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Abstract: Intensification of tropical grassland can be a strategy to increase beef production,
but methods for achieving this should maintain or reduce its environmental impact and should not
compromise future food-producing capacity. The objective of this review was to discuss the aspects
of grassland management, animal supplementation, the environment, and the socioeconomics of
grassland intensification. Reducing environmental impact in the form of, for example, greenhouse
gas (GHG) emissions is particularly important in Brazil, which is the second-largest beef producer in
the world. Most Brazilian pastures, however, are degraded, representing a considerable opportunity
for the mitigation and increase of beef-cattle production, and consequently increasing global protein
supply. Moreover, in Brazil, forage production is necessary for seasonal feeding strategies that maintain
animal performance during periods of forage scarcity. There are many options to achieve this objective
that can be adopted alone or in association. These options include improving grassland management,
pasture fertilization, and animal supplementation. Improving grazing management has the potential
to mitigate GHG emissions through the reduction of the intensity of CO2 emissions, as well as the
preservation of natural areas by reducing the need for expanding pastureland. Limitations to farmers
adopting intensification strategies include cultural aspects and the lack of financial resources and
technical assistance.

Keywords: animal supplementation; beef cattle; grazing management; pasture fertilization;
sustainable intensification

1. Introduction

The global importance of grasslands is indicated by their extent; they comprise some 26% of
total land area and 80% of agriculturally productive land. Most grasslands are in tropical developing
countries, where they are particularly important to the livelihoods of some one billion poor people.
Grasslands clearly provide the feed base for grazing livestock and, thus, numerous high-quality foods,
but such livestock also provide products such as fertilizer, transport, traction, fiber, and leather [1].
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Intensification of tropical grasslands is an important strategy of land utilization in developing
countries. In the scientific literature, this means “increased production” and “minimized environmental
impact” through the “best management of inputs, outputs, environmental services, and natural
resources/capital” [2].

The adoption of intensification strategies in livestock production in tropical grassland areas
depends on famers’ knowledge on soil, water resources, plant and animal management, and the beef
market. Accordingly, it has sometimes proven difficult to quantify the overall effectiveness of particular
intensification strategies because they involve several strategies, are implemented in a wide range of
conditions, and are assessed according to a wide range of criteria [3]. In addition, grasslands provide
important services and roles, including serving as water catchments, for biodiversity preservation, for
cultural and recreational needs, and as potential carbon sinks to alleviate greenhouse gas emissions.
Inevitably, such functions may conflict with management for livestock production [1].

Strategies like modifying the duration and frequency of grazing, changing the stage of plant
regrowth, adjusting stocking rate according to forage allowance, fertilizer application, and using
supplements or legumes would improve animal performance [1,4–6].

Forage utilization associated with inedible byproduct supplements can increase the efficiency
of nutrient utilization, reduce the proportion of food to be consumed by humans, increase animal
performance and gains per area, and reduce slaughter age. Competition between feed and food does,
in fact, concern those proteins of plant origin that are consumable by humans but are consumed by
animals [7].

Ruminants are often blamed for methane emissions, and it is often proposed to shift from
ruminant to monogastric production in order to reduce the carbon footprint of our diet [8,9]. However,
this evolution can, to a certain extent, increase feed–food competition. All available data show that,
contrary to what is often said, ruminants are very efficient animals in producing proteins, provided
they are fed with forage and inedible byproducts. Moreover, higher animal production can be obtained
by increasing the concentrate level in the diets of cattle, thus lowering the greenhouse gas emissions in
terms of product unit (e.g., kg meat or milk) [9].

We must consider better management strategies for forage production as well as the conservation
and utilization of more appropriate genetics adapted to the environment to maximize forage use
efficiency, and limit the appearance of livestock inefficiencies, such as drops in fertility or rearing
mortality [7].

An increased use of grassland for ruminant production could also bring positive responses
to societal demand for more natural practices, and could contribute to the provision of various
ecosystem services [9]. In addition, several studies demonstrated that the economic performance
of grassland-based systems is similar and sometimes higher than that observed in more intensive
systems [8]. The intensification using irrigation, reseeding, and feedlots requires investments in
infrastructure and machinery that reduce net profitability compared to that of grassland-based
systems [9]. However, grassland utilization remains dependent on the willingness of farmers who are
often reluctant, as well as on the attitudes of the other actors of marketing chains [10].

