. From each selected subwatershed, adopters, and from the adjacent
area, nonadopters were chosen for detailed survey. With the help of a pretested and well-structured
questionnaire, plot-level data on soil and water conservation practices, socioeconomic and physical
characteristics and institutional aspects were collected.

2.2. Analytical Tools

Econometric Model of Adoption of Soil Bunds

The plot having soil bunds was assumed as an adopter or a nonadopter otherwise. For each plot,
ith, the latent variable y∗ was assumed to be a linear function of the vector of observable household,
plot and institutional characteristics as follows:

y∗i = βZi + εi (1)

where β is the coefficient vector, εi is a random error term and Zi is the set of explanatory variables.
The linkage between y∗i and yi is as follows:

yi =

{
1, i f y∗i > 0
0, i f y∗i < 0

(2)

Then, the probability of adoption of soil bunds is given by

Prob
[
y∗i = 1

]
= Prob

[
y∗i > 0

]
(3)

= Prob[βZi + εi > 0] (4)

= 1− Prob[εi ≤ −βZi] (5)

= F(βZi) (6)

where F(.) is the cumulative distribution function (CDF) of the error term εi. We assume that εi follows
the standard normal distribution, and the above equation was estimated by probit regression.

2.3. Choice of Explanatory Variables Used in Probit Model

Drawing upon the literature on technology adoption and particularly on the adoption of
SWC measures [23–27], the required variables for the paper were chosen. Adoption of SWC
practices is determined by synergic and interactive effects of numerous socioeconomic factors,
availability and access to financial and capital resources, physical features of the land/plot and
institutional support. Accordingly, factors determining adoption of SWC practices can be categorized
into groups: (a) household-specific characteristics, (b) economic and institutional factors and
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(c) biophysical/plot-level feature characteristics. Following this, we also collected the plot-level
information on variables relating to household-specific characteristics, viz., age, education, family size,
farm assets, livestock, size of landholding and off-farm income. In view of results from previous
studies, we hypothesized that older farmers would have a higher likelihood of taking up SWC
practices [26,28,29]. The level of education was measured in terms of the number of schooling years,
and we expected a positive effect on the adoption of SWC practices. This is due to the fact that
better education helps in developing a better understanding relating to detrimental consequences
of soil erosion and land degradation, and it also facilitates and improves access to information and
technologies. Most importantly, it brings about a desirable change in attitude and behavior about
conserving natural resources [30–32]. Soil and water conservation measures are highly capital-intensive;
therefore, adoption of these practices is inadequate in scale and intensity (rate of adoption and its
intensity) due to financial hardships and liquidity constraints, which are common in the SAT region,
as a majority of farmers are resource-poor. Therefore, we also included variables such as access to
credit and off-farm income. Taking indications from earlier studies [33], we supposed that access
to credit will have a positive impact on adoption by overcoming financial constraints. Furthermore,
we believed that having a source of off-farm income will also affect positively the adoption of SWC
practices. Size of landholding is often used a proxy for farm income and wealth, indicating relatively
higher capacity to invest in SWC measures. It was reported to have a positive effect on the adoption
of conservation measures [28,29,34]. Another set of explanatory variables is pertaining to physical
features of the plot/land, viz., slope, soil erosion and fertility levels. It was reported that the higher the
slope of the plot, the higher the probability of adoption since steeper slopes are more prone to soil
erosion [35,36]. Furthermore, it was noticed that higher soil erosion also had a positive association with
the taking up of SWC measures [23,37]. This can be attributed to the fact that soil erosion is greater on
the plots having higher slopes, and soil erosion removes the top layers of soils [36], leading to a decline
in the productive capacity of the soil [24,38]. Extension service is measured in terms of the number
of visits of farmers to local extension agencies such as KVKs and RSKs (KVK and RSK stand for the
Krishi Vigan Kendra (Farmer Science Centre) and Raita Sampark Kendra (Farmer Contact Centre),
which are involved in agricultural extension services). We believed that if farmers are in contact with
extension service centers, then they have more access to information and advisories about soil and
water conservation and their expected benefits [29,39]. Use of such services also helps in developing a
better understanding of potential consequences of soil erosion [40]. A positive impact of extension
services was reported by many researchers [24,28,29,31]. Lack of technical support negatively affects
the adoption of conservation measures [28,41]. We supposed that training of farmers has a positive
influence on the adoption. If farmers participate in training on SWC measures, then they are expected
to have more technical knowledge about the use and implementation, leading to a higher probability
of adoption. Social capital is critical as far as adoption of agricultural innovations is concerned [42].
It encourages cooperative behavior, reduces transaction costs, and facilitates information sharing [43,44].
We tried to measure the social capital in the form of interaction and its perceived usefulness and
supposed a positive effect on adoption.

2.3.1. Econometric Model of Mean Yield, Risk and Downside Risk

Following Antle (1983), we used a moment-based approach that allows a flexible representation
of the production risk [11]. This approach has been widely used in agricultural economics to model
production risk [13,45]. A moment-based approach (the mean-variance-skewness analysis) was used
in a number of studies pertaining to production risk [45]. We wanted to estimate the impact of
soil and water conservation practices, i.e., soil bunds, on crop revenue as well as on risk exposure.
Since data was from different crops, to see the impact of soil and water conservation practices on farm
performance, we used crop revenue as an indicator of farm performance instead of crop yield. Risk was
measured by the second central moment (variance) and third central moment (skewness) of the error
distribution of crop revenues after controlling for differences in inputs, household and plot-level
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features. The flexible moment-based production function divides the variation in revenue into two
parts. First, differences in inputs and other observable characteristics explain part of the variation in
revenue, which is the mean effect of the explanatory variables on revenue. Second, the unexplained
variation of revenue (the error distribution) is modeled as an economic structure reflecting the riskiness
of agricultural production [11,46]. The distribution error of the revenue function provides relevant
information for analyzing farmers’ risk exposure. Skewness measures the extent of farmers’ downside
risk exposure (i.e., crop failure) by distinguishing unexpected bad and good events, which cannot be
done by variance [45]. However, we used both variance and skewness as measures of risk exposure.
An increase in skewness implies a reduction in downside risk exposure, which implies, for example,
a reduction in the probability of crop failure. We preferred the moment-based approach because it
imposes relatively fewer restrictions than the conventional production function specifications [11].
Since we had different crops (maize, sorghum, ragi and redgram), we estimated the net revenue
function. Here, net revenue is gross income over the variable cost. Thus, net revenue is defined
as follows:

Net revenue = Gross income (yield × price) − variable cost (cost of inputs).
Furthermore, the net revenue function is defined as

R = f1(Xβ, Zα, Dγ) + µ1 (7)

where R is net revenue, measured in INR (Indian National Rupee) per ha, X is input expenditure
(INR per ha), Z includes socioeconomic and plot-level features and D is a dummy variable indicating
adoption of soil bunds. β,α and γ are parameters to be estimated.

