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Abstract: We derived a promising approach to reducing the energy consumption necessary in
manufacturing processes from the combination of management methodologies and Industry 4.0
technologies. Based on a literature review and experts’ opinions, this work contributes to the
efficient use of energy in batch production processes combining the analysis of the overall equipment
effectiveness with the study of variables managed by cyber-physical production systems. Starting
from the analysis of loss cause identification, we propose a method that obtains quantitative data
about energy losses during the execution of batch processes. The contributions of this research include
the acquisition of precise information about energy losses and the improvement of value co-creation
practices so that energy consumption can be reduced in manufacturing processes. Decision-makers
can use the findings to start a virtuous process aiming at carbon footprint and energy costs reductions
while ensuring production goals are met.

Keywords: energy efficiency; multi-disciplinary analysis; sustainable value co-creation; industry 4.0

1. Introduction

Sustainability is an important topic for people, industry, and government, so a key objective in
human development is ensuring sustainable development due to social, economic, and environmental
concerns. Sustainable development is increasingly becoming a goal to which numerous countries
throughout the world aspire [1]. Making development sustainable is, in general, a challenging and
complex undertaking, involving factors such as technology and engineering, economics, environmental
stewardship, health, and welfare [2] of people and the communities in which they live and work, social
desires, and government strategies, and procedures and policies [3]. In this sense, organizations like
the European Union (EU) have implemented several policies, strategies, and actions toward achieving
a sustainable economy in fields like energy efficiency and renewable resources [4]. According to
the literature, sustainability has been applied to many fields, including engineering, manufacturing,
and design [2]. Overall, sustainability has been defined in many ways and is often considered as
having three distinct components: environmental sustainability, economic sustainability, and social
sustainability [1,5].

An important facet of sustainability is energy management, being one of the fields that has
an important impact on the sustainability of countries as it is closely related with the economy,
the environment, and society. An energy system that reduces the side effects on the environment to a
level within its assimilative capacity and provides opportunities for economic and social development,
taking a longer-term perspective, forms the basis of the concept of energy sustainability [6].
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A promising approach to reducing the energy consumption [7] necessary for manufacturing
production [8] is derived from the combination of management methodologies and Industry 4.0
technologies [9,10]. The optimization of a production process [11] can be studied by deepening the
analysis of the most frequently used indicator of manufacturing performance [12]. Overall equipment
effectiveness (OEE) is a key performance measure in mass-production environments and has become
a common approach for measuring production equipment efficiency [13]. In this study, the OEE
indicator was examined from the point of view of energy efficiency in production.

The contribution of Industry 4.0 technologies to the problem of energy saving can be considered
an opportunity to improve the performance of the manufacturing process and to reduce the energy
consumption [14,15] together with the emissions of CO2 into the atmosphere. In this new scenario,
decision-makers can identify possible improvements in energy use and reductions in manufacturing
costs [16,17].

One of the key characteristics of Industry 4.0 is the digitization of manufacturing processes.
This transformation can offer solutions for energy saving, for example, through the optimization or
replacement of specific technologies and the application of new software tools that also offer energy
optimization functionality or adaptations in the business processes [18]. From this point of view,
the Industry 4.0 concept appears appealing with regard to potentially providing a more streamlined
flow of information (and thus better planning and control processes) [19], which, for the case at
hand, is related to energy consumption and energy saving in the manufacturing industry. However,
combining the two trends, sustainable energy and Industry 4.0, is a rather new approach that has not
yet attracted much attention in research. Therefore, there are a number of opportunities to incorporate
sustainable energy concepts into a digital factory [18].

We focused on energy efficiency in the context of mechanical industries, considering the
contribution of OEE analysis, Internet of Things (IoT), and cyber-physical production systems (CPPSs)
to achieve energy savings. Our approach combines the analysis of OEE together with the study of
measured variables managed by the CPPS such as process cycle time and energy consumption. Starting
from the standard OEE analysis that aims the loss cause identification, we propose a method that obtains
quantitative data about energy losses during the execution of batch processes. The paper is structured
as follows: After some preliminary definitions concerning the manufacturing system organization, the
OEE indicator, and the machine tool model, Section 3 discusses the research methodology together
with the adopted multi-disciplinary analysis. Section 4 presents the investigation results and Section 5
describes a case study in the automotive industry in which the concepts mentioned in the previous
sections are applied. Finally, the discussion about the findings and future work closes the paper.

2. Preliminary Definitions

2.1. Manufacturing System Organization

Manufacturing activities can be considered as being composed of multiple levels, from the level
of the individual devices where unit processes occur, through to that of the enterprise, incorporating
all the activities in the manufacturing system, including supply chain externalities [20]. From this
perspective, [21] the organization of the system is structured in five levels:

1. Device/unit process: Individual device or machine tool in the manufacturing system that is
performing a unit process. Support equipment of the unit process is included here [22].

2. Line/cell/multi-machine system: A grouping of machines organized in a line layout (multiple
workstations arranged in sequence, and the parts or assemblies are physically moved through
the sequence to complete the product) or cellular layout (consisting of several workstations
or machines designed to produce a limited variety of part configurations, specializing in the
production of a given set of similar parts or products) [23].

3. Facility: The relative location of equipment and/or work centers on the factory floor [24].
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4. Multi-factory system: Different facilities whose proximity to one another allows them to use of
possible synergies in terms of reuse of waste and lost energy streams [21].

5. Enterprise/global supply chain: The flow and transformation of goods (as well as the flow of the
associated information) from the raw materials stage to the end user, including the supplier’s
supplier and the customer’s customer. This flow of goods and information may encompass
several different facilities (plants, warehouses, sales, and distribution centers) belonging to several
different business entities located in various parts of the globe [24].

With regards to the production methods, we refer here to the batch production defined in ISA
88 standard as “a process that leads to the production of finite quantities of material by subjecting
quantities of input materials to an ordered set of processing activities over a finite period of time using
one or more pieces of equipment” [25].

With regards the type of batch production, in the case study, we refer to a scenario immersed in
the discrete manufacturing industries, in which “a batch is a certain quantity of work units, and the
work units are usually processed one at a time rather than all together at once” [23].

To study the joint contribution of the OEE and cyber-physical systems (IoT) to the problem of
energy efficiency, some fundamental definitions and a machine tool reference model in the literature
are reported.

2.2. Overall Equipment Effectiveness (OEE)

OEE is “the gold standard for measuring manufacturing productivity” [26]. It identifies the
percentage of manufacturing time that is truly productive. An OEE score of 100% means only good
parts are being manufactured, as fast as possible, with no stop time. In OEE language, that means 100%
quality (only good parts), 100% performance (as fast as possible), and 100% availability (no stop time).

OEE was introduced by Nakajima [11] within the context of total productivity maintenance (TPM)
and is directed to equipment/machines [13]. Figure 1 shows the time intervals for the computation
of OEE.
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Considering OEE as an index that measures the production efficiency of the machine in the
established time, it can be used to determine time losses. OEE is a measuring tool used to determine
the effectiveness of the machine as a whole. It is obtained by the multiplication of availability (A),
performance efficiency (P), and quality (Q) [27]:

OEE = (A× P×Q) × 100 (1)

2.2.1. Availability

Availability is the fraction of the total time that the equipment is in a condition to perform its
intended function [12].