In most of Brazil, there are two well-defined climatic seasons: The rainy season (spring and
summer) and the dry season (autumn and winter). During the rainy season, optimal environmental
conditions, such as sunlight, temperature, and precipitation, favor the growth of forage plants, which are
limited during the dry season [11]. Despite the vast area of the country, forage exploitation in Brazil is
based primarily on Brachiaria (Urochloa) in most regions, but also Panicum (Megathyrsus), Cynodon, and
Pennisetum, or temperate grasses, such as Lolium multiflorum, Avena strigose, and Avena sativa in the
southern regions [12].

The intensification of pasture-based beef-production systems aims to intensify, reinforce,
and increase productivity. There are studies in the literature exhibiting that the Brazilian potential
for cattle production is beyond current indices without expanding agricultural areas by adopting
technologies (pasture management, fertilization, supplementation, and animal breeding) and
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intensifying production systems based on Brachiaria grass [4,13–15]. The technologies used in
Brazil have the potential to be adopted in other countries of South America and many countries
of Africa. In many trials in Asia, Africa, and the Americas, the hybrid brachiaria cultivars have
consistently produced significantly more dry-season forage than other tropical grasses and other
brachiaria grasses [16]. The aspects reviewed here can be applied to global areas where Brachiaria
occurs (Figure 1).
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The aim of the present review is to discuss the productive and environmental aspects of beef-cattle
production intensification in Brachiaria grass-based systems and to suggest future studies to better
understand the aspects of intensification.

2. Concepts in Sustainable Intensification

2.1. Role of Forage in Intensification Systems

Intensification of grassland systems may lead to increases in grazing pressure or intensity. Grazing
pressure, independent of stocking method, is a determining factor of the productive potential of
perennial pasture [16]. Grazing intensity is defined by the height of residue or stocking rate (which affect
sward height and forage mass), and leads to changes in morphogenic and structural characteristics [18].

Low grazing pressure increases sward height, leads to greater amounts of senescent material,
increase shoot mass (kg ha−1), decreases nutritive value, and, consequently, lowers animal gains per
unit area. High-intensity grazing reduces stem elongation, which is important for maintaining a
leaf–stem ratio that is adequate in supporting higher stocking rates and forage mass [19]. Therefore,
the challenge is managing the plant–herbivore relationship to achieve sustainable grazing intensity
that optimizes both plant and animal production.

To achieve sustainable intensification, it is necessary to understand morphogenesis and structural
canopy characteristics. Plant morphogenesis can be described by three main characteristics:
Leaf appearance rate, leaf elongation rate, and leaf lifespan. The combination of these morphogenic
variables determines the three main structural characteristics: Leaf size, tiller density, and number
of green leaves per tiller, which determine the leaf area index. Sward height is an easily measured
structural variable that is one of the most useful measures of forage production [20]. The Forage
Laboratory of São Paulo State University, Jaboticabal campus, studied different canopy heights (15, 25,
and 35 cm) in Marandu grass (Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster cv. Marandu)
management under continuous and variable stocking rates over the course of 10 years. In these studies,
an individual animal performance three times greater than the Brazilian national average during
the rearing phase (0.9 kg animal−1 day−1) and greater stocking rates (5–6 AU ha−1) were observed.
The data of animal performance, herbage production, structure, and chemical composition from these
experiments allowed researchers to determine which treatment resulted in a sustainable livestock
intensification, allowing for animal production without compromising forage production or pasture
persistence and avoiding increases in greenhouse gas emissions. This system comprises the central
region of Brazil.
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The sward height of 25 cm was the best for this grass management when subjected to continuous
grazing because desirable tillering characteristics, forage mass, and animal performance were achieved.
When compared to the sward height of 25 cm, there was less animal gain per area for the 35 cm height,
and at 15 cm, forage mass was limited and decreased animal production [21].

After confirming that a sward height at 25 cm was optimal for Marandu (under continuous
stocking), another challenge for sustainable intensification was increasing the usage of input
technologies, such as nitrogen (n) fertilization. Nitrogen is considered an essential nutrient for
productive and persistent grass maintenance [22]. Nitrogen fertilization influences foliar elongation
rate. Leaf expansion rate is the main factor responsible for greater average leaf length, which contributes
to the reconstitution of the leaf area after defoliation [23,24].

Relatively lower n rates (90 kg N ha−1) applied to Marandu can intensify the Brachiaria system,
increasing stocking rate and animal productivity fourfold [25]. Warm-season C4 grass is more efficient in
nitrogen utilization at the leaf level compared to legumes; however, legumes usually have a competitive
advantage in low-N environments due to biological nitrogen fixation [25,26]. However, the high
cost of nitrogen fertilizers and increased awareness of the need for alternative sustainable nutrient
sources have increased the strategic importance of biological nutrient fixation [27,28]. The productivity
of pastoral ecosystems is highly dependent on the availability of soil nitrogen and/or the biological
fixation of the atmosphere.

