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Abstract: This research addresses the need for proactive climate risk management (CRM) by
developing and applying a spatial climate risk and vulnerability assessment (CRVA) to flooding under
consideration of the socio-economic dimension in Austria. Our research builds on a consolidated
risk and vulnerability framework targeting both disaster risk reduction (DRR) and climate change
adaptation (CCA) while integrating the consolidated risk approach of the Intergovernmental Panel
on Climate Change (IPCC). Furthermore, our research advances current methodologies by applying
a spatially explicit and indicator-based approach, which allows the targeted and place-specific
identification of intervention options—independent from the spatial bias of administrative units.
The flooding CRVA is based on a comprehensive list of 14 primary indicators and 35 socio-economic
sub-indicators. Our results indicate that high levels of socio-economic vulnerability related to flooding
are concentrated in the northern and eastern regions of Austria. When integrating a climate hazard
proxy, statistically significant risk hotspots (>90% confidence) can be identified in central-northern
Austria and towards the east. Furthermore, we established a typology of regions following a
spatially enabled clustering approach. Finally, our research provides a successful operationalization
of the IPCC Fifth Assessment Report (AR5) risk framework in combination with enhanced spatial
analysis methods.

Keywords: climate change adaptation; resilience; exposure; regionalization; aggregation; spatial
indicators; spatial analysis

1. Introduction

The occurrence of extreme natural events, such as droughts and floods, has increased during the
past decades [1] globally as well as in Austria [2]. Moreover, it is likely that extreme natural events will
become even more frequent in the future as climate change continues to evolve and socio-economic
development further shapes the drivers of risk. Under these conditions, river floods will affect more
people worldwide than any other natural hazard [1,3]. In the past, floods have occurred repeatedly
and often on a large scale in Austria, often entailing severe social and economic impacts as well as high
fiscal stress [4].

With the publication of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on
Climate Change (IPCC) [1], the focus on the integrative role of risk in responding to climate change
increased [4]. Floods are one type of climate-related risk and are traditionally dealt with in the
short-term, (often) reactive manner of disaster risk reduction (DRR) rather than in combination with a
long-term, foresighted climate change adaptation (CCA) view. To more effectively manage such climate
risks, it is necessary to establish a link between DRR and CCA and address those in an integrated
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manner. A proactive approach to climate risk management (CRM) is essential for comprehensively
addressing climate-related risks and successfully coping with the challenges at the interface of CCA
and DRR.

In this research, we developed and applied a spatial climate risk and vulnerability assessment (CRVA)
for floods in Austria. Specifically, we developed a risk and vulnerability framework targeting both DRR
and CCA, while building on the consolidated AR5 risk approach of the IPCC. Furthermore, our research
advances current methodologies by applying a spatially explicit and indicator-based approach, which
allows for targeted and place-specific identification of intervention options—independent from the
spatial bias of administrative units. To be able to conduct the research independent of the constraints of
administrative units, we applied the geons approach [5]. The geons concept of creating “homogenous
regions of risk/vulnerability” significantly surpasses other methods, such as the concept of spatial
composite indicators or multi-criteria assessment approaches [6–11]. Visualising such homogenous
regions encourages decision-makers to reflect on complex issues such as vulnerability and, ultimately,
risk. Another benefit of using geons is the ability to categorize the resulting risk/vulnerability regions
into their underlying domains. Such a categorisation can help to improve the design of place-specific
measures that can strengthen preparedness and mitigation measures [12], thus laying the foundation for
a well-targeted, effective and successful CRM. Similar assessments in Austria have either been conducted
on the sub-national scale level [6,12] and/or applied a more traditional approach using gridded units [13].
This study, on the other hand, establishes a CRVA for floods at the national scale in Austria and makes
use of the novel geons approach, thus improving significantly on the previous studies conducted in
the field.

In summary, this paper addresses the following research questions: (i) Which indicators represent
the socio-economic drivers determining risk and vulnerability to river floods in Austria?; (ii) which
regions in Austria are subjected to higher and which to lower risk and vulnerability?; (iii) in this
context, how could a spatial CRVA of river floods in Austria be approached methodologically?; and (iv)
how can risk be delineated based on geons, making use of the available quantitative data for Austria
and how can such regions be characterized beyond an index approach?

2. Materials and Methods

2.1. Study Area

The study area comprises the entire federal territory of the Republic of Austria, located in central
Europe. The country covers an area of 83,879 km2 and has about 8.9 million inhabitants with a
population density of 105 inhabitants per km2 in the cadastral area and 269 inhabitants per km2 in the
permanent settlement areas. Over 60% of the Austrian federal territory is not occupied by permanent
settlements but instead is covered by forests, bodies of water, alpine meadows and the wastelands of
high mountain regions.