ε̂1 = R− f1
(
Xβ̂, Zα̂, Dγ̂

)
(8)

where ε̂1 is the residual estimated from Equation (7).
Then, estimated residuals are used to estimate higher-order moments of production:

(ε̂1)
j = E

[
R− f1

(
Xβ̂, Zα̂, Dγ̂

)] j
+ v j; j = 2, 3 (9)

For the estimation of the mean net revenue equation, different alternative functional specifications,
viz., linear-log, quadratic, Cobb–Douglas and translog-log, were estimated. Then, the econometric
performance of each specification was evaluated using Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC). Accordingly, among these, the best model was used for analysis.
Following Judge et al.’s (1988) procedure [47], in the first step, we estimated the mean function using
ordinary least squares (OLS); in the second step, we predicted the residuals and then constructed
squared residuals; and in the third step, we used the squared residual as the dependent variable
for the variance function estimation using OLS. If the coefficient in the variance function is positive,
it implies risk-increasing effects, and conversely, a negative coefficient implies a risk-decreasing effect
of the input on outcomes. Similarly, the skewness equation was estimated by taking the cube of the
residuals. In the skewness equation, a positive coefficient indicates that the distribution is positively
skewed. In other words, it indicates a reduction in the downside risk, i.e., crop failure.

2.3.2. Impact Estimation Technique

Assuming the axiom of rationality, given resource constraints, a farmer will adopt soil bunds in
the plot if it leads to higher revenue than cost. Therefore, it is assumed that a profit-maximizing farmer
will adopt a technology/practice if expected net utility from adopting (UA

i ) is higher than that from
nonadoption (UNA

i ). In other words, a farmer adopts if the expected net utility is greater than zero
(Ui = UA

i −UNA
i > 0). In order to estimate the impact of soil bund technology adoption on a farmer’s

outcome, we estimate it as
Yi = β0 + γDi + βXi + αZi + µi (10)
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where Yi denotes the different dependent variables (net revenue, variance and skewness); Di is the
binary variable taking the value 1 if a plot has soil bunds and 0 otherwise; Z is a vector of farm-level
socioeconomic and plot-level characteristics and institutional variables, which are expected to influence
the outcomes; X is input variables; and µi captures the error terms. The results of OLS estimation of the
above equation will be inconsistent and biased, as adoption of soil bunds is endogenous. Furthermore,
when we use nonexperimental data, wherein individuals choose their adoption rather than being
randomly assigned, this introduces self-selection bias. This is due to the fact that adoption of soil
bunds may be strongly correlated with observable farm, plot and institutional features. Therefore,
self-selection must be accounted for while estimating the impact of adoption of soil bunds. Additionally,
there is a problem of missing data since the counterfactual outcomes cannot be observed. Furthermore,
unobservable characteristics of the farmers, such as managerial skills, may influence households’
decisions to adopt the technology as well as their outcomes, resulting in inconsistent and biased
estimates.

In a regression approach (RA), the average treatment effect on the treated (ATT) is estimated as

ATT = E
[
Yi(1) −Yi(0)

∣∣∣Di = 1
]

(11)

where Yi(1) is the unit of outcome when the ith individual has adopted (Di = 1) the SWC practice
and Yi(0) is the unit of outcome when the ith individual has not adopted (Di = 0) the SWC practice.
This represents the calculated effect of taking into consideration only the units that received treatment.
In regression adjustment (RA), two separate regression analyses (µ0(x) when Di = 0 and µ1(x) when
Di = 1) were employed, each for treatment level, and then averages of predicted outcomes were used
for estimating the ATT. Wooldridge (2010) suggested that a combination of the RA with the propensity
score, that is, IPWRA. The IPWRA estimator has a “double robust” property because it combines the
regression adjustment (RA) and the inverse probability weighting (IPW) estimators [48]. The IPWRA
estimator simultaneously estimates treatment and outcome equations to account for selection bias.
It uses weighted regression coefficients to compute treatment effects, and the weights used are inverse
probabilities of treatment [48]. The IPWRA estimator estimates the impact of adoption of SWC practices
in the following three steps:

(1) Let us say the outcome model for SWC practice adoption is specified as a linear regression
function of the form Yi = αi + βiXi + εi; i = {0, 1} and the propensity scores estimated using probit
regression P

(
X, Ŷ

)
.

(2) In the second step, linear regression is employed to estimate the parameters (α0, β0) and
(α1, β1) using inverse-probability-weighted least squares as follows:

min
α0,β0

 N∑
i

(Yi − α0 − β0Xi)

P
(
X, Ŷ

)  if Di = 0. (12)

min
α1,β1

 N∑
i

(Yi − α1 − β1Xi)

P
(
X, Ŷ

)  if Di = 1 (13)

(3) The third step involves calculating the average treatment effect on the treated (ATT) by

min
α1,β1

 N∑
i

(Yi − α1 − β1Xi)

P
(
X, Ŷ

)  if Di = 1 (14)

The IPWRA approach, being doubly robust, was treated as the main estimation approach;
additionally, other approaches, namely, matching approaches and IPW, were also used to assess the
impact of SWC practices to check the robustness of findings. For analysis, the packages, namely,
PSweight [49], WeightIt [50], Matching [51] and MatchIt [52] were used in R-3.6.3.
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3. Results and Discussion

3.1. Descriptive Summary of the Variables

The average age of the sample famers was 51 years; when segregated, it was 49 and 52 years for
the adopters and nonadopters, respectively (Table 1).

Table 1. Descriptive statistics of the sampled farm households in the study area.