Two studies of Marandu grass intercropped with forage peanut (Arachis pintoi BRS Mandobi)
under four management strategies with a 42-day fixed defoliation period and three light interceptions of
90%, 95%, and 100% were conducted. Both studies indicated that the management of an intercropping
system must be in the range of 90% to 95% of light interception to be able to use the canopy height,
which varied between 24 and 30 cm, and residual height of 15 cm was used as a practical measure [29,30].
In continuous stocking, a higher percentage of nitrogen was observed, which was derived from the
atmosphere, and a greater amount of nitrogen from the biological fixation process of the peanut (Arachis
pintoi cv. Belmonte) was obtained when pastures were grazed leniently/sustainably (heights of 15 and
20 cm [28]).

2.2. Role of Animals in Intensification Systems

Animal production systems are evaluated in terms of animal performance. Sustainable
intensification in beef-cattle production can be evaluated in terms of determined results, such as animal
slaughter age and carcass yield, which can be influenced by feeding behavior, animal performance,
and animal adaptation to environmental conditions.

In Brazil, most animals reared in pasture systems are Bos taurus indicus, but some crossbred steers
are also used [31]. Crossbred animals obtained higher overall animal performance than that of the
purebred Nellore. These results demonstrated differences among breeds, but it should be considered
that even inside a breed (e.g., Nellore), differing animal performance can be achieved (Table 1) [32].
Aiming for sustainable intensification by increased productivity [33], breed definition can improve
beef-cattle productivity.

Growth in the Brazilian beef-cattle production industry that occurred after 1970 was mainly caused
by the adoption of the Nellore–Cerrado–Brachiaria system [31]. In systems developed with this triple
bottom, or in those just using Nellore cattle and Brachiaria pastures, forage intake is fundamental in
maintaining daily weight gains. Animal intake is, in part, controlled by feeding behavior, and, therefore,
understanding it in a grazing system could help cattle producers decide upon the management strategy
to improve animal production. Adjustment of stocking rate is essential in the management of pastures
to keep optimal grazing pressure and, consequently, higher animal gains [14]. Forage intake by
animal grazing is restricted by forage availability. It was reported that ruminants tend to change their
behavior to be more selective on pastures with a lower leaf–stem ratio, but this was compensated by
increasing grazing times [37]. This behavior occurs with some boundaries; thus, the right stocking rate
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adjustments are crucial in allowing sward structures with greater leaf–stem ratios for both short-term
and total forage intake rates.

Table 1. Performances (average daily gain (ADG), kg BW d−1) of Nellore cattle (purebred or crossbred)
in different experiments during the rearing phase in systems developed with sustainable intensification
and using a sward height of 25 cm on Unesp–Jaboticabal, SP, Brazil.

Sex Suppl. Level 1 Animal Breed 2 ADG 3 Author

Female - PB 0.731 [34]
Female MM 4 CB 0.490 [27]
Female 0.3 CB 0.665 [27]
Male - PB 0.600 [4]
Male 0.3 PB 1.150 [4]
Male 0.1 PB 0.844 [35]
Male 0.3 PB 0.940 [35]
Male MM 4 PB 0.854 [36]
Male 0.3E 5 PB 0.920 [36]
Male 0.3EP 5 PB 0.959 [36]
Male 0.3DDG

5 PB 0.930 [36]
1 % body weight (% BW), subscripts refer to experiment treatments; 2 PB—purebred, CB—crossbreed; 3 average
daily gain (kg day−1); 4 mineral mixture; 5 E—energetic, EP—energetic–protein, and DDG—dried distiller grains
replacing traditional protein source.

Another important consideration in sustainable intensification systems is the use of supplemental
cattle diets. The authors in [34] reported that supplementation reduced animal grazing activity and that
it should be supplied during the hottest day to minimize pasture substitution effects. Supplementation
can be used to optimize pasture use and maximize animal performance [38]. Thus, identifying the
best day to supply extra feed can produce better results for all system variables (canopy structure,
herbage allowance, and animal performance).