A =
OT
PPT

(2)
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2.2.2. Performance

The fraction of equipment uptime is when the equipment is processing actual units at theoretically
efficient rates [12]. The theoretical cycle time, also known as ideal cycle time, is the minimum time to
complete processing on one unit of production, assuming no efficiency losses are present, which is
expressed as tcycle:

P =

(
tcycle × Total Count

)
OT

. (3)

2.2.3. Quality

The rate of quality was defined by Nakajima [11] as the ratio between the number of good pieces
and the number of pieces produced. For the purposes of this work, we use the definition of quality
efficiency (Q) [12], which is given by the ratio between the time necessary to produce elements that are
not wasted and the net run time in which good parts and defective parts are produced.

Q =
tgood parts

NRT
=

NRT− tde f ective

NRT
= 1−

tde f ective

NRT
(4)

2.3. Machine Tool Model

According to Schmidt et al. [28], four different levels (factory, process line, machine, and product)
should be distinguished during the indicators design process to track a company’s performance in the
respective area of focus. In relation to the unit process, Duflou et al. [21] stated that it typically coincides
with individual machine tools as the smallest unit of which production systems are composed. In this
approach, hybrid workstations, combining multiple processes on a single machine structure, can be
considered as the sum of multiple individual unit processes that can be analyzed separately, as shown
in Figure 2.
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Figure 2 shows that to execute a unit process such as a piece transformation using a single machine,
raw material or a semi-finished product form the inputs from the environment. Technical inputs like
energy and other consumables are required. During the execution of the process, different types of
emissions (gaseous, liquid, solid, and heat) are produced as outputs in addition to the product and
recyclable waste. According to some preliminary environmental studies for machine tools in material
removal processes [30], when the process is executed, more than 90% of the environmental impact is
due to the consumption of electrical energy.
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Abele et al. [31] described a method for life cycle inventory analysis of production processes using
theoretic equations to calculate the energy and resource consumption as well as waste and process
emissions. The general formula for the total energy demand during production is

Etotal = Eth + Eadditional + Eperiphery (5)

where Eth is the active energy theoretically needed to obtain the physical process effect and represents
the minimum energy demand of the production process, and Eadditional and Eperiphery are the additional
energy demands of the machine tool (e.g., energy to cover efficiency losses or energy for machine
functions such as central control) and peripherals (e.g., cutting fluid pump), respectively.

3. Literature Review

With the objectives of determining how the OEE indicator has been used in the manufacturing
industry, in which factory layout it has been implemented, how this is related to Industry 4.0, IoT,
or cyber-physical systems (CPSs), and the contribution of these elements to the value co-creation in
this industry, we reviewed the literature. Based on these questions, a set of keywords was defined
(Table A1, Appendix A) to perform the search on different databases like Elsevier, Emerald, IEEE,
Springer, and Taylor and Francis, among others. The scope of the search was limited to “Article”
published, written in “English” between 2015 and 2020, and belonging to fields of study related to
industry and engineering. Similarly, only articles with more than 20 citations were considered. We
used the article title, keywords, and abstract search fields. The number of results was refined after
eliminating duplicates and excluding articles that only mentioned the term but did not deepen its use
or that did not refer to the problem of energy consumption and saving in the industry.

The PRISMA [32] method (Figure 3) was used to ensure a systematic review. Figure 3 shows
that 212 records were obtained after duplicates removed, 84 of which were excluded after reviewing
their abstract and general structure, including 7 without open access and the others because, although
they matched the search terms, the meaning of the terms referred to topics other than the focus of our
study. For example, the “OEE” search term, which in our case of interest means “overall equipment
effectiveness,” may also correspond to “open-ended evolution,” “output Euler equation,” “oxygen
evolving enzyme,” “oil extraction efficiency,” “operational efficiency and effectiveness,” and “enterprise
energy observatory,” among others. Likewise, 75 articles were excluded after full-text access since they
mentioned the search term but did not develop it in greater depth in the content or did not refer to the
industry problem dealt with in the investigation.
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Once the literature search was complete, the papers were classified into three macro-categories
(Appendix B): management (Table A2), technology (Table A3), and value co-creation (Table A4).
The content analysis of the cited papers confirmed that there is a research need for the area that
combines standard methods such as OEE with technological development, especially concerning the
usage of cyber-physical systems. Our research proposal addresses a subject that is not sufficiently
covered in the industry literature: improving energy efficiency in batch production systems.

3.1. OEE for Energy Management

OEE for energy management of devices, machines, or unit process was previously studied [33,34].
In Bougain et al. [33], an OEE analysis was performed to set energy demands of machining tool
processes with other resources, such as personnel available, as a planning factor for production
planning software. The purpose was to construct energy management strategies for minimizing
the energy consumption and the energy costs of the production for each machine by implementing
manufacturing execution system (MES) software. An improvement in the OEE and a reduction in the
energy consumption in the non-ferrous diecasting industry were achieved by Müller et al. [34]. OEE
analysis was used to identify the machines with below-average availability and the most common
causes of malfunction. These considerations were also presented for the factory level.

For facility, shop floor, and plant layout [35], different types of Key Performance Indicators (KPIs)
were studied that measure energy, raw material, maintenance, and control performance, among other
sectors, in the industry. The OEE analysis, as the main KPI, was used to propose a method that
improves the performance of the industry.

Regarding enterprise and global supply chain layout, Domingo et al. [36] proposed a new
metric describing the sustainability improvements achieved relative to a company’s initial situation
after implementing a lean and green manufacturing system. In addition to the availability, quality,
and performance covered by the OEE, the overall environmental equipment effectiveness (OEEE)
incorporates the concept of sustainability based on the calculated environmental impact of the complete
product life cycle, allowing sustainability to be integrated into business decisions.

3.2. Optimization Process in Manufacturing Management

The optimization process in manufacturing at the device, machine, or unit process level is where
we found the largest number of articles in the literature. For this part of the literature, energy saving is
one of the possible benefits, as more efficient processes consume fewer resources with the same output
produced. Some studies focused on the fundamental conception of Industry 4.0 and the state of current
manufacturing systems. The research gaps between current manufacturing systems and Industry 4.0
requirements were identified in Lourenço et al. [37]. Concerning the measure of energy consumption
and optimization of production processes, Rehe et al. [38] showed an automated OEE calculation
through a CPS used for interpreting and transmitting the actual machine status from sensors to an MES.

Yazdi et al. [39] studied the implementation of a sustainable and intelligent material handling
system for material distribution considering the energy intensity management. To do this, OEE
was evaluated to identify the matters that need to be resolved and optimized to increase the OEE
percentage considering the sustainability of the system. In addition, the study aimed to recognize
and analyze effective factors on the sustainability of improved processes. Yazdi et al. [40] provided
information about the development of an intelligent material handling system (MHS) for automobile
parts distribution. The OEE approach was applied to evaluate the system performance and provide
some solutions for its optimization.