Variables Definition Full Sample Adopters Nonadopters

BUND Soil bunds (1 if adopted;
otherwise 0) 1204 532 (44.2) 672 (55.8)

AGE Age (years) 51 (13.51) 49 * (12.87) 52 (13.93)

EDU Education (number of
schooling years) 4.91 (4.78) 5.06 (4.82) 4.8 (4.74)

OFFFARM Off-farm income (1 if yes;
otherwise 0) 561 (46.6) 303 *** (57.0) 258 (38.4)

FAMILY Family size (numbers) 5.0 (2.3) 5.0 (2.3) 5.0 (2.3)

LIVESTOCK Livestock (numbers) 3.35 (2.2) 3.29 (2.08) 3.4 (2.29)

LANDHOLDING Size of landholding (ha) 2.59 (2.11) 2.64 (2.21) 2.55 (2.03)

CREDIT Access to credit (1 if yes;
otherwise 0) 811 (67.4) 394 ** (74.1) 417 (62.1)

FAI Farm asset index
(index scores) 0.11 (0.16) 0.14 * (0.19) 0.09 (0.13)

TENURE Tenure (1 if owned;
otherwise 0) 795 (66.0) 369 ** (69.4) 426 (63.4)

SLOPE Slope of plot (1 if slope;
otherwise 0) 693 (57.6) 362 *** (68.0) 331 (49.3)

EROSIONHIGH Soil erosion (1 if high;
otherwise 0) 362 (30.1) 208 ** (39.1) 154 (22.9)

EROSIONHIGHMED Soil erosion (1 if medium;
otherwise 0) 358 (29.7) 109 ** (20.5) 249 (37.1)

FERTIHIGH Fertility (1 if high;
otherwise 0) 399 (33.1) 221 *** (41.5) 0.27 (0.44)

FERTIMEDIUM Fertility (1 if medium;
otherwise 0) 570 (47.3) 196 *** (36.8)) 374 (55.7))

BPI# Benefit perception index 3.41 (0.78) 3.58 ** (0.73) 3.27 (0.79)

EXTENSION Extension services
(number of visits) 2.7 (1.4) 2.9 * (1.6) 2.4 (1.2)

TRAIN Training (1 if yes;
otherwise 0) 577 (47.9) 305 *** (57.3) 272 (40.5)

TALK

Interaction with others
(1 = no interaction,

2 = often and
3 = frequently)

1.77 (0.81) 1.96 * (0.84) 1.63 (0.75)

USEFUL
Perceived usefulness of

interaction (1 = not useful,
2 = useful, 3 = very useful)

2.41 (0.59) 2.4 (0.58) 2.43 (0.6)

EXPHL Expenditure on human
labor (INR/ha) 12,185 (4347) 12,482 ** (4579) 11,950 (4142)
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Table 1. Cont.

Variables Definition Full Sample Adopters Nonadopters

EXPBL Expenditure on bullock
labor (INR/ha) 3758 (2722) 4050 *** (2927) 3528 (2527)

EXPSEEDS Expenditure on seeds
(INR/ha) 1130 (993) 1083 * (1030) 1181 (962)

EXPMACHINE Expenditure on farm
machinery (INR/ha) 3171 (2150) 3179 (2097) 3165 (2193)

EXPFERTI Expenditure on fertilizers
(INR/ha) 3041 (2788) 3253 ** (2825) 2873 (2748)

NETRETURN Net return (000′INR/ha) 27.5 (23.4) 32.4 ***(24.6) 23.6 (21.6)

TUMKUR Tumkur 211 80 131

BIDAR Bidar 326 151 175

GADAG Gadag 316 152 164

Note: ***, ** and * represent significance levels at 1%, 5% and 10%, respectively. For continuous and binary variables,
figures in parentheses are standard deviation and percentage to total, respectively. For the continuous and binary
variables, the difference between the adopters and nonadopters was tested using the t-test and chi-square test,
respectively. BPI# is the benefit perception index, which indicates perceived benefits of soil and water conservation
measures of farmers in terms of effects of soil and water conservation on improving the soil fertility, moisture,
groundwater and reducing soil loss and runoff.

For variables, viz., education, family size, livestock, and size of landholding, statistically, there was
no difference between the adopters and nonadopters. However, adopters were significantly different
from nonadopters in terms of access to credit, off-farm income, and farm assets. More specifically,
around 57% of the adopter farmers had a source of off-farm income, whereas this was only 38% for the
nonadopters. Similarly, about 74% and 62% of adopter and nonadopter plots, respectively, had availed
credit facilities in the study areas. Furthermore, in case of the plot-level features, nearly 69% and 63% of
plots were being cultivated by farmers themselves, respectively, for adopters and nonadopters. Overall,
about one-third of farmers perceived a higher level of soil erosion at their plots. After segregating,
around 39% and 23% of the adopter and nonadopter farmers, respectively, stated that their plots were
suffering the problems of relatively higher levels of soil erosion. The adopters opined that soil and
water conservation were relatively more beneficial in terms of reducing soil erosion and runoff and
improving soil fertility. This is evident from the relatively better benefit perception index (BPI) scores
(3.58) of adopters in comparison to nonadopters (3.27). Finally, in terms of input usages, adopters,
in comparison to nonadopters, were incurring more expenditure on human labor, bullock labor and
fertilizers, whereas expenses were lesser on seeds. A two-sample t-test (t = 6.55, p-value < 0.001)
showed that net revenue from adopters (INR 32.46 thousand per ha) was statistically higher than
that of nonadopters (INR 23.55 thousand per ha). Further, a two-sample Kolmogorov–Smirnov test
showed that cumulative distribution functions (CDF) of adopters and nonadopters were different
from each other, i.e., the CDF of adopters lay below that of nonadopters. From the summary of the
explanatory variables, it can be stated that the adopters were systematically different from nonadopter
farmers. Therefore, the influence of these explanatory variables on outcomes needs to be controlled
while assessing the impact.

3.2. Determinant of the Adoption of Soil Bunds

The probit model was statistically significant at the significance of level of 1%, as indicated by
the p-value of the likelihood ratio chi-square (Table 2). The age of the decision maker influenced
the adoption of soil bunds negatively, and it was statistically significant at 5% level of significance.
This implies that younger farmers are more willing to adopt soil bunds. This result is in line with that
of other studies [24,53]. Higher probability of adoption of younger farmers can be attributed to the fact
that, generally, benefits of soil and water conservation cannot be realized within a short time period;
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therefore, older farmers do not have much incentive for investing in conservation efforts [31]. In the
study area, we noticed that younger farmers were more educated, had more access to the required
information and technologies and also had a better understanding of negative consequences of soil
erosion and land degradation, resulting in a higher probability of adoption. Furthermore, we also
observed that younger farmers wanted to pursue market-oriented farming and were also aware
about the importance of sustaining natural resources. Contrary to our expectation, education had a
negative albeit statistically insignificant influence, and similar findings were also reported by many
researchers [54]. For this, it was argued that better education might offer opportunities for alternative
livelihood options, making for less interest in farming and thereby reducing the chances of investment
in soil and water conservation. As per prior expectations, family size and farm size had a positive
influence on the adoption, but it was statistically insignificant. As anticipated, CREDIT had a positive
effect on adoption of SWC practices. In the study areas, most of the farmers were resource-poor,
having a limited capacity for investing in conservation efforts. Therefore, having a source of off-farm
income helps with overcoming the liquidity constraints. The result is in agreement with previous
studies showing a positive effect of access to credit on the decision to take up soil and water conservation
measures [33].