Total grazing time by ruminants is close to 8 h day−1 [39], but the forage digestion process and
passage rate [40] are important factors that control its duration [35]. For example, total animal grazing
time in a sustainable intensification system was decreased to around 6 h [35] due to forage nutritive
value and allowance. Variation in short-term forage intake rate by grazing animals is more closely
correlated with sward height than forage mass, and there is a stronger relationship between sward
height and plant structure; however, optimal sward height does not necessarily give greater intake or
higher individual animal performance [41].

Optimal sward height results in greater daily herbage intake and higher animal performance.
Maximal short-term intake rate per unit of grazing time occurs at approximately 30% grazing efficiency,
measured by the animals’ total forage intake during a determined grazing time and correlated with
forage accumulation [38,39].

As previously mentioned, systems are measured by animal performance, determined primarily
by nutrient intake, which can be related to non-nutritional factors, including forage mass, sward
height, herbage allowance, and nutritional value. The dry matter intake of grazing animals showed a
curvilinear relationship controlled by non-nutritional and nutritional factors [40]. In the ascending
part of the curve, the ability of the animal to harvest forage (non-nutritional factors) appears to be the
most important in limiting intake. These factors include diet selection, grazing time, bite size, bite rate,
and forage allowance. At the plateau or asymptotic section, nutritional factors such as digestibility,
passage rate, and the concentration of metabolic products appear to be important in controlling intake.

Forage mass, herbage allowance, and forage nutritive value could represent variation in average
daily gain (ADG) between 50% and 90%, dependent on specific conditions [38]. In order to ensure that
forage quality and quantity are adequate for maintaining high ADG during the rainy season [4,14,35,41],
good grazing management is necessary, and is a feature in sustainable intensification systems.
Different beef-cattle intensification levels changed the animals’ ADG (Table 1). Animals supplied
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with just a mineral mixture during the wet season had an ADG of 0.490 and 0.854 kg day−1 for
the previously mentioned studies, respectively. When supplemented at 0.3% body weight (BW),
ADG reached 0.665 and 0.936 kg day−1 for Nellore heifers and young bulls, respectively (Figure 2) [10,14].
These intensification practices allow for achievement of ADG and gains per hectare in addition to
decreasing methane emissions per unit of produced beef product [4,6].Sustainability 2020, 12, x FOR PEER REVIEW 6 of 17 
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2.3. Role of Supplementation in Intensification Systems

Supplementation is used to intensify cattle production on grasslands to increase individual animal
performance and productivity [4]. Productivity per area is the result of stocking rate and individual
performance. Increasing stocking rate tends to increase productivity per area up to the point to which
reduced available fodder limits forage intake and, consequently, reduces individual performance.

Under low-stocking-rate conditions resulting in high herbage allowance, animals can reach their
maximal potential intakes and, consequently, their maximal individual animal performance, but a
low stocking rate limits productivity per area. In the model of production proposed by [42], maximal
productivity per area and maximal individual animal performance do not occur at the same stocking
rate. In this way, the use of supplements provides production intensification by increasing dry matter
and nutrient intake, and results in greater weight gain, even with a high stocking rate (Table 1).

In an increasingly competitive scenario with variations on inputs and prices of supplement
formulations, such as maize, as well as the narrowing of the profit margin in livestock, the economic
viability of adopting supplementation demands that its use results in additional gains. To do this,
decisions on the formulation and the amount of supplement should consider aspects such as the chemical
composition and availability of the basal diet, i.e., the forage [34]. Supplement composition should
supply what is missing from the diet or add to feed intake [4]. Therefore, successful supplementation
strategies require the following information:

(a) What is the predicted performance (average daily weight gain)?
(b) What is the nutritional requirement for the predicted performance?
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(c) What is the estimated nutrient intake from the forage?
(d) What is the deficiency (what is lacking) in relation to the requirements?

The use of antimicrobial additives was developed to improve feed efficiency, and it is an option
to intensify the systems. The most commonly used antimicrobial additives for grazing animals are
ionophore antibiotics, such as monensin, lasalocid, and salinomycin, which result in the reduction of
methane production [43]. The effects of ionophore monensin on rumen protein metabolism are mainly
observed when true protein, peptides, and amino acids are used in supplements [44]. The reduction
in rumen amino acid deamination caused by ionophores is more pronounced when the diet consists
of forage with a high soluble protein fraction [45]. Thus, the effectiveness of ionophores depends on
several factors, and may differ depending on the used doses.

Nonionophore antibiotics used for grassfed animals, such as virginiamycin and flavomycin,
have been the focus of few studies; e.g., [46]. Like ionophore antibiotics, the results are controversial
and depend on factors related to the consumed fodder and supplements. Despite occurring via a
different mechanism from that of ionophore antibiotics, virginiamycin also inhibits the growth of
Gram-positive bacteria [47].