Durán et al. [41] proposed a technique based on OEE analysis to establish maintenance priorities
on a set of physical assets, as equipment that forms a production system, considering the impact on the
overall throughput of the production system. The intention was to measure the effects of maintenance
decisions and actions (availability), as well as the operational implications (productivity and use).
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De Ron et al. [13] evaluated OEE and effectiveness (E), investigating the influences of use,
downtime, and rework, as well as the sub-metrics availability, efficiency, and performance efficiency,
also pointing to the optimization process in manufacturing management. As a result, they explained
that the main difference between OEE and E is the use of an equipment: integrated with other structures
or stand-alone. This means that OEE measures the effectiveness of equipment including effects from
other equipment in front of and at the end of the equipment of interest, whereas E just measures the
effectiveness of stand-alone equipment.

Regarding OEE into production lines, Creutznacher et al. [42] investigated the risk faced by
companies after using automation on the production line when dealing with machine breakdown,
concluding that OEE is one of the best measurement methods for managing automation since it
facilitates the planning of strategies that ensure automation of the production line without a decrease
in performance of productivity and quality.

For the facility, shop floor, and plant levels, Durán et al. [41] performed an OEE analysis of the
production planning to change production volumes and optimize material flow, Graham et al. [43]
proposed incorporating OEE aspects together with an indicator of environmental performance at the
factory level. These analyses confirmed the significant savings potential in energy consumption and
OEE losses for the given target capacity.

OEE for optimization in enterprise and global supply chain levels were studied [39] as an energy
consumption indicator (production engineering KPI) to evaluate how effectively a manufacturing
operation is used. Equally, Yazdi et al. [40] used OEE for measurement and optimizing of manufacturing
system performance in Small and Medium Enterprises (SMEs), to create competitive advantages as a
result of reducing unsustainability.

Similarly, Domingo et al. [36] evolved the OEE concept to OEEE to evaluate the environmental
impacts of the production process regarding green and lean manufacturing. The OEEE allows
sustainability to be integrated into business decisions, and compares the environmental impact by
identifying the improvements undertaken in the company’s processes.

3.3. Asset Management in Operations and Logistics

For the device/machine/unit process level, Lourenço et al. [37] used Multi-layer stream mapping
to assess the overall efficiency and waste of a production system through OEE to increase the resource
efficiency and operational production efficiency. Kuznetsov et al. [44] analyzed the equivalence
assessment method to determine the resource efficiency of equipment, technologies, and production
systems through an OEE indicator, considering energy efficiency and productivity of equipment
and production systems. Along the same line, Durán et al. [41] proposed a technique to prioritize
maintenance actions and production sustainability on a set of equipment (physical assets) that form a
production system based on OEE analysis. Adolph et al. [9] performed a systematic identification of
value-added shares in material supply, considering the human factor, starting from OEE to overall
commissioning effectiveness analysis.

For multi-factory systems, a CPS and Industrial Internet of Things (IIoT) for self-organizing
configuration for collaborative production logistics were proposed by Segura et al. [45] and supported by
Zhang et al. [46], considering the intelligent modeling of manufacturing resources in the infrastructure
layer and the self-organizing configuration of smart manufacturing service groups.

3.4. Facilities Management, Materials, and Equipment Management

Focusing on device, machine, and unit processes, other authors [39,40] mentioned above conducted
related studies, mainly aimed at improving the energy efficiency of equipment and manufacturing
systems to achieve more effective control and fostering continuous improvement of manufacturing
performance [47]. In addition, Creutznacher et al. [42] investigated the relationship between energy
consumption and OEE for improving manufacturing systems’ productivity, by analyzing material and
capacity planning, to change production volumes and ensure optimal operation. Thiede et al. [48]
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presented learning factory strategies for the efficient automation of industrial processes, helped by
CPS for monitoring and control of workshop, shop-floor, and supply chain levels. Purba et al. [27]
investigated OEE from the analysis of six big losses in a manufacturing company based on the total
productive maintenance method to solve problems related to the effectiveness of the equipment. For
facility management in multi-factory systems, some IoT and CPS solutions were presented [49] for
planning, monitoring, and optimizing production processes and logistics in manufacturing facilities.

3.5. Energy Management

For the energy management problem, Shrouf et al. [50] proposed a generic method
for energy-efficient and energy-cost-effective production at the unit process level, to conduct
energy-cost-aware job scheduling on a machine. Zhang et al. [51] outlined the use of IoT for energy
management in production (planning, monitoring, and control) at device, machine, and production
line levels.

At the facility/shop floor/plant level, Zhong et al. [52] studied the implications of IoT and CPS on
the sustainable energy management. Along the same line, a big data-driven analytical framework was
proposed [16] to reduce the energy consumption and emission for energy-intensive manufacturing
industries through IoT and CPS, just like Bonilla et al. [53] who proposed IoT solutions for manufacturing
shop floor optimization and scheduling to improve energy and production efficiency.

For the enterprise/global supply chain, a framework of the Industry 4.0 intelligent manufacturing
systems (smart design, smart machines, smart monitoring, smart control, smart scheduling) was
presented [50], as well as the benefits of its implementation for energy management.

3.6. IoT Contribution (Monitoring, Control, Energy Management)

IoT for energy management in production (planning, monitoring, optimization) for device,
machine, production lines [51], facility/shop floor/plant, and multi-factory systems levels has been
further studied [52–54]. IoT and CPS contribute to the product value chain and business strategies [55] or
product life-cycle energy management applications that seek to contribute to better energy management
in different phases [56], as also studied [57] for enterprise/global supply chain levels.

3.7. CPS Contribution (Planning, Optimization, Energy Management)

Cyber-physical systems have considerably contributed to industry. Some of those included in
this literature review focused on new methodologies implemented in a software platform to support
the design of hybrid assembly lines in the automotive industry [58]. At the machine level, [59] for
example, energy measurement as a KPI and software developments [60] were used to optimize design
production lines; simulation-based decision support systems were introduced for supporting the
disruption management process in cyber-physical production systems [61]. CPS and IoT devices were
used as sensors to monitor material flow [62] and failures at the machine level for energy management,
monitoring [63], and control of vibrations [48].

For line/cell/multi-machine systems, Liu et al. [64] considered the implementation of cyber-physical
production systems (CPPSs) in a production line for energy demand management, Nagy et al. [55],
the contribution of IoT and CPS was related to the product value chain. Contributions at the
facility/shop floor/plant, and multi-factory supply chain levels, related to remote monitoring [49], energy
consumption [65], facility management [66], and intelligent manufacturing were also provided [57].
CPS for production planning and control in the manufacturing [67], assembly, and logistic processes
were studied [57,68] in both industrial and academic scenarios.

3.8. Value Co-Creation

Co-creation was developed in the early 2000s as a management paradigm to allow companies
and customers to create value through interaction [69]. According to Prahalad et al. [70–72] and
Vargo et al. [73] who started with the seminal works in this field in capitalist economies, “value is
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usually determined before a market exchange takes place.” From the co-creation perspective, suppliers
and customers are, conversely, no longer on opposite sides, but interact with each other for the
development of new business opportunities [69].