Table 2. Determinants of soil bunds in the study area.

Variables Estimate Std. Error Marginal Effects Std. Error

Intercept −3.817 *** 0.438 – –

AGE −0.008 ** 0.003 −0.003 ** 0.001

EDU −0.013 0.010 −0.005 0.004

FAMILY 0.006 0.020 0.002 0.008

LANDHOLDING 0.002 0.023 0.001 0.009

FAI 1.199 *** 0.309 0.464 *** 0.120

LIVESTOCK −0.014 0.021 −0.005 0.008

CREDIT 0.295 *** 0.104 0.112 *** 0.039

OFFFARM 1.564 *** 0.104 0.527 *** 0.027

TENURE 0.014 0.098 0.005 0.038

SLOPE 0.398 ** 0.095 0.152 ** 0.036

EROSIONHIGH 0.312 ** 0.112 0.122 ** 0.044

EROSIONHIGHMED −0.405 *** 0.112 −0.152 *** 0.040

FERTIHIGH −0.087 0.130 −0.034 0.050

FERTIMEDIUM −0.376 ** 0.123 −0.144 ** 0.047

BPI 0.377 *** 0.063 0.146 *** 0.024

TALK 0.468 *** 0.061 0.181 *** 0.024

USEFUL −0.024 0.077 −0.009 0.030

TRAIN 0.518 * 0.033 0.199 0.035

EXTENSION 0.168 ** 0.032 0.065 ** 0.013

TUMKUR −0.234 * 0.139 −0.089 * 0.052

BIDAR −0.041 0.120 −0.016 0.047

GADAG 0.124 0.125 0.048 0.048

Note: ***, ** and * represent significance levels at 1%, 5% and 10%, respectively, likelihood ratio test: −632.07 ***,
(p < 0.001).
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Now, turning to plot level features, TENURE, as expected, had a positive influence on the adoption
of SWC practices, although it was insignificant. This is due to the fact that ownership confirms the future
use of the same land and, therefore, provides incentives for investment in conservation efforts [25]
for harnessing its long-term benefits. Many studies reported a positive effect of tenure security on the
adoption of soil conservation practices [24,42,55]. As anticipated, both the slope of the plot as well
as the level of soil erosion were associated with a higher probability of adoption of SWC practices.
These results are in conformity with earlier studies, in which it was reported that the likelihood of
adoption was higher if a cultivator was able to recognize the negative effects of soil degradation on
crop yields [23,24,37,38,54]. Furthermore, as a matter of fact, expected benefits of technologies are
critical for increasing the adoption rates [24,31,38]. Similarly, we also found that farmers having higher
perceived benefits of SWC practices were taking up and using conservation measures. In line with our
prior anticipations, we noticed that social networks (frequency of interaction) had a favorable bearing
on the decision to use SWC practices. This facilitates the exchange of views and experiences and also
facilitates sharing of resources, which is essential for community-based soil and water conservation
efforts/programs. A positive role of social capital on the adoption of agricultural technologies was
reported [42–44]. Training also had a positive effect on adoption, and this finding is in line with
earlier studies [56,57]. Lastly, EXTENSION had a positive effect, as anticipated, on decision to adopt
SWC practices. Similar findings were also reported by many researchers [24,28,29,31]. These studies
suggested that access to an effective extension service helps not only realize the detrimental effects of
land degradation but also sensitize about the availability of suitable technologies.

3.3. Impact of Soil Bunds on Net Revenue, Variance and Down-Side Risk

The AIC criterion was 2684.9, 2688.8, 9583.8 and 2693.6 for linear-log, Cobb–Douglas, quadratic
and translog-log specifications, respectively. The corresponding BIC criterion was 2837.7, 2843.3,
9767.2 and 2877.0, respectively. Therefore, the linear-log specification was the chosen model for the
mean function. To manage the heteroscedasticity in the model, the robust standard error (Huber–White
estimator) was used. In the chosen model, multiclonality was not a serious issue, as is evident from
VIF (variance inflation factor) values for all the explanatory variables, which were ranging between
1.02 and 3.5. Firstly, the ordinary least square (OLS) was used to determine the effect of soil bund
adoption on mean return, variance and skewness. OLS is the simplest approach to investigate the
effect of adoption that includes a dummy variable equal to 1 if the farm household adopted it and 0
otherwise. Results from OLS suggest that soil bund adoption had a positive, statistically significant
effect on returns and skewness and negative effects on the variance (Table 3). These results indicate that
soil bund adoption increased the crop revenue by INR 9.26 thousand per ha, and it was significant at a
significance level of 1%. Furthermore, adoption of soil bunds reduced the variability in crop revenue
indicated by the negative coefficient (−49.37) of BUND in the variance equation (p-value < 0.05),
which also amounts to saying that it reduced variability in crop yields, as prices are assumed to be
given. This has an important implication in rainfed areas, which suffer from the higher variability of
the crop yields. Moreover, the coefficient of BUND in the skewness model was positive, showing that
adoption of soil bunds reduced the downside risk, i.e., crop failure. As the region frequently faces
moderate to severe droughts, consequently, crop failure is also common. Therefore, it can be stated
that adoption of soil bunds not only enhanced returns but most importantly served as insurance for
farmers by reducing the variability and minimizing the risk of crop failure. However, OLS results
are not reliable, being biased and inconsistent estimates. This is due to the fact that OLS assumes
that soil bund adoption is exogenously determined, although it is a potentially endogenous variable.
To surmount the challenges of sample selection bias and missing data, we used IPWRA, PSM and IPW.



Sustainability 2020, 12, 6965 11 of 16

Table 3. Ordinary least square (OLS) estimation of mean, variance, and skewness equations.

Variable
Mean Equation Variance Equation Skewness Equation

Estimate Robust Std.
Error Estimate Robust Std.