The possible effect caused by the addition of live yeast is the removal of O2 from the rumen
environment, resulting from the consumption of water and feed and improving environmental
conditions for the growth of strictly anaerobic bacteria. This may provide growth factors, such as B
vitamins, for ruminal micro-organisms [33].

Natural additives, such as essential oils and tannins, also act to modulate the rumen environment
and reduce risks to food safety. Essential oils are volatile lipophilic compounds derived from secondary
plant metabolites, extracted by steam treatment or solvents [48]. These natural products appear to
have greater effects on Gram-positive bacteria than on Gram-negative bacteria [49]. However, the
interaction between compounds such as carvacrol and the cell membranes of Gram-negative bacteria
can cause the loss of cell contents and cell lysis [50].

The effects of essential oils include a reduction in the proportion of acetate, an increase in
propionate [51], and a reduction in rumen ammonia concentration [52], suggesting that they reduce
amino acid fermentation. The inclusion of essential oils from cinnamon bark and oregano leaves in
in vitro experiments resulted in reduced methane production and ruminal ammonia concentration [53].

Like essential oils, tannins are found in plants and have the potential to modulate ruminal
fermentation. When consumed in high concentrations, and dependent on plant species,
these compounds can cause negative responses in the acceptability of legume forages to grazers,
but rarely browsers, and in the availability and utilization of nutrients [54]. Condensed tannins
are water-soluble polyphenolic compounds with high molecular weights that may affect ruminal
fermentation by reducing rumen protein degradation and methane production, and may improve
weight gain [55].

However, hydrolyzable tannins have potential for use in the diet of ruminants in high-forage diets.
The inclusion of 0.25% hydrolyzable tannins, 1.5% hydrolyzable tannins, the combination of 0.125%
hydrolyzable tannins and 0.125% condensed tannins, and the combination of 0.75% hydrolyzable
tannins and 0.75% condensed tannins resulted in the reduction of ruminal ammonia concentration,
regardless of type or dose, without causing a reduction in animal performance [56].

Condensed tannin supplementation alters the n excretion pathway, increases fecal n excretion,
and reduces urinary n excretion [57]. This process may reduce the environmental impact of ammonia
volatilization, nitrous oxide (N2O) emissions, and nitrate leaching (NO3

−) because of the increased
consumption of soluble protein [58].

Tropical forage legumes may be an alternative for improving protein intake in the rumen and for
supplying condensed tannins to ruminants. Stylosanthes capitate and Stylosanthes macrocephala have
condensed tannins that could be beneficial to cattle [59]. However, there are difficulties in the handling,
logistics, and the high cost of forages or plants rich in these compounds that can be fed to the animals
in a trough or administered in consortium with grass. In conclusion, costs should be accounted for to
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assess whether tropical–forage–legume supply or condensed tannin supplementation is the best option
to reduce environmental impact and increase n utilization efficiency in beef-cattle production systems.

2.4. Role of Fertilizers in Intensification Systems

n fertilizer application has significantly contributed to forage productivity in tropical
regions [60–62]. Nitrogen addition can increase plant growth rate, resulting in higher forage production,
augmented green leaf mass, and increased crude protein concentration, as well as affecting energy and
protein digestibility in ruminants and, consequently, impacting feeding value, animal nutrition, and n
excretion from urine and feces [63,64].

Studies of the most used tropical grass in the world (Urochloa brizantha cv. Marandu) observed a
linear relationship between amount of n fertilizer and forage mass until an n rate of 270 kg N ha−1;
this was also observed with herbage accumulation, which increases from 30 to 90 kg dry matter ha−1

day−1, varying from zero to 270 kg N ha−1 [5]. However, the effect of n fertilization on Brachiaria
grasses maybe depend on other factors. A quadratic response was observed where maximum forage
mass production was reached at 200 kg N ha−1 [65].

Nitrogen application has a direct effect on the proportion of forage true protein content. Increasing
n fertilization from 0 to 400 kg ha−1 year−1 decreases the proportion of true protein from 90% to
70% [66]. n fertilization increases the fraction of soluble n because plant n uptake increases rapidly with
increasing levels of n, thereby leading to a build-up of nonprotein organic n [67]. The proportion of n
bound to the cell wall decreases with increasing n fertilization. The effect of n fertilization on fractions
of plant n implies variation in n feed efficiency utilization by ruminants. Ammonia is completely
soluble and quickly degraded in the rumen, while the n bound in plant cell walls is used by only a
few rumen micro-organisms that degrade potentially degraded neutral detergent fiber fraction and,
consequently, is scarcely used by the animal itself.