Mele et al. [74] stated that resources and learning processes are thus the foundation for the
value-creation processes of service systems, and identified four key dimensions in the resources
that enable such learning processes: (i) customers, (ii) people, (iii) information, and (iv) technology.
They further argued that these four key dimensions interact in a network of relationships that co-create
value through the integration of resources.

Regarding value co-creation and sustainability, Brozović et al. [75] presented an analytical
framework based on a review of the literature combining value creation in service-dominant logic
and sustainability to chart the value creation process of firms excelling in sustainability. According
to the author, value is associated mainly with actors as the recipients of sustainable development
initiatives [76] and business activities focused not only on financial issues but also on including other
aspects of value, such as social value [77] and environmental value [78].

Ueda et al. [79] considered the value-creation as classes associated with service, product, process,
and organization management as part of a model. At the process level, problem-solving can be
performed smoothly by Kaizen [80], Just-In-Time (JIT) [81], and the like, due to the implicit knowledge
and the collective cooperation principle in the workplace without scientific theorization of the
problems, which also contributes to a co-creative decision-making process through mutual interaction
between varieties of agents (human, artifact, organization, etc.). This aspect was also addressed by
Uhlmann et al. [82].

Driven by sustainability-oriented purposes, value co-creation in manufacturing scenarios has
been studied from different perspectives, such as decision-making [79]; information technologies [83]
principally supported by IoT, CPS, and cloud computing; and resource integration [82] as one
solution to decrease negative sustainability impacts of manufacturing equipment, by reducing energy
consumption, material consumption, and logistics costs.

In addition, value co-creation for optimization [84] has been considered to produce
further streamlined efficiency and effectiveness in data management flow, problem-solving [85],
and performance [86], creating robust and relevant applied professional knowledge and competence [87],
procedures, facilities, and equipment [88].

4. Results

4.1. Impact Variation in Industrial Production

Industrial production involves the transformation of raw materials into a different product using
resources from the environment. To make industrial production sustainable, it is necessary to consider
the impact of transformation on the environment. Once the production volume has been established in
a given period, a theoretical environmental impact (Ith) of the production of a good can be defined as
the minimum amount of resources needed to produce it. There may be factors that increase its value,
leading to an actual impact (Iact); therefore, it is possible to define the impact variation (∆I) as

∆I = Iact − Ith (6)

If the process is the transformation of raw material into a product with machines, it is possible to
use an already known indicator for the evaluation of inefficiencies and correlate it to the factors that
increase the environmental impact. Equation (6) can be applied to whatever is being considered: loss
of material, energy, or consumables. However, in the following, we focus on energy consumption.
From this point of view, we analyzed the OEE indicator.
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4.2. OEE and Impact Variation of Energy Consumption

The scope of this study was that of discrete manufacturing industries. In particular, we focused
on the batch production that occurs when the materials are processed in finite amounts. In this kind of
discrete production, the changeover time between two batch types takes time due to the necessity of
changing tooling, and setting up and reprograming the machinery.

To analyze the energy losses in industrial production starting from the OEE, the impact variation
∆I can be defined as a function of OEE:

∆I = f (OEE) = f (A× P×Q) (7)

Then, the possible loss causes, as identified by Nakajima [11], are analyzed from the point of view
of time losses. Starting from the causes of loss, it is possible to identify the unproductive times and the
corresponding impact variations, as shown in Table 1.

Table 1. Unproductive times and impact variations deriving from loss causes.

Loss Causes Loss Impact Variation

a. Availability losses

C1. The production type changes
1−A = g[C1; C2; C3]

∆IC1 = gC1
[
ttype change

]
C2. The stops for failure ∆IC2 = gC2[tbreakdown]

C3. The transients at the start and end of production ∆IC3 = gC3[ttransients]

b. Performance losses

C4. Stops not attributable to faults 1− P = h[C4; C5] ∆IC4 = hC4
[
tmicro−stops

]
C5. The increases in piece cycle time ∆IC5 = hC4[tslowdowns]

c. Quality losses

C6. Waste 1−Q = i[C6]
∆IC6 = iC6[tdiscarded] where(

tdiscarded = tcycle × ndiscarded parts
)

As a consequence of the analysis on the causes of loss in Table 1, Equation (7) can be rewritten as
follows, where the losses of availability, performance, and quality are considered by the functions g, h,
and i, respectively.

∆I = f ((1− g[C1; C2; C3]) × (1− h[C4; C5]) × (1− i[C6])) (8)

4.3. Environmental Impact Variation Functions

Once the time losses are associated with the respective loss causes, the individual impact variations
∆IC1 . . . ∆IC6 must be defined, linking them to the times identified in Table 1. In a batch production
context, the loss of time due to the production type change is significant. First, we analyze the equation
∆IC1 = gC1

[
ttype change

]
.

Considering the type change from one batch production to another, the required time ttype change,
usually expressed in hours, is the sum of five time intervals. These time resources are required to
perform several operations to stop the previous production, prepare the new batch, and start the next
production:

(1). tend prod: End of the previous production. It is considered a loss because when the machine stops
the previous production, it continues to run, consuming energy without generating added value.

(2). tchange prep: Preparation of resources for the necessary changes to the process. To carry out the
type change, the required tools and materials must be transported near the point where the
work is to be completed (consider Eperiphery in Equation (5)). These movements represent energy
consumption, in some cases, even of machines with high consumption such as bridge cranes,
wheelbarrows, and lifting systems, among others.
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(3). te f f change: Application of changes or actual type change. To dismantle the previous mold and
assemble the next, lifting systems and work equipment that consume energy are used.

(4). tstart prep: Preparation for starting the next production. After making the type change, it is
necessary to transport the tools and materials to their place to free the work area. Therefore, the
energy loss is represented in the displacements required to perform this operation.

(5). tstart: Start of subsequent production. Before the machine resumes production, it continues to
operate and, therefore, consumes energy that does not represent any generation of value for the
production process.

Notably, during the five time intervals considered to carry out the type change in which the
production line does not produce value, the machines still remain in operation and consume energy,
which is why these energy losses must be considered. The following diagram shows the contribution
of each time interval to the type change. Their length is a percentage of ttype change; for example,
tend prod= a × ttype change, where 0 ≤ a ≤ 1. The assessment of each percentage helps the analyst and
the decision-maker to focus their attention first on the activities responsible for the greater energy
consumption during the type change. Figure 4 must be understood as a pattern that can be applied to
various contexts, as will be shown in the case study in Section 5.
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Analysis of Individual Blocks

Type change times are presented when an operation change is required on the machine, generally
to produce a different type of piece from that being manufactured. This process, which is exemplified in
Figure 4, comprises five different time intervals that occur sequentially from the moment the previous
production ends (tend prod). The necessary resources are prepared for the respective change operation
of the machine (tchange prep), the change is made (te f f change), the start of the new operation is prepared
(tstart prep), and, effectively, it starts with the next production (tstart). Therefore, each time interval
represents a percentage (a, b, c, d, e) of the time required to make the type change. During this process,
the machine is steady in the ON state, consuming energy even if no processing is performed by the
machine. To calculate the respective energy consumption by each time interval (Table 2), it is necessary
to consider that:

(1) W0 is the energy consumption per unit of time with the system still active without
production activity;

(2) W1 is the energy consumption per unit of time used for the necessary movements; and
(3) W2 is the energy consumption per unit of time used to apply the changes.
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Table 2. Type change subdivision into blocks.