Error Estimate Robust Std.
Error

Intercept 100.314 *** 13.260 406.016 411.116 0.282 2.909

BUND 9.26 *** 0.730 −49.37 ** 20.53 0.255 ** 0.162

AGE 0.001 0.028 0.799 0.858 0.000 0.006

EDU −0.023 0.080 −1.250 2.478 −0.003 0.018

FAMLIY −0.090 0.167 −6.154 5.169 −0.062 * 0.037

LANDHOLDING 0.795 *** 0.187 7.571 5.811 0.023 0.041

CREDIT 5.749 *** 0.844 43.173 * 26.173 0.226 0.185

FAI 1.621 2.340 −83.433 72.564 −0.634 0.513

LIVESTOCK −0.350 ** 0.168 −7.288 5.194 −0.068 * 0.037

TENURE 2.309 *** 0.782 39.827 24.261 0.230 0.172

Slope 1.714 ** 0.790 33.370 24.492 0.023 0.173

EROISONHIGH 1.101 0.902 42.337 * 27.956 0.312 * 0.198

EROISONMED −5.241 *** 0.906 −19.793 28.100 −0.061 0.199

FERTIHIGH 5.242 *** 1.068 44.471 33.121 −0.076 0.234

FERTIMEDIUM −2.225 ** 1.003 −30.797 31.101 −0.353 * 0.220

TRANI 0.350 0.745 17.427 23.085 0.079 0.163

BPI 1.527 *** 0.495 3.484 15.353 −0.061 0.109

EXTENSION 1.227 *** 0.256 −0.997 7.951 −0.026 0.056

Log EXPHL −1.649 1.126 −3.256 34.907 −0.052 0.247

Log EXPBL 2.304 *** 0.560 55.225 *** 17.365 0.390 *** 0.123

Log
EXPMACHINE −1.394 ** 0.560 −21.593 17.365 −0.037 0.123

Log EXPSEEDS −5.647 *** 0.711 −4.661 22.043 −0.009 0.156

Log EXPFERTI −1.667 ** 0.514 −21.596 15.949 −0.111 0.113

TUMKUR −1.633 1.153 −18.516 35.736 −0.287 0.253

BIDAR 1.550 1.490 20.290 46.193 0.199 0.327

GADAG 3.731 ** 1.411 41.014 43.747 0.258 0.310

F-statistic 103.6 *** 8.201 *** 2.334 ***

Note: ***, ** and * represent significance levels at 1%, 5% and 10%, respectively. Skewness was rescaled by dividing
by 100,000.

Before discussing the results, first, there is a need to examine the quality of balancing of covariates.
It can be seen from Figures 1 and 2 that after matching, there was a good overlap and common support
in propensity scores.

Similarly, after weighting, the standardized mean differences (for continuous variables)
and differences in proportion (for binary variables) were less than 0.05 for all the covariates,
indicating that all the covariates achieved a good balance.

ATT results in IPWRA indicate that soil bunds helped in increasing the revenue by INR
8.05 thousand per ha. From the results of different approaches, it can be stated that an increase
in net revenue could be between INR 7.31 and 9.25 thousand per ha (Table 4).
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The significant effect of soil bund technology on productivity is in accordance with other
studies [58–60], which showed that soil and water conservation had a positive impact on productivity.
Furthermore, the coefficient of variance was negative and statistically significant, which implies that
adoption of the soil bunds reduces the variability of the crop revenue. Soil bunds reduced the variance
between 30% and 50% points. This finding confirms earlier findings by [15] that soil bunds improved
productivity and reduced the risk particularly in the low-rainfall areas. Moreover, adoption of soil
bunds was positively and strongly related to the skewness, indicating that adoption of soil bunds
hedged against the risk of crop failure. To check the robustness of the results, other approaches, viz.,
matching and IPW, also confirmed the findings of the IPWRA. Soil bund adoption was associated with
significant positive skewness, increased crop revenue and reduced production risk, contributing to
an improvement in sustaining crop production in the semiarid drought-prone areas, which are also
facing the challenges of increasing climate variability. Therefore, this has important policy implications
for encouraging the adoption of soil bunds in particular and soil and water conservation practices in
general as an important risk-mitigation option.
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Table 4. Impact of soil bunds on mean crop revenue, variance and skewness.

Methods Treatment
Effects

Mean Variance Skewness

Estimate Robust SE Estimate Robust SE Estimate Robust SE

Matching
(CEM#)

ATE 8.88 *** 1.52 −29.16 27.72 0.27 * 0.15

ATT 8.40 *** 1.69 −32.05 28.55 0.27 * 0.15

Matching
(OPT#)

ATE 7.12 *** 1.44 −45.33 * 24.65 0.25 * 0.14

ATT 7.31 *** 1.31 −47.65 ** 22.88 0.27 * 0.15

Matching
(NNM#)

ATE 8.73 *** 1.29 −45.56 * 24.82 0.34 ** 0.15

ATT 9.25 *** 1.41 −51.07 ** 23.02 0.31 ** 0.14

IPW
ATE 8.14 *** 1.40 −47.15 ** 22.15 0.29 ** 0.14

ATT 7.93 *** 1.34 −43.29 * 24.17 0.32 ** 0.15

IPWRA
ATE 7.97 *** 1.22 −46.82 ** 21.75 0.30 ** 0.14

ATT 8.05 *** 1.26 −44.32 * 23.41 0.32 ** 0.15

Note: ***, ** and * represent significance levels at 1%, 5% and 10%, respectively. CEM#, OPT# and NNM# stand for
coarsened exact matching, optimal and nearest-neighbor matching, respectively. IPW and IPWRA stand for inverse
propensity weighting and inverse-propensity-weighting regression adjustment, respectively.

4. Conclusions

This paper illustrates an impact of soil and water conservation practices, i.e., soil bunds, on net
revenue, its variability and downside risk, i.e., crop failure. We used primary data from 1204 plots of the
semiarid tropics of India, which is facing environmental challenges of frequent droughts, soil erosion,
land degradation and climate change and variability. We used the probit model for identifying the key
determinants of adoption of soil bunds. The results show that for achieving a widespread adoption
of soil bunds in the semiarid tropics, the younger famers are to be targeted for training programs
on soil and water conservation. Furthermore, there is a need to expand the extension services and
training facilities, particularly focusing on the benefits of the conservation efforts to encourage farmers
to take up soil and water conservation measures. As a majority of the farmers in the study area are
resource-poor, for improving their financial capacity, there is a need for expanding credit facilities.
Moreover, soil and water conservation programs should emphasize strengthening social networks
for successful conservation outcomes. We also used the moment-based approach for estimating the
crop revenue, its variability and downside risk exposure. Furthermore, we used a doubly robust
method (IPWRA) for assessing the impact of soil bunds on crop revenue, its variability and downside
risk. We found that soil bunds not only improved the crop revenue but also reduced its variability,
leading to more stability in yields. This has an important implication for the semiarid tropics (SAT)
witnessing erratic rainfall and frequent droughts. Most interestingly, we have also observed that soil
bunds also reduced the chances of downside risk, i.e., crop failure. Therefore, in view of increasing
climate change and variability in the semiarid tropics, it can be suggested that soil bunds could be an
important adaptation strategy for sustaining crop production. To sum up, this paper supports the
investment in soil and water conservation technologies for sustaining the livelihood of resource-poor
farmers dwelling in the ecologically fragile regions such as the semiarid tropics.