Application of phosphor (p) in grasslands enhances the efficiency of n utilization by forage plants.
An increase in forage mass production of 3% to 5% was found [68]. The maximal increase in mass
produced per kg of n fertilizer was observed at 150 kg N ha−1. Production increased from 39 to
51 kg DM kg−1 N ha−1 when p application was doubled.

The effect of potassium fertilization on Brachiaria grass is positive. In the Cerrado region,
an increase in forage production up to 25% was observed. This positive effect on herbage accumulation
is due to the potassium functions of enzymatic activation of the photosynthesis processes. Response to
K application depends on the soil n availability. Soil p content can also limit the efficiency of potassium
fertilization in forage production [69,70]. Once tropical soils are more limited by p content than by K
content, fertilization with K should be used after resolving the p limitation [71,72].

3. Environmental Aspects of Pasture Intensification

The adoption of sustainable intensification in livestock production in tropical grassland areas
depends on the correct knowledge of greenhouse gas (GHGs) emissions. In grassland ecosystems,
the main GHGs are CO2, CH4, and N2O. Increases in the concentrations of these gases are responsible
for increases in global average atmospheric temperature [66]. Grasslands occupy 30% of useful land
on Earth, and play important roles in the production and consumption of these gases. Grasslands are
responsible for 9%, 37%, 65%, and 64% of human-induced emissions of CO2, CH4, N2O, and NH3,
respectively [73].

Carbon dioxide is produced in the soil through the oxidation of soil organic matter and the
decomposition of organic material during root and micro-organism respiration [74]. CO2 production
during respiration is not considered a source of CO2 responsible for global warming. In grassland
ecosystems, environmentally damaging CO2 emissions occur when pasture degradation takes place
and with land use changes [75]. Soil carbon sequestration in grazing systems is one strategy, with a
global mitigation potential of 37–800 Mt CO2 yr−1 [69]. However, it is time-limited and reversible.
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Several studies in Brazil have shown that soil carbon stocks decrease with conversion of Brachiaria
pastures to cropland. The magnitude depends on soil and crop type, varying from 0% to 30% [76–78].

Methane is emitted from the soil, especially in flooded areas, decomposing manure, and during
the enteric fermentation of feeds by ruminants [79]. Methanogenic micro-organisms produce CH4

in anaerobic grassland soils. Feces from animals contain fermentable carbohydrates that are used by
microbes that produce CH4 [80]. The main factors affecting CH4 production in grassland soils and
from animal feces are soil moisture, temperature, and compaction [80,81], while the amount of feces, n
content, and soil pH have minor impact [21,82]. The amount of CH4 derived from feces in Brachiaria
grasslands has been estimated to vary from 0.15 to 0.95 kg animal−1 year−1 [83,84].

Tropical grasslands could be a big CH4 sink [24]. CH4 emissions were measured from tropical
grassland soil managed under different canopy heights for two years. The authors observed CH4

production and sequestration, but when the data were integrated over the period, grassland soil could
not be considered a source or sink of CH4 [85]. These results are in line with [18,86], which also found
that grassland soil was not a source of CH4.

In the rumen, CH4 is produced during feed fermentation [87]. Fiber degradation by
micro-organisms produces hydrogen ions that are used by methanogenic micro-organisms to produce
CH4. This mechanism is essential in sustaining digestion. If H+ ions are not removed, ruminal pH
decreases, and the occurrence of acidosis increases [87]. There are several studies on tropical grasslands
investigating options to mitigate enteric CH4 emissions using essential oils, supplements, and additives.
Although enteric CH4 is the most important greenhouse gas (GHG) to be considered in a project
of grassland intensification, there are few studies that compare emissions from different grassland
management techniques, plant species, and seasons of the year. One study that measured enteric CH4

from bovines consuming only Marandu grass found that enteric CH4 averaged 132 g day−1, and 7.6%
of gross energy intake was lost [11]. This is close to values reported by the Intergovernmental Panel on
Climate Change (IPCC), with an emissions factor of 149 g day−1 and losses of 6.5% of gross energy
intake [88].