Block Time Energy Consumption

1 tend prod W0 × tend prod = W0 × a× ttype change

2 tchange prep W1 × b× ttype change + W0 × b× ttype change

3 te f f change W2 × c× ttype change + W1 × c× ttype change + W0 × c× ttype change

4 tstart prep W1 × d× ttype change + W0 × d× ttype change

5 tstart W0 ∗ tstart = W0 ∗ e ∗ ttype change

Finally, to obtain the energy consumption corresponding to the complete process of type change,
it is enough to calculate the equations presented in Table 2.

4.4. Cyber Physical Production System Model

In manufacturing, the application of Industry 4.0 technologies aims to reach several goals such
as the efficiency of production processes, costs reduction, and quality of services to customers.
The following definition summarizes the new paradigm for modelling and creating intelligent
production systems:

Industry 4.0 is a collective term for technologies and concepts of value chain organization. Within
the modular structured Smart Factories of Industry 4.0, Cyber-physical systems (CPS) monitor physical
processes, create a virtual copy of the physical world, and make decentralized decisions. Over the
IoT, CPS communicate and cooperate with humans and in real-time. Via the Internet of Services (IoS),
both internal and cross-organizational services are offered and utilized by participants of the value
chain [89].

A key role in the previous definition is played by the CPS, IoT, and IoS technologies.
In relation to the problem of energy efficiency in the manufacturing industry, Dubey et al. [90]

stated that to achieve intelligent energy-consumption decision-making, an energy cyber-physical
ecosystem [91] should be developed to monitor and manage the interactions and influences of
energy usage among various production stages. Data on these interactions can be delivered to
cyberspaces to achieve real-time monitoring and dynamic optimization of energy efficiency. Likewise,
Gerbert et al. [91] showed that the energy consumption of the manufacturing system can be minimized
throughout the production planning by system design.

Many definitions of CPS can be found in the literature; a useful review was presented [92].
The following definition of cyber-physical production system was introduced as a specialization
of the definition of CPS in the manufacturing field, and is suitable for the purposes of this
work, “Cyber-Physical Production Systems (CPPS) comprise smart machines, warehousing systems,
and production facilities that have been developed digitally and feature end-to-end ICT-based
integration, from inbound logistics to production, marketing, outbound logistics, and service” [93].

From these ideas, Figure 5 proposes a high-level model for the creation of an integrated system
consisting of CPPS, IoT, digital twin, and Production Planning and Control (PPC) software.

The model provides the bases for a set of indicators whose goal is to track the progress of units,
subsystems, orders, and industry operating processes. Assuming that the production process involves
the machines M1, M2, Mn, the CONTROL subsystem of each machine is in charge of the part program
execution (the set of instructions that drive the actuators to perform a job on a part or a product).
At the same time, a set of sensors collect execution data, such as machine operating status, number of
pieces processed, number of good pieces, etc., that provide information about the execution state of
the production process. Finally, the integration subsystem acts as a supervisor and coordinates the
work of other subsystems in the CPPS. In the model, the digital twin module plays the role of a virtual
copy of the underlying CPPS acting as a broker between the PPC software and the machines. It is a
faithful replica of the real world made of machines, their relationships, the related subsystems, and the
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tools employed during the production process. This produces a clear separation of responsibilities
for pursuing an easier software decomposition logic while obtaining the real-time characteristics and
simulation capabilities. An example of information flow is the following:

1. The Computer-Aided Design (CAD) engineer produces a part program and plans its execution
for a generic machine. It is a high-level message command that flows from the PPC software to
the digital twin.

2. At the planned starting time, the digital twin uploads the part program to the CONTROL
subsystem via the communication network.

3. The machine executes the part program; in the meanwhile, the sensors collect execution data,
returning them to the digital twin.

As for energy efficiency, snapshots of the actual energy consumption can be captured for both
the individual machine and the line. It is also possible to obtain consumption trends for individual
machines to obtain valuable indications for predictive maintenance of machinery. The next section
provides the details of the real-time computational method made possible by the implementation of a
cyber-physical system for a production line. The data collection system integrates the digital twin and
an IoT monitoring system to instantly know the state of health of the machine or the entire production
line, considering energy as well as other resources’ efficiency.
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5. Case Study

In the following, the application of OEE to an automotive manufacturing industry is illustrated to
determine the causes and amounts of energy waste in a production line based on the models proposed
in the previous section. The considered process assumes that the sheet metal strip is cut, drawn,
and deformed to produce the desired finished shape. To obtain the result, it is necessary to carry out
six operations for each product with different molds. To perform the operations, the system consists of
6 presses in sequence. Reading the model of Figure 6 from right to left, a robot picks up the strips
from the container positioned at the beginning of the line and places them on the oiling table. The
loading of the oiling table, the transfers from one press to the next, and unloading from the last press
to the output conveyor belt, are performed by 8 robots. Even if the system has the structure of a line,
from the point of view of energy consumption, it can be considered a unique “machine” because the
line is completely automated and the different components (robots, presses, control logic) are tightly
coupled. This allowed us to apply the model in Figure 5.
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First, consider the data in Table 3, which correspond to the daily planned time in the manufacturing
industry for a given period. Total time is used as a time base, which is defined as all time (at the rate of
24 h per day, 7 days per week), during the period being measured.

Table 3. The planned time for production.

Total Time TT 24.0 h
Not Scheduled ns 1.0 h
Plant Operating Time POT = TT − ns 23.0 h
Planned Shutdown ps 1.5 h
Planned Production Time PPT = POT − ps 21.5 h

The data values collected in the following tables refer to a two-month observation period. The
data were collected day by day while the values in tables are average values. Table 4 shows the average
values of loss causes C1, C2, and C3, from which we can calculate the availability.

Table 4. Availability calculation.

C1 (Type Change) ttype change 2.6 h
C2 (Plant Failure) tbreakdown 6.9 h

C3 (Start Up and Shut Down Transitory) ttransients 0.3 h
Down Time Loss (dtl) ttype change + tbreakdown + ttransients 9.8 h
Operating Time (OT) PPT − dtl 11.7 h
Availability Rate (A) OT/PPT 54.4%

The availability of the machine during the considered day does not reach the target according to
the Total Productive Maintenance (TPM) standard [11,13], which establishes that the ideal condition
is greater than 90%. This is mainly due to the excessive time used to make type changes (C1) and
plant failures (C2). These are activities that represent opportunities for improvement since they can be
susceptible to optimization processes.

The performance rate is calculated below, considering the corresponding speed losses. The average
cycle time in Table 5 is the duration of the time interval from picking the sheet metal strip from the input
buffer to the unloading on the output conveyor belt; 20 s is the average cycle time for all productions
that occurred over the stated observation period.
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Table 5. Performance calculation.