The precipitation conditions in Austria are highly diverse even on a very small scale, due to the
country’s varying topography and its location at the intersection of different climatic regimes. The total
annual precipitation ranges from about 500 mm in the northeastern areas to more than 2000 mm in
Alpine regions. In addition to the influence of the Alps, a west–east divide is also evident in Austria.
The continental influence increases and precipitation decreases towards the east [14].

While floods of varying intensity occur every year throughout Austria, major events took place in
2002, 2005, 2013 and 2018. Identifying robust future trends in precipitation is challenging for climate
modellers, and an increase in extreme events is expected in the future [15]. Overall, climate projection
analysis [16] suggests that the measured flood discharges have increased in recent years, but the
increase is still well within the natural flood variability. In the Alps, significantly higher winter runoff

is expected in the future [17]. Furthermore, studies on future flood risk propose that an integrated
flood risk management approach that focusses on the reduction in vulnerability of the societal system
is required [16].
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2.2. Conceptual Risk Framework

The IPCC AR5 risk framework serves as the core definition of risk for the CRVA presented in this
paper. In the context of climate-related impacts, risk is defined as a combination of three interacting
components [1]: climate-related hazards (including hazardous events and trends), vulnerability of
human and natural systems and its exposure in places and settings that could be adversely affected.
While the hazard component indicators could be derived from impact model results (such as scenarios
on future flood extents), the vulnerability and the exposure components require a more explicit
definition, as even the IPCC AR5 definition of these sub-components are not entirely clear.

A holistic approach, considering both the natural hazard risks and the threats to human security,
must be considered jointly for a successful CRM. As environmental conditions change, societies need
to become more resilient by reducing their vulnerability to natural hazards [18].

The MOVE risk framework [18] builds on a similar definition of risk as the IPCC AR5, defining risk
as a ‘function’ of hazard, exposure and vulnerability (MOVE stands for “Methods for the Improvement
of Vulnerability Assessment in Europe” and was a research project funded under the EU FP7 research
program. The risk and vulnerability framework is an outcome of this project). We took the MOVE
framework into consideration in this assessment to specifically define the domains and dimensions of
vulnerability, which are not yet clearly laid out in the IPCC reports. Thus, for our CRVA, the MOVE
framework was adapted to be consistent with the IPCC framing, as shown in Figure 1. The following
modifications have been made to the original MOVE framework:

• For the overall definition of risk, we retain the IPCC definition, which understands exposure
as an interlinked component between hazard and risk: ‘Under exposed conditions, the levels
and types of adverse impacts will be the result of a physical event (or events) interacting with
socially constructed conditions denoted as vulnerability’ [19]. In the MOVE framework, exposure
is understood as a component of vulnerability. While this is not a major modification, it supports
the consistent integration of the AR5 risk framing.

• The six thematic dimensions of vulnerability are now used in both domains of susceptibility and
lack of resilience, and do not only address “susceptibility” alone. Furthermore, we refrain from
using the term fragility—as originally used in the MOVE framework—and only use the term
susceptibility, as the difference between the two terms has never been clarified. Thus, in this case,
the aim is to simplify the definition by only using the term susceptibility.

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 22 

2.2. Conceptual Risk Framework 

The IPCC AR5 risk framework serves as the core definition of risk for the CRVA presented in 
this paper. In the context of climate-related impacts, risk is defined as a combination of three 
interacting components [1]: climate-related hazards (including hazardous events and trends), 
vulnerability of human and natural systems and its exposure in places and settings that could be 
adversely affected. While the hazard component indicators could be derived from impact model 
results (such as scenarios on future flood extents), the vulnerability and the exposure components 
require a more explicit definition, as even the IPCC AR5 definition of these sub-components are not 
entirely clear. 

A holistic approach, considering both the natural hazard risks and the threats to human security, 
must be considered jointly for a successful CRM. As environmental conditions change, societies need 
to become more resilient by reducing their vulnerability to natural hazards [18].  

The MOVE risk framework [18] builds on a similar definition of risk as the IPCC AR5, defining 
risk as a ‘function’ of hazard, exposure and vulnerability (MOVE stands for “Methods for the 
Improvement of Vulnerability Assessment in Europe” and was a research project funded under the 
EU FP7 research program. The risk and vulnerability framework is an outcome of this project). We 
took the MOVE framework into consideration in this assessment to specifically define the domains 
and dimensions of vulnerability, which are not yet clearly laid out in the IPCC reports. Thus, for our 
CRVA, the MOVE framework was adapted to be consistent with the IPCC framing, as shown in 
Figure 1. The following modifications have been made to the original MOVE framework: 

 For the overall definition of risk, we retain the IPCC definition, which understands exposure as 
an interlinked component between hazard and risk: ‘Under exposed conditions, the levels and 
types of adverse impacts will be the result of a physical event (or events) interacting with socially 
constructed conditions denoted as vulnerability’ [19]. In the MOVE framework, exposure is 
understood as a component of vulnerability. While this is not a major modification, it supports 
the consistent integration of the AR5 risk framing. 