Nitrous oxide is emitted from animal excretions and n fertilization. According to the
Intergovernmental Panel on Climate Change (IPCC), default emission factors, i.e., the percentage of n
applied, excreted, or emitted as N2O, are 2.00% from excreta, from which n is emitted as N2O, and
1.00% from n fertilizer [88]. However, these emission factors do not consider the types of excreta,
climate, soil, grassland species, or other variables. Several studies on temperate grasslands, e.g., [89],
and on tropical grasslands showed that urine is the main source of N2O. Nevertheless, estimated
emission factors hugely vary [63,83,84]. In subtropical pastures, a mean emission factor of 0.26% for
urine and 0.15% for dung was reported [84]. In tropical savanna (Cerrado) regions, a mean emission
factor of 0.70% for urine and 0.10% for feces was observed [90]. In addition, it was found that emission
factors vary according to type of excretion; there is an interaction between feces and urine when
they are excreted in the same patch, and emissions are much higher during the rainy season than the
dry season [86]. The study found mean emission factors of 0.34%, 0.75%, and 0.59% for feces, urine,
and interacting feces and urine, respectively. In both studies, the animals were grazing Brachiaria
grass [65,86].

Few studies have been carried out on N2O emissions caused by tropical grassland n fertilization.
For synthetic fertilizer (urea), an emission factor of 0.85% from n applied in this form was found [90].
For organic fertilizer, N2O emissions were measured from three sources of biofertilizer and compost
applied to a grassland. The authors did not find differences in emissions in these organic fertilizers,
and the average emission factor was 0.18%, five times lower than the value reported in [83,91,92].

Increasing grazing intensity results in strong elevation in grassland N2O emissions. This occurs
because artificially increased n is returned to the soil via excreta, and because soil compaction,
which occurs due to increases in animal stocking rate, lowers n uptake by plants. Thus, heavy
defoliation through high stocking rates can lower plant n uptake capacity, decoupling C and n [13].
The main variables driving N2O emissions in tropical areas are n concentration in urine, soil moisture,
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urine volume, and temperature [13,92–94]. Thus, the success of intensification in terms of mitigating
N2O emissions should diminish animal excretion via urine and consider using alternative n fertilizer
sources, such as biofertilizers.

Ammonia (NH3) volatilization is a major constraint on n fertilizer utilization in grasslands.
When fertilizers are applied, substantial amounts of n can be lost. According to the IPCC, 20% of
n fertilizer is lost as NH3 to the atmosphere. Furthermore, 1.00% of this n is indirectly emitted as
N2O [88]. Ammonia losses from three nitrogen sources (urea, ammonium nitrate, and ammonium
sulfate) at different levels of n fertilization (90, 180, and 270 kg N ha−1) in Brachiaria pastures were
measured in central Brazil [55,95]. For urea, the percentage of n lost varied from 11% to 47% of applied
n; for ammonium nitrate, this ranged from 2% to 5%; and for ammonium sulfate, the amount of lost n
was between 2% and 7%. Despite urea being the cheapest source of n in Brazil, it may be that n losses
and the environmental impact justify the utilization of other n sources.

The carbon footprint of beef-cattle intensification was analyzed for central Brazil [96]. The authors
calculated carbon footprints of 58.3, 40.9, 29.6, 32.4, and 29.4 kg COeq kg−1 carcass for extensive,
semi-intensive, intensive with legumes, intensive, and intensive with finishing phase in feedlot systems,
respectively. Increases in calving rate and reductions in slaughter age were the main reasons for
reductions in carbon footprint. The cow-calf phase contributed more than 50% of emissions, and it
is that phase that requires the most improvement in beef-cattle production systems to reduce their
carbon footprint.

More complex management strategies (grassland intensification) also show promise in increasing
soil C in tropical grasslands. Productive Brachiaria pastures have the potential to accumulate soil
C in tropical climates [97,98]. The amount of soil organic C (SOC) is dependent on the deposition
rate and decay rate of plant residues. In the case of grasslands and natural vegetation, soil stays
largely physically undisturbed. Consequently, pasture residues derived from the aerial tissue are not
incorporated into the soil bulk unless by action of soil fauna [99].

The effect of pasture management on SOC stocks in grasslands of the western Amazon was
evaluated [76]. In this work, they studied three levels of intensification: Degraded without inputs such
as fertilizers, weed controls, and soil erosion. The nominal grasslands received the same management,
but maintained reasonable productivity, presumably due to more appropriate grazing regimes and
improved grasslands that received management (stocking rate adjustment, fertilization, weed control).
Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a
factor of 0.91 and nominal grassland management reduced SOC in Oxisols by a factor of 0.99, whereas
SOC storage increased by a factor of 1.24 with nominal management in other soil types. In Oxisols,
the study observed that improved grasslands increased SOC storage by a factor of 1.19, but in other
types of soil, there was no evidence of SOC increase. An average C emission of 280 kg C ha−1 year−1

was reported [76]. Therefore, the adoption of nominal or improved management practices could result
in carbon sequestration in existing degraded pastures within the Amazon.