Average Cycle Ime act 20.0 s
No. Produced Parts npp 1834
Net Run Time (NRT) [(act× npp)/3600] 10.2 h

SPEED LOSS OT −NRT 1.5 h
C4 (Micro Stops) tmicro stops 0.3 h
C5 (Slow Down) tslowdown = tspeed loss − tmicro stops 1.2 h

Performance Rate (P) (NRT/OT) × 100 90%

In this scenario, the performance rate is also below ideal conditions, since the ideal theoretical
value must be greater than 95% according to the TPM standard [11].

The quality calculation according to the time loss causes is presented in Table 6.

Table 6. Quality calculation.

No. Scrap Parts spn 27
C6 (Quality Loss) (ql) (act× spn)/3600 0.2 h

Fully Productive Time (FPT) NRT − ql 10.3 h
Quality Rate (Q) (FPT/NRT)×100 98%

The quality reaches a value that allows it to be in ideal conditions, theoretically established by
Nakajima et al. [11] at values greater than 98%.

Finally, by substituting the before values in Equation (1), we obtain

OEE = (54.4× 90× 98) × 100 = 48%. (9)

As mentioned by De Ron et al. [13], the objective of the OEE is to have a metric showing the
performance of equipment. However, OEE is not directed only at the equipment but also includes
the effects of the environment of equipment. This is caused by the time losses expressed previously.
For this reason and considering the results obtained before, below, we present a more in-depth analysis
of the loss causes corresponding to availability, performance, and quality.

C1. Type Change Analysis

During the type change, maintenance, or other activities that do not require production to be
active, the production line may be off and have zero consumption. The situation where some systems,
more or less energy-consuming, must remain in operation frequently occurs because keeping the line
running has lower consumptions than switching off and on. For example, a hydraulic system of a
press that must be returned to the working pressure when restarting uses time and consumes more
energy than to keep it under pressure. In some cases, breakages due to the discharge transients and
reloading of the circuits can be generated.

Considering the values of consumed energy power of W0 = 30.0 kW (standby power),
W1 = 10.0 kW (average power to support), and W2 = 20.0 kW (average power in use), it is possible to
know the change in energy consumption of each type change for an individual block, as shown in
Figure 7. Those values correspond to the average values measured every day during the observation
period (two months) and were considered a reasonable approximation for the daily energy consumption
of the line on a 24 h basis.

According to International Energy Agency (IEA) [94], the emission of CO2 per kWh of electricity
generated using the electricity-specific method and the composite electricity/heat factors from the
International Energy Agency (IEA) in Italy in 2018 is 0.4 kg/kWh. Multiplying this value by the
total of ∆IC1 generated by the type change, we can calculate the equivalent in CO2 emissions to the
environment. The total value obtained corresponds to the environmental impact generated by the
energy loss during the type change process.
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Finally, the impact variation is converted into equivalent consumption of CO2. At this point, with
the variation in time, the environmental impact gradient ∆IC1 can be evaluated.

As can be seen in Table 7, the environmental impact corresponding to the energy loss derived
from type change operations is equivalent to the average emission of 47.5 kg of CO2 per day. Therefore,
an eventual improvement activity that involves the reduction of the time of change of production type
leads to a direct reduction of CO2.

Table 7. Energy consumption and environmental impact calculation due to type change.

∆IC1 Equation kWh CO2

∆Ia W0 × tend prod 12.5 5.0 kg
∆Ib (W0 + W1) × tchange prep 8.3 3.3 kg
∆Ic (W0 + W1 + W2) × te f f change 71.8 28.7 kg
∆Id (W0 + W1) × tstart prep 11.4 4.6 kg
∆Ie W0 × tstart 14.8 5.9 kg

TOTAL 118.8 47.5 kg

C2. Failure Analysis

For failure analysis, consider the data presented in Figure 8, which are related to the percentages of
average daily time spent in the maintenance process of a production line during the observation period.
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Considering the same values of consumed energy power presented above (W0 = 30.0 kW, standby
power; W1 = 10.0 kW, average power to support; and W2 = 20.0 kW, average power in use) the
change in energy consumption of each plant failure individual block is calculated.

To convert the change in energy consumption into equivalent consumption of CO2 and evaluate
the environmental impact gradient ∆IC2 due to energy loss in the process of maintenance to fix a plant
failure, the procedure in Table 8 is performed. The total value obtained represents the environmental
impact generated by the energy loss related to line failure.

Table 8. Energy consumption calculation due to plant failure.

∆IC1 Equation kWh CO2

∆Ia W0 × tend prod 18.6 7.5 kg
∆Ib (W0 + W1) × tprep maint 16.6 6.6 kg
∆Ic (W0 + W1 + W2) × te f f maint 265.0 106.0 kg
∆Id (V0 + V1) × tstart prep 22.1 8.8 kg
∆Ie V0 × tstart 26.9 10.8 kg

TOTAL 349.1 139.7 kg

This means that the total CO2 emissions to the environment corresponding to the energy losses
derived from plant failure in January and February 2020 are equivalent to 139.7 kg.

C3. Transients at the Start and End of Production

The transient analysis (Figure 9) is performed because during start up and shut down operations,
the line continues to consume energy. Although these quantities are less than those required by the
line during its part manufacturing process, they are considered energy losses because they do not
represent value generation. Similarly, they must be analyzed because they take a certain amount of
time before the line can start working correctly again. To do this, consider the values in Table 9.
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Table 9. Transitory times to start up and shut down.

Start Up and Shut Down Transitory (susd) 0.3 h
% Time for shut down transitory (a) 38%
Time for shut down transitory (tsd) a× susd 0.1 h

% Time for start up transitory (b) 62%
Time for start up transitory (tsu) b× susd 0.2 h
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The values of consumed energy power correspond to W0 = 30.0 kW (line power on standby),
W1 = 250.0 kW (power difference on the line running), and W2 = 5.0 kW (average power in use).
Therefore, the change in energy consumption due to transients at the start and end of production as
well as the environmental impact are presented in Table 10.

Table 10. Energy consumption calculation due to transient losses.

∆IC3 Equation kWh CO2

∆Ia ((W0 + W2) + (W1/2)) × tsd 18.2 7.3 kg
∆Ib ((W0 + W2) + (W1/2)) × tsu 29.8 11.9 kg

TOTAL 48.0 19.2 kg

Therefore, the 19.2 kg of CO2 emitted to the environment correspond to the energy losses caused
by the transients at the start and end of production. The linear behavior shown in Figure 9 is
an approximation of non-linear behavior that was considered a reasonable simplification since the
contribution of C3 to energy consumption is lower compared to the other causes of loss.

C4. Stops Not Attributable to Faults

Frequently, during the production process, the line must be stopped for reasons not attributable
to failures, such as preventive maintenance or auto-maintenance activities. During these short stops,
the line continues in the ON state and consuming energy, which is why the energy losses associated
with this variation and their environmental impact in terms of CO2 emissions were studied (Figure 10).
Consider the values for the same production line of the previous examples.
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In this case, the values of consumed energy power correspond to (W0 = 30.0 kW (standby power),
W1 = 10.0 kW (average power to support), and W2 = 10.0 kW (average power in use). When calculating
the change in energy consumption corresponding to micro-stops and the conversion of the change
in energy consumption into equivalent consumption of CO2 to determine the environmental impact
gradient ∆IC4 due to energy loss by stops not attributable to faults, also known as micro-stops,
the results in Table 11 were obtained.
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Table 11. Energy consumption calculation due to micro-stops.