 The six thematic dimensions of vulnerability are now used in both domains of susceptibility and 
lack of resilience, and do not only address “susceptibility” alone. Furthermore, we refrain from 
using the term fragility—as originally used in the MOVE framework—and only use the term 
susceptibility, as the difference between the two terms has never been clarified. Thus, in this 
case, the aim is to simplify the definition by only using the term susceptibility. 

 

Figure 1. Applied risk and vulnerability framework (adapted from [18]...) 

The MOVE concept emphasizes that the hazard component of risk is linked to natural or socio-
natural events, whereas vulnerability mainly results from societal conditions and processes, which 
reflect the understanding of the IPCC AR5 thinking. Generally, the framework includes domains (or 
key factors) of vulnerability and distinguishes between the different thematic dimensions of 
vulnerability ([18]). For this study, we addressed the socio-economic (combining social and 
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The MOVE concept emphasizes that the hazard component of risk is linked to natural or
socio-natural events, whereas vulnerability mainly results from societal conditions and processes,
which reflect the understanding of the IPCC AR5 thinking. Generally, the framework includes domains
(or key factors) of vulnerability and distinguishes between the different thematic dimensions of
vulnerability ([18]). For this study, we addressed the socio-economic (combining social and economic)
dimension. Because the social and the economic dimensions appeared to be frequently interlinked,
they were merged into one socio-economic dimension.
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2.3. Risk Drivers, Indicators/Proxies and Related Data

In general, the indicator selection process must be primarily driven by the relevance of the
indicators, rather than simply using whatever data are available. Lange [20] argues that indicators
should be chosen on the basis of their analytical suitability, measurability, spatial coverage, relevance
to the phenomenon of assessment as well as their relationship to one another. Thus, we selected
the indicators based on their relevance for the national flood hazard assessment for Austria and
their applicability to the vulnerability domain (and dimension). This ensures that indicators are
context-specific. However, in reality, the final choice of indicators is also data-driven, meaning that
the availability of data also determines the choice of indicators to a certain extent [21]. In our case,
suitable data had to be accessible and (except for the census data, which are provided by Statistik
Austria (StatAT) for a fee) had to be open access, which did not affect the final choice of indicators.
A further criterion for the choice of appropriate indicators was that data are available nationwide and
based on a 1 km2 regular grid or could be aggregated to it.

Based on the recommendation of a context-driven indicator selection process, we took the results
of a literature review as the starting point. However, the authors’ expert knowledge (including
individual expert consultation) and the availability of the datasets determined the final choice of the
indicators. Furthermore, previous vulnerability assessments [6,12] on sub-national scale—including
“validated” indicators—additionally informed the selection of the indicators.

Table 1 presents the refined and final list of indicators used for the risk assessment, distinguished
by the three different components of risk–hazard, exposure and vulnerability—and, in the case of
vulnerability, by its subordinate dimensions (in this case, socio-economic). In most cases, sub-indices
were developed to better integrate and weight sub-indicators [12]. The weights were assigned by
the authors based on their expert judgement and informed by previous studies [6,12]. Appendix A
discusses in detail the indicator framework with the relevant data used for each risk component,
its justification, and the literature references for each indicator.

Table 1. Overview of the indicators used to assess the socio-economic dimension of risk to floods in
Austria in the context of climate change.

Indicator Sub-indicator Sign Data Source Weight Date

HAZARD maximum 5 day
precipitation

(RCP4.5, RCP8.5; 19712000,
2071–2100) ÖKS15 2016

EXPOSURE Perm. Settlement
Area StatAT 2011

V
U

LN
ER

B
A

IL
IT

Y

Su
sc

ep
ti

bi
lit

y

Transport
infrastructure

Highways + GIP 0.25 2017

Primary Roads + GIP 0.25 2017

Secondary Roads + GIP 0.25 2017

Railway + GIP 0.25 2017

Employment by
sectors

Emp. in primary sector + StatAT 0.5 2015

Emp. in secondary sector + StatAT 0.35 2015

Emp in tertiary sector + StatAT 0.15 2015

Age

Population under 20 years + StatAT 0.4 2016

Pop. between 20 and 64 years + StatAT 0.2 2016

Pop. over 64 years + StatAT 0.4 2016

Ecosystem
services

Food production + CLC 0.3 2012

Disturbance regulation – CLC 0.25 2012

Recreation + CLC 0.2 2012

Cultural 1 + CLC - 2012

Raw materials + CLC 0.25 2012
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Table 1. Cont.