Author Contributions: Conceptualization, S.K. and D.R.S.; formal analysis, S.K. and G.K.J.; investigation, D.R.S.;
methodology, S.K., D.R.S., A.S., N.P.S. and G.K.J.; project administration, S.K.; resources, A.S.; software, S.K. and
G.K.J.; supervision, D.R.S., A.K. and N.P.S.; visualization, N.P.S.; writing—original draft, S.K.; writing—review and
editing, S.K., A.S. and N.P.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NAHEP, Indian Council of Agricultural Research (ICAR), New Delhi,
grant No. NAHEP/CAAST/2018-19/07.



Sustainability 2020, 12, 6965 14 of 16

Acknowledgments: This paper is drawn from the first author’s PhD Research work entitled “Economics of
Soil and Water Conservation: A Case Study of Drought Prone Areas of Karnataka” conducted at Division of
Agricultural Economics, ICAR—Indian Agriculture Research Institute, New Delhi, India.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, S.A.; Kumar, S.; Hussain, M.Z.; Kalra, N. Climate Change, Climate Variability and Indian Agriculture:
Impacts Vulnerability and Adaptation Strategies. In Climate Change and Crops; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 19–38.

2. Venkateswarlu, B.; Singh, A.K. Climate Change Adaptation and Mitigation Strategies in Rainfed Agriculture.
In Climate Change Modelling, Planning and Policy for Agriculture; Singh, A.K., Dagar, J.C., Arunachalam, A.R.G.,
Shelat, K.N., Eds.; Springer: New Delhi, India, 2015; pp. 1–11. [CrossRef]

3. Dar, W.D.; Bantilan, M.C.S.; Anupama, G.V.; Deepthi, H.; Padmaja, R. Dryland Agriculture in Asia: Ideas,
Paradigms and Policies. In Reasserting the Rural Development Agenda: Lessons Learned and Emerging Challenges
in Asia; Institute of Southeast Asian Studies: Singapore, 2007; pp. 191–226.

4. Singh, N.P.; Bantilan, M.C.S.; Byjesh, K.; Murty, M.V.R. Adapting to Climate Change in Agriculture:
Building Resiliency with an Effective Policy Frame in SAT India. Available online: http://oar.icrisat.org/5936/

(accessed on 14 June 2020).
5. Chauhan, B.S.; Mahajan, G.; Randhawa, R.K.; Singh, H.; Kang, M.S. Chapter Two—Global Warming and

Its Possible Impact on Agriculture in India. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press:
Cambridge, MA, USA, 2014; Volume 123, pp. 65–121. [CrossRef]

6. Srinivasa Rao, C.; Lal, R.; Prasad, J.V.N.S.; Gopinath, K.A.; Singh, R.; Jakkula, V.S.; Sahrawat, K.L.;
Venkateswarlu, B.; Sikka, A.K.; Virmani, S.M. Chapter Four—Potential and Challenges of Rainfed Farming in
India. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 133,
pp. 113–181. [CrossRef]

7. Sharma, K.D. Rain-Fed Agriculture Could Meet the Challenges of Food Security in India. Curr. Sci. 2011,
100, 1615–1616.

8. Aggarwal, P.K.; Baethegan, W.E.; Cooper, P.; Gommes, R.; Lee, B.; Meinke, H.; Rathore, L.S.; Sivakumar, M.V.K.
Managing Climatic Risks to Combat Land Degradation and Enhance Food Security: Key Information Needs.
Procedia Environ. Sci. 2010, 1, 305–312. [CrossRef]

9. Kassie, M.; Yesuf, M.; Köhlin, G. The Role of Production Risk in Sustainable Land-Management Technology
Adoption in the Ethiopian Highlands. Rapp. Nr Work. Pap. Econ. 2009, 1–29.

10. Lamb, R.L. Fertilizer Use, Risk, and off-Farm Labor Markets in the Semi-Arid Tropics of India. Am. J.
Agric. Econ. 2003, 85, 359–371. [CrossRef]

11. Antle, J.M. Testing the Stochastic Structure of Production: A Flexible Moment-Based Approach. J. Bus.
Econ. Stat. 1983, 1, 192–201.

12. Binswanger, H.P. Attitudes toward Risk: Theoretical Implications of an Experiment in Rural India. Econ. J.
1981, 91, 867–890. [CrossRef]

13. Kim, K.; Chavas, J.-P. Technological Change and Risk Management: An Application to the Economics of
Corn Production. Agric. Econ. 2003, 29, 125–142. [CrossRef]

14. Menezes, C.; Geiss, C.; Tressler, J. Increasing Downside Risk. Am. Econ. Rev. 1980, 70, 921–932.
15. Kato, E.; Ringler, C.; Yesuf, M.; Bryan, E. Soil and Water Conservation Technologies: A Buffer against

Production Risk in the Face of Climate Change? Insights from the Nile Basin in Ethiopia. Agric. Econ. 2011,
42, 593–604. [CrossRef]

16. Pathak, P.; Laryea, K.B.; Singh, S. A Modified Contour Bunding System for Alfisols of the Semi-Arid Tropics.
Agric. Water Manag. 1989, 16, 187–199. [CrossRef]

17. Vittal, K.P.R.; Sinha, P.K.; Chary, G.R.; Sankar, G.M.; Srijaya, T.; Ramakrishna, Y.S.; Samra, J.S.; Singh, G.
Districtwise Promising Technologies for Rainfed Rice Based Production System in India. All India Co-Ordinated
Res. Proj. Dryland Agric. Cent. Res. Inst. Dryland Agric. Indian Counc. Agric. Res. Hyderabad 2004, 500, 059.