∆IC4 Equation kWh CO2

∆Ia W0 × tend prod 0.0 0.0 kg
∆Ib (W0 + W1) × tprep maint 3.8 1.5 kg
∆Ic (W0 + W1 + W2) × te f f maint 6.9 2.8 kg
∆Id (W0 + W1) × tstart prep 1.9 0.8 kg
∆Ie W0 × tstart 0.5 0.2 kg

TOTAL 13.2 5.3 kg

As can be seen in the previous calculation (Table 11), the total CO2 emissions to the environment
equivalent to the energy losses from stops not attributable to faults is 5.3 kg.

C5. The Increases in Piece Cycle Time

To analyze this loss cause (Figure 11), the speed loss value (tslowdown = 1.2 h) presented in Table 5
was taken as a reference, which is the product of the difference between the operating time (OT) and the
net run time (NRT), which supposes an extension of the theoretical time necessary to produce a piece.
Likewise, in this case, the measurement of the energy consumption values of the production line under
study corresponds to a standby power of W0 = 30.0 kW -Standby power,W1 = 250.0 kW—Average
power to support, W2 = 5.0 kW—Average power in use.
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In this way, the change in energy consumption corresponding to slowdowns and its equivalent
environmental impact are shown in Table 12.

Table 12. Energy consumption and environmental impact due to slowdown.

∆IC5 Equation kWh CO2

∆Islowdown (W0 + W1 + W2) × tslowdown 345.2 138.1 kg

As a result, the energy loss corresponding to the increases in piece cycle time have a considerable
environmental impact, represented in the emission of 138.1 kg of CO2, which is why the performance
rate, as evidenced in Table 5, is below ideal conditions.
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C6. Waste

The waste as loss of quality (ql) is presented in Table 6 with a value of 0.2 h, corresponding to the
time invested for the production of parts that have not complied with the required characteristics and
therefore have been discarded or must be reworked. In this case, the values of W0, W1, and W2 are the
same as in the immediately previous analysis related to slowdowns, and follows the same pattern as
shown in Figure 11. Along the same lines, the change in energy consumption corresponding to waste
(∆IC6) and its equivalent to the environmental impact are presented in Table 13.

Table 13. Energy consumption due to waste.

∆IC6 Equation kWh CO2

∆Iql (W0 + W1 + W2) × ql 42.8 17.1 kg

According to the result in Table 13, 17.1 kg of CO2 is emitted to the environment due to energy
losses related to C6 waste.

Table 14 summarizes the energy consumption and CO2 emission for each different cause of loss.

Table 14. Energy consumption and CO2 emission summary.

∆IC6 kWh CO2

C1 (Type Change) 118.8 47.5 kg
C2 (Plant Failure) 349.1 139.7 kg

C3 (Start Up and Shut Down Transitory) 48.0 19.2 kg
C4 (Micro Stops) 13.2 5.3 kg
C5 (Slow Down) 345.2 138.1 kg
C6 (Quality Loss) 42.8 17.1 kg

Total 917.1 366.9 kg

The analysis performed on the data corresponding to the production line in the period
January–February 2020 allows for the determination of the environmental impact of CO2 emissions to
the environment associated with the six causes of energy loss studied (∆IC1 . . .∆IC6), which yielded a
total of 366.9 kg as the average value of the line on a 24 h basis.

6. Discussion

The efficient use of natural resources and the need to combat climate change are topics that
increasingly involve society, research, policy, and government in the debate on how to limit the impact
of human activities on environmental sustainability. To achieve this goal, the finalistic behavior
of human activities in economics requires a paradigm shift: instead of “maximum profit from the
minimum of capital,” we need to achieve “maximum profit from the minimum of resources” [10].

This paper addresses the topic of energy efficiency in batch production processes. We proposed
both a method to calculate the waste of energy from the OEE indicator during the type change of a batch
production process and a model that comprises a CPPS together with IoT components. The model
can be taken as a reference to implement PPC/MES software, which includes energy management.
There are at least two implications arising from our findings. First, new generations of PPC and MES
software systems can be developed for batch processes where energy is handled together with other
resources whose consumption can be planned, controlled, and optimized. Second, the acquisition of
precise information about energy losses, as well as productivity losses, motivates the activation of value
co-creation programs aiming at the reduction of the carbon footprint and reducing manufacturing costs.

The idea to consider integrating energy as a resource in MES software was also previously
discussed [33]. Unlike Bougain et al. [33], who focused primarily on machine characteristics, our work
highlights the advantage of optimizing a batch production process that minimizes the energy waste



Sustainability 2020, 12, 6631 21 of 28

that can occur during the various phases of a type change on the basis of accurate data collected by the
underlying CPS.

At a higher level, many research results emphasize how the efficiency of production
management decisions can be increased when integrating energy data, such as production planning
and scheduling [51], demand response, machine configuration, the configuration of production
processes [21], maintenance management, and logistics [49]. In this sense, the multi-disciplinary
analysis presented here has positive implications as a result of integrating energy consumption in
production planning and control of enterprise resources and processes. In addition to facilitating the
generation of management strategies that positively impact energy and economic savings, the CPS
model shown in Figure 5 allowed us to consider other improvements. For example, predictive
maintenance through IoT and big data techniques [52] can be achieved, from which improved
machinery availability and process performance can be derived. This aspect will be the next step of
this research.

Process optimization also reduces energy consumption [21]. For example, minimizing the time
of support activities that do not create value (e.g., handling work parts in a cell or maintenance
of machinery) contributes to an increase in overall energy efficiency. From this point of view,
the monitoring of the availability, performance, and quality of manufacturing equipment and/or
facilities becomes relevant. For this purpose, IoT devices, such as smart sensors and smart meters, are
generally used as tools for collecting accurate and real-time energy consumption data to be used in
scheduling optimization [21].

Since the OEE’s analysis related to the case study showed that the most important loss was due to
the failure of the machines belonging to the line, an improvement program was started for maintenance
activities, approached from the lens of value co-creation. The identified participant, the relationships
among them, and the technologies adopted (row 1) or identified for future implementation (rows
2–4) are shown in Table 15. During the development of the program, professional maintenance (PM)
software was developed to allow immediate internal maintainer intervention to restore the operation
of the faulty machine. The PM receives data either directly by the machine (through the CPPS) or from
the machine operator who uses the MES to report the failure.

Table 15. Maintenance activities.