When evaluating soil C stocks in native Cerrado vegetation (Brazilian savannas), productive
pastures, and degraded pastures, the study found that SOC stocks were greater in productive pastures
than in native vegetation, and that C stocks in degraded pastures were intermediate or very similar to
native vegetation stocks. The study confirmed that productive Brachiaria pastures increased soil C
stocks compared to those present in native Cerrado vegetation [75].

Integrated crop–livestock systems are promising strategies for beef-cattle intensification [9].
Changes in soil organic carbon for over 22 years for pastures, cropping systems, and integrated
crop–livestock systems in the Brazilian Cerrado were measured. It was found that pasture SOC stocks
changed little during the study period. Continuous cropping without tillage preserved SOC, but when
plow tillage was performed, there were significant reductions in SOC. In most of the studied integrated
crop–livestock systems, SOC accumulation occurred. However, changes were modest; 13C abundance
analysis revealed that fertilizer inputs increased the decomposition rate of C derived from native
vegetation in pastures [77].
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The overall change in soil organic matter stocks was estimated 16 years after pristine forest
vegetation in southern Bahia was removed and replaced with Brachiaria brizantha pastures. The authors
observed gains in soil C of approximately 15 Mg C ha−1 to a depth of 30 cm, and 20 Mg C ha−1 to a
depth of 100 cm. On the basis of 13C abundance analysis, they concluded that the large gain in soil C
was due to the slow decomposition of forest-derived C and the large accumulation of C derived from
Brachiaria [98].

Potential increases in SOC can be optimized by introducing legumes into Brachiaria pastures.
The inclusion of legumes supplies n to pastures via biologically fixed N2, avoiding the economic
constraints of n fertilizer application, and it could potentially increase SOC compared to pure grass
pastures [99]. Indeed, soil C accumulation is enhanced by soil fertility and mainly by n fertilization [100].
Despite the works cited above, there is a lack of data on the potential of grassland soil to accumulate C
from the most fertile soils of Brazil, which are found in the states of São Paulo and Paraná.

4. Conclusions

The intensification of Brachiaria grasslands is an important alternative for reducing GHGs and
increasing the environmental, economic, and social benefits of grassland utilization. However,
growing costs and environmental concerns regarding n losses challenge animal nutritionists and forage
specialists to develop grazing systems that optimize n utilization.

Recent studies in tropical regions did not find any effects of grazing management or
supplementation on enteric CH4 [4,6,92], and energy losses are close to those stated by [88].
Further research should focus on reducing N2O emissions and NH3 volatilization. Urine was
confirmed as the main source of N2O. Therefore, nutritionists should seek strategies that reduce n
excretion via urine or that shift the n excretion route. With regard to n fertilization, research should
focus on quantifying emissions from different sources of n. It is necessary to measure the impact of
sources, levels, time of application, and period of fertilizer application on N2O emissions and NH3

losses in tropical grasslands to better assess strategies to mitigate this impact.
Tropical grassland soils have higher potential to stock C than that of current levels, as is mentioned

above. The effects of intensification, fertilization, grazing management techniques, different forage
species, and soils on litter deposition and decomposition need to be measured. The introduction of
legumes into forage systems has the potential to increase and sustain soil C stock. However, this
needs to be confirmed in tropical grasslands, and technology needs to be developed for successful
commercial establishment.

To achieve the benefits of sustainable intensification, one option that was investigated and proved
to be viable is managing Marandu grass at a sward height of 25 cm in a continuous stocking system
with a variable stocking rate (3–6 animal units of 450 kg BW). The best levels of n that resulted in the
highest forage yield and animal performance and the lowest GHG emission intensities varied from 90
to 180 kg N ha−1 with split application during the growing season [4,5,13]. However, this review only
considered urea as a source of n, and further studies should measure whether the same conclusion
would be met for other sources of n.

Further studies should also focus on inedible byproduct use in the supplementation of beef cattle
during the rearing and finishing phases, which appears to be an important strategy in sustainable
livestock intensification. The supplementation of grazing animals increases weight gain per animal
and area, reduces deforestation for pasture formation, and decreases competition for human food.
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