18. Mishra, P.K.; Singh, M.; Kumar, G. Water Management and Conservation Innovations for Doubling Farmers’
Income. Soil Water Manag. Innov. Doubling Farmers Income 2018, 32, 23–47.

http://dx.doi.org/10.1007/978-81-322-2157-9_1
http://oar.icrisat.org/5936/
http://dx.doi.org/10.1016/B978-0-12-420225-2.00002-9
http://dx.doi.org/10.1016/bs.agron.2015.05.004
http://dx.doi.org/10.1016/j.proenv.2010.09.019
http://dx.doi.org/10.1111/1467-8276.00125
http://dx.doi.org/10.2307/2232497
http://dx.doi.org/10.1111/j.1574-0862.2003.tb00152.x
http://dx.doi.org/10.1111/j.1574-0862.2011.00539.x
http://dx.doi.org/10.1016/0378-3774(89)90002-4


Sustainability 2020, 12, 6965 15 of 16

19. Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.;
Hati, K.M. Soil Degradation in India: Challenges and Potential Solutions. Sustainability 2015, 7, 3528–3570.
[CrossRef]

20. Kerr, J.M.; Sanghi, N.K. Indigenous Soil and Water Conservation in India’s Semi-Arid Tropics; IIED International
Institute for Environment and Development, Sustainable Agriculture Programme: London, UK, 1992.

21. Gebrernichael, D.; Nyssen, J.; Poesen, J.; Deckers, J.; Haile, M.; Govers, G.; Moeyersons, J. Effectiveness
of Stone Bunds in Controlling Soil Erosion on Cropland in the Tigray Highlands, Northern Ethiopia.
Soil Use Manag. 2005, 21, 287–297. [CrossRef]

22. Srinivasareddy, G.S.; Shivakumarnaiklal, H.S.; Keerthy, N.G.; Garag, P.; Jothi, E.P.; Challa, O. Drought
Vulnerability Assessment in Karnataka: Through Composite Climatic Index. MAUSAM 2019, 70, 159–170.

23. Ervin, C.A.; Ervin, D.E. Factors Affecting the Use of Soil Conservation Practices: Hypotheses, Evidence, and
Policy Implications. Land Econ. 1982, 58, 277–292. [CrossRef]

24. Shiferaw, B.; Holden, S.T. Policy Instruments for Sustainable Land Management: The Case of Highland
Smallholders in Ethiopia. Agric. Econ. 2000, 22, 217–232. [CrossRef]

25. Gebremedhin, B.; Swinton, S.M. Investment in Soil Conservation in Northern Ethiopia: The Role of Land
Tenure Security and Public Programs. Agric. Econ. 2003, 29, 69–84. [CrossRef]

26. Amsalu, A.; De Graaff, J. Determinants of Adoption and Continued Use of Stone Terraces for Soil and Water
Conservation in an Ethiopian Highland Watershed. Ecol. Econ. 2007, 61, 294–302. [CrossRef]

27. Adimassu, Z.; Kessler, A.; Hengsdijk, H. Exploring Determinants of Farmers’ Investments in Land
Management in the Central Rift Valley of Ethiopia. Appl. Geogr. 2012, 35, 191–198. [CrossRef]

28. Bekele, W.; Drake, L. Soil and Water Conservation Decision Behavior of Subsistence Farmers in the Eastern
Highlands of Ethiopia: A Case Study of the Hunde-Lafto Area. Ecol. Econ. 2003, 46, 437–451. [CrossRef]

29. Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Awareness and Adoption of Land, Soil and
Water Conservation Practices in the Chinyanja Triangle, Southern Africa. Int. Soil Water Conserv. Res. 2017, 5,
122–129. [CrossRef]

30. Pender, J.L.; Kerr, J.M. Determinants of Farmers’ Indigenous Soil and Water Conservation Investments in
Semi-Arid India. Agric. Econ. 1998, 19, 113–125.

31. Mbaga-Semgalawe, Z.; Folmer, H. Household Adoption Behaviour of Improved Soil Conservation: The Case
of the North Pare and West Usambara Mountains of Tanzania. Land Use Policy 2000, 17, 321–336. [CrossRef]

32. Pender, J.; Gebremedhin, B. Determinants of Agricultural and Land Management Practices and Impacts on
Crop Production and Household Income in the Highlands of Tigray, Ethiopia. J. Afr. Econ. 2008, 17, 395–450.
[CrossRef]

33. Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.-C. Taking Stock of Agroforestry Adoption Studies. Agrofor. Syst.
2003, 57, 173–186. [CrossRef]

34. Tenge, A.J.; De Graaff, J.; Hella, J.P. Social and Economic Factors Affecting the Adoption of Soil and Water
Conservation in West Usambara Highlands, Tanzania. Land Degrad. Dev. 2004, 15, 99–114. [CrossRef]

35. Atnafe, A.D.; Ahmed, H.M.; Adane, D.M. Determinants of Adopting Techniques of Soil and Water
Conservation in Goromti Watershed, Western Ethiopia. J. Soil Sci. Environ. Manag. 2015, 6, 168–177.

36. Belachew, A.; Mekuria, W.; Nachimuthu, K. Factors Influencing Adoption of Soil and Water Conservation
Practices in the Northwest Ethiopian Highlands. Int. Soil Water Conserv. Res. 2020, 8, 80–89. [CrossRef]

37. Willy, D.K.; Holm-Müller, K. Social Influence and Collective Action Effects on Farm Level Soil Conservation
Effort in Rural Kenya. Ecol. Econ. 2013, 90, 94–103. [CrossRef]

38. Baidu-Forson, J. Factors Influencing Adoption of Land-Enhancing Technology in the Sahel: Lessons from a
Case Study in Niger. Agric. Econ. 1999, 20, 231–239.

39. Teklewold, H.; Köhlin, G. Risk Preferences as Determinants of Soil Conservation Decisions in Ethiopia. J. Soil
Water Conserv. 2011, 66, 87–96. [CrossRef]

40. Mugonola, B.; Deckers, J.; Poesen, J.; Isabirye, M.; Mathijs, E. Adoption of Soil and Water Conservation
Technologies in the Rwizi Catchment of South Western Uganda. Int. J. Agric. Sustain. 2013, 11, 264–281.
[CrossRef]

41. Dessie, Y.; Wurzinger, M.; Hauser, M. The Role of Social Learning for Soil Conservation: The Case of Amba
Zuria Land Management, Ethiopia. Int. J. Sustain. Dev. World Ecol. 2012, 19, 258–267. [CrossRef]