No. Participant 1 Participant 2 Relationship Name Technology

1 Planner Internal maintainer
Time-based maintenance PPC (Machine Ledger in Excel)
Emergency maintenance CPPS/MES/PM

2 Planner External maintainer Condition based maintenance CPPS/IoT/Cloud Computing

3 Internal maintainer External maintainer
Condition based maintenance CPPS/IoT/Cloud Computing

Corrective maintenance

4 Planner Machine manufacturer
Corrective maintenance CPPS/IoT/Cloud Computing
Predictive maintenance

The continuous assessment of losses stratified by type allows a systematic approach to increasing the
OEE, producing better production performance and reducing energy consumption. As a consequence
of precise measurements of process variables, it is possible to use standard management techniques
according to the type of loss when a calculated average time value exceeds a defined threshold.
The following approaches have been used in manufacturing industries to improve the performance of the
production process: In the automotive industries, the World Class Manufacturing approach [95] adopted
Single-Minute Exchange of Die (SMED) [96], Kaizen [97], and advanced autonomous maintenance
management [11]. With reference to the case study, the values indicated below were considered for the
support of maintenance activity decisions. These are empirical values deduced from the observation
and analysis of historical data, and have produced acceptable results during the study.
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a. If the type change exceeds 2.5 h/day, the SMED methodologies must be applied to enable the
reduction of machine downtimes through the improvement of the changeover process.

b. If the stops due to a fault exceed 3 h/day, use the autonomous and/or professional
maintenance procedures.

c. If the transients exceed 0.5 h/day, Kaizen advanced methodologies must be applied for the
analysis of events.

d. If the micro-stops and the slowdowns exceed 0.5 and 1.5 h/day, respectively, use the advanced
autonomous maintenance.

Traditionally, the criticism of these methods for improving performance is derived from the
collection of data that can introduce errors and delays in decisions. The model in Figure 5 contributes
to overcoming these drawbacks as the data are collected automatically and in real time, allowing
automating the intervention requests to the interested bodies so that the necessary interventions can
be triggered promptly. This is an important achievement because each delay in the problem-solving
procedure incurs energy losses.

The case study discussed in this paper is representative of a scenario frequently occurring in
manufacturing. During the first application of this method, a gain of 7% was obtained on the OEE
value of Equation (9), increasing the value from 48 to 55%. This result was achieved by increasing the
availability value from 54.4 to 61.9% applying the time-based and emergency maintenance using the
technology mentioned in the first row of Table 15. As a result, the energy consumption decreases from
349.1 to 268.2 kWh and the corresponding emission of CO2 decreases from 139.7 to 107.3 kg in case C2
(plant failure). Other improvements can be obtained by applying the points a, c, and d previously
described. This is still far from the gold standard of OEE, but it was achieved by the adoption of PM
software to manage the emergency maintenance and by a simple process improvement during the type
change. Further improvements are expected by the implementation of the remaining maintenance
activities in Table 15 and by the optimization of operations during the type change.

Notably, the consumption data, collected during this study by an energy sensor located upstream
of the line, refer to batch production. However, the model in Figure 5 can also be adapted to other
layouts among those described in Section 2.1. For example, the factory in which we conducted this
study contains some large presses that operate as individual devices but also cell or multi-machine
systems. In the first case, the model is simplified as the production process affects only one machine.
In the case of cellular or multi-machine systems, the situation is similar to what has already been
observed for the line.

Decision makers should be aware that optimizing energy consumption on the factory floor is
a complex problem that requires different types of intervention to be better managed. We focused
on the combination of management methodologies and Industry 4.0 technologies, but other types
of intervention are possible. For example, industrial research has produced a new generation of
electric motors in which the energy consumed during the initial transient is gradually supplied by the
controller, avoiding unnecessary losses. Energy recovery presses and leak control systems [10] are
other examples of possible improvements.

Several future developments are possible from this work. In the developed analysis, we studied
the environmental impact in terms of CO2 consumption of machine production inefficiencies from
OEE-related losses of the transformation process. We could consider the proposed analysis method in
the seven lean production waste scenario, but the method must be enriched with the possibility to
manage views (for example, overproduction or material handling). Another development direction is
the idea of a single point of access for all the planning and control functions in real time also considering
the perspective of energy savings. This could be achieved even in the supply chain (material handling,
energy, human resources, machines allocation, etc.) and will imply the use of generalized algorithms
and Industry 4.0 technologies.
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Appendix A

Table A1. Summary of search terms used for the literature review.

No. Literature Search Strings No. of
Document Results

No. of Refined
Document Results

1 (“Overall Equipment Efficiency” OR OEE) AND (“Energy
management”) AND manufacturing 7 3

2 (“Overall Equipment Efficiency” OR OEE) AND (“Energy
efficiency”) AND manufacturing 24 13

3 (“Overall Equipment Efficiency” OR OEE) AND (“Energy
consumption”) AND manufacturing 31 19

4 (“Overall Equipment Efficiency” OR OEE) AND (“Energy
saving”) AND manufacturing 8 5

5 (“Overall Equipment Efficiency” OR OEE) AND Energy AND
“process optimization” AND manufacturing 4 0

6 (“Overall Equipment Efficiency” OR OEE) AND Energy AND
“process management” AND manufacturing 5 2

7
(“Overall Equipment Efficiency” OR OEE) AND Energy AND
(“Cyber-physical system” OR “Cyber physical system”)
AND manufacturing

4 4

8 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
(“Energy management”) AND manufacturing 118 26

9 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
(“Energy efficiency”) AND manufacturing 228 45

10 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
(“Energy consumption”) AND manufacturing 345 56

11 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
(“Energy saving”) AND manufacturing 89 12

12 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
Energy AND “process optimization” AND manufacturing 26 6

13 (“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
Energy AND “process management” AND manufacturing 32 8

14
(“Industry 4.0” OR (IoT OR “Internet of Things”)) AND
Energy AND (“Cyber-physical system” OR “Cyber physical
system”) AND manufacturing

191 77

15 “Value co-creation” AND manufacturing AND sustainability 150 29
Total number of refined document results 1262 305

Appendix B

Table A2. Relationship between factory layouts and management aspects.

Factory Layout

Device/Machine/
Unit Process

Line/Cell/
Multi-Machine System

Facility/Shop
Floor/Plant

Multi-Factory
System

Enterprise/Global
Supply Chain

M
an

ag
em

en
ta

sp
ec

ts OEE for energy management [33,34] [34,35] [36]
Optimization process in

manufacturing management [13,37–42] [41,42] [36,40,43]

Asset management in
operations and logistics [9,37,41,44] [45] [46] [43]

Facilities management,
materials, and equipment

management
[27,39,40,42,44,47] [49]
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Table A3. Relationship between factory layouts and technological aspects.

Factory Layout

Device/Machine/
Unit Process

Line/Cell/ Multi-
Machine System

Facility/Shop
Floor/Plant

Multi-Factory
System

Enterprise/Global
Supply Chain

Te
ch

no
lo

gi
ca

la
sp

ec
ts Energy management [50] [50] [16,52,53] [52]

IoT contribution
(monitoring, control, energy

management)
[50] [54] [16,45,52,53,55] [46,49] [51,56,57]

CPS contribution (planning,
optimization, energy

management)
[38,58–63] [48,54,64] [16,45,53,64,65] [46,69] [51,57,66–68]

Technical efficiency [51] [55]

Table A4. Relationship between factory layouts and value co-creation.

Factory Layout

Device/Machine/
Unit Process

Line/Cell/
Multi-Machine System

Facility/Shop
Floor/Plant

Multi-Factory
System

Enterprise/Global
Supply Chain

V
al

ue
co

-c
re

at
io

n

Sustainability [75]
Decision-making [75,79]

Resource integration [75,82]
Optimization [84,85] [86]

Information technologies [83,84] [85]
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