42. Nyangena, W. Social Determinants of Soil and Water Conservation in Rural Kenya. Environ. Dev. Sustain.
2008, 10, 745–767. [CrossRef]

http://dx.doi.org/10.3390/su7043528
http://dx.doi.org/10.1111/j.1475-2743.2005.tb00401.x
http://dx.doi.org/10.2307/3145937
http://dx.doi.org/10.1111/j.1574-0862.2000.tb00071.x
http://dx.doi.org/10.1111/j.1574-0862.2003.tb00148.x
http://dx.doi.org/10.1016/j.ecolecon.2006.01.014
http://dx.doi.org/10.1016/j.apgeog.2012.07.004
http://dx.doi.org/10.1016/S0921-8009(03)00166-6
http://dx.doi.org/10.1016/j.iswcr.2017.04.003
http://dx.doi.org/10.1016/S0264-8377(00)00033-8
http://dx.doi.org/10.1093/jae/ejm028
http://dx.doi.org/10.1023/A:1024809108210
http://dx.doi.org/10.1002/ldr.606
http://dx.doi.org/10.1016/j.iswcr.2020.01.005
http://dx.doi.org/10.1016/j.ecolecon.2013.03.008
http://dx.doi.org/10.2489/jswc.66.2.87
http://dx.doi.org/10.1080/14735903.2012.744906
http://dx.doi.org/10.1080/13504509.2011.636082
http://dx.doi.org/10.1007/s10668-007-9083-6


Sustainability 2020, 12, 6965 16 of 16

43. Krishna, A. Moving from the Stock of Social Capital to the Flow of Benefits: The Role of Agency. World Dev.
2001, 29, 925–943. [CrossRef]

44. Grootaert, C.; Narayan, D.; Jones, V.N.; Woolcock, M. Measuring Social Capital: An Integrated Questionnaire;
The World Bank: Washington, DC, USA, 2004.

45. Di Falco, S.; Chavas, J.-P. On Crop Biodiversity, Risk Exposure, and Food Security in the Highlands of
Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [CrossRef]

46. Abro, Z.A. Technology Adoption, Productivity, Efficiency, and Risk Exposure in the Ethiopian Small Farm
Sector. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2018.

47. Judge, G.G.; Hill, R.C.; Griffiths, W.E.; Lütkepohl, H.; Lee, T.-C. Introduction to the Theory and Practice of
Econometrics; J. Wiley: New York, NY, USA, 1988.

48. Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010.
49. Zhou, T. PSweight: Package for Propensity Score Weighting. 2020. Available online: https://cran.r-project.

org/web/packages/PSweight/PSweight.pdf (accessed on 15 May 2020).
50. Greifer, N. WeightIt: Weighting for Covariate Balance in Observational Studies (R Package Version 0.5. 0).

2018. Available online: https://mran.microsoft.com/snapshot/2018-02-01/web/packages/WeightIt/index.html
(accessed on 21 July 2020).

51. Sekhon, J.S. Multivariate and Propensity Score Matching Software with Automated Balance Optimization:
The Matching Package for R. J. Stat. Softw. Forthcom. 2008, 42, 7.

52. Ho, D.; Imai, K.; King, G.; Stuart, E.; Whitworth, A. Package ‘MatchIt’. Version 3.0.2. 2018. Available online:
https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf (accessed on 15 May 2020).

53. Ersado, L.; Amacher, G.; Alwang, J. Productivity and Land Enhancing Technologies in Northern Ethiopia:
Health, Public Investments, and Sequential Adoption. Am. J. Agric. Econ. 2004, 86, 321–331. [CrossRef]

54. Hopkins, J.; Southgate, D.; Gonzalez-Vega, C. Rural Poverty and Land Degradation in El Salvador. In Abstract
in American Journal Agricultural Economics, Proceedings of the Agricultural and Applied Economics Associations
Annual Meeting, Nashville, Tennessee, 8–11 August 1999; University of Wisconsin Madison: Madison, WI, USA,
1999; Volume 81.

55. Teshome, A.; Rolker, D.; de Graaff, J. Financial Viability of Soil and Water Conservation Technologies in
Northwestern Ethiopian Highlands. Appl. Geogr. 2013, 37, 139–149. [CrossRef]

56. Anley, Y.; Bogale, A.; Haile-Gabriel, A. Adoption Decision and Use Intensity of Soil and Water Conservation
Measures by Smallholder Subsistence Farmers in Dedo District, Western Ethiopia. Land Degrad. Dev. 2007,
18, 289–302. [CrossRef]

57. Chesterman, N.S.; Entwistle, J.; Chambers, M.C.; Liu, H.-C.; Agrawal, A.; Brown, D.G. The Effects of Trainings
in Soil and Water Conservation on Farming Practices, Livelihoods, and Land-Use Intensity in the Ethiopian
Highlands. Land Use Policy 2019, 87, 104051. [CrossRef]

58. Kassie, M.; Pender, J.; Yesuf, M.; Kohlin, G.; Bluffstone, R.; Mulugeta, E. Estimating Returns to Soil
Conservation Adoption in the Northern Ethiopian Highlands. Agric. Econ. 2008, 38, 213–232. [CrossRef]

59. Abdulai, A.; Huffman, W. The Adoption and Impact of Soil and Water Conservation Technology:
An Endogenous Switching Regression Application. Land Econ. 2014, 90, 26–43. [CrossRef]

60. Nkegbe, P.K. Soil and Water Conservation Practices and Smallholder Farmer Multi-Activity Technical
Efficiency in Northern Ghana. Ghana J. Dev. Stud. 2018, 15, 55–91. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0305-750X(01)00020-1
http://dx.doi.org/10.1111/j.1467-8276.2009.01265.x
https://cran.r-project.org/web/packages/PSweight/PSweight.pdf
https://cran.r-project.org/web/packages/PSweight/PSweight.pdf
https://mran.microsoft.com/snapshot/2018-02-01/web/packages/WeightIt/index.html
https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf
http://dx.doi.org/10.1111/j.0092-5853.2004.00581.x
http://dx.doi.org/10.1016/j.apgeog.2012.11.007
http://dx.doi.org/10.1002/ldr.775
http://dx.doi.org/10.1016/j.landusepol.2019.104051
http://dx.doi.org/10.1111/j.1574-0862.2008.00295.x
http://dx.doi.org/10.3368/le.90.1.26
http://dx.doi.org/10.4314/gjds.v15i1.4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data and Sampling Procedure 
	Analytical Tools 
	Choice of Explanatory Variables Used in Probit Model 
	Econometric Model of Mean Yield, Risk and Downside Risk 
	Impact Estimation Technique 


	Results and Discussion 
	Descriptive Summary of the Variables 
	Determinant of the Adoption of Soil Bunds 
	Impact of Soil Bunds on Net Revenue, Variance and Down-Side Risk 

	Conclusions 
	References