Indicator Sub-indicator Sign Data Source Weight Date

V
U

LN
ER

B
A

IL
IT

Y

Su
sc

ep
ti

bi
lit

y

Land use

Cropland + CLC 0.2 2012

Pasture + CLC 0.2 2012

Woodland/forest + CLC 0.1 2012

Industrial/commercial + CLC 0.25 2012

Urban + CLC 0.25 2012

Urbanization + CadENV 1 2006–2012

La
ck

of
R

es
ili

en
ce

LcA2 Early warning
system (EWS)

EWS for river – BMNT 0.75 2018

EWS for catchment + BMNT 0.25 2018

La
ck

in
g

ca
pa

ci
ty

to
co

pe

Origin

Origin Austria + StatAT 0.275 2016

EU/Northern America/AUS + StatAT 0.325 2016

MEDCs 3/LEDSs 4/unknown + StatAT 0.4 2016

Education

Academic degree – StatAT 0.23 2015

Higher school certificate – StatAT 0.23 2015

Apprenticeship – StatAT 0.23 2015

Compulsory school certificate – StatAT 0.3 2015

Accessibility

Access to health services – StatAT 0.5 2014

Access to security services – StatAT 0.25 2014

Access to retail services – StatAT 0.25 2014

Unemployment + StatAT 1 2015

Size of companies

Micro-enterprises + StatAT 0.4 2011

Small enterprises + StatAT 0.3 2011

Medium-sized enterprises + StatAT 0.2 2011

Large enterprises + StatAT 0.1 2011
1 Indicator was removed due to high correlations; 2 lacking capacity to anticipate; 3 more economically developed
countries; 4 less economically developed countries.

2.4. Data Preprocessing, Correlation Analysis and Corrections

To combine the different vulnerability data with the CRVA (Figure 2), they were aggregated on a
regular grid/reference basis [6]. Statistik Austria offers a nationwide, regional statistical 1 km2 grid
based on the ETRS LAEA projection following the EU Infrastructure for Spatial Information in the
European Community (INSPIRE) directive [22].

Before continuing with the index calculation, possible corrections to the indicator values
must be considered, such as the identification of missing values or outliers [23]. Subsequently,
descriptive statistics, including missing values, the minimum and maximum and standard deviation,
were calculated for each vulnerability indicator [23,24]. The descriptive statistics showed that missing
values were not a problem. This can be attributed to the diverse datasets and, consequently, different
value ranges used. In this case of spatially explicit data, skewness and kurtosis were excluded from
the descriptive statistics. The reason is that—aside from using example data with administrative
boundaries as a basis—this spatially explicit grid-based approach results in higher skewness and
kurtosis: a high number of grid cells tend to take a value of zero. Extreme outliers were detected for the
following indicators: small enterprises and medium-sized enterprises. To avoid the extreme outliers,
we used the method of winsorization, with which the extreme outlier values were assigned the next
best value [23,24]. The last adjustment to the data was the assignment of the corresponding signs,
as shown in Table 1, which indicate whether an indicator increases or decreases the vulnerability/risk.

Following the recommendations of OECD and Saisana [23,24], the indicators were evaluated for
multi-collinearities. For this purpose, we used the Pearson correlation coefficient, which is the most
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reliable correlation measure for metric data [20]. Highly collinear sub-indicators (r > 0.92) contributing
to the same composite indicator had to be treated according to Saisana [24] either by eliminating one of
the two or counting them as a single indicator. Otherwise, they would have influenced the later results
and dominated the sub-index values of the respective indicators.
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All sub-indicators of the composite indicator age distribution were highly correlated (population
under 20 years and population between 20 and 64 years with r = 0.98, population under 20 years and
population over 64 years with r = 0.95 as well as population between 20 and 64 years and population
between 20 and 64 years with r = 0.95). Nevertheless, eliminating one of the sub-indicators was not
an option as all of them were considered relevant. Rather, they were weighted to account for the
different ways in which they influence flood vulnerability. The sub-indicators disturbance regulation
and cultural also displayed a high correlation (r = 0.94). This is probably because of overlaps in the
input data (CORINE Land Cover—CLC). We decided to eliminate the sub-indicator cultural because
disturbance regulation can be assumed to have a higher significance with regard to floods. Additionally,
the sub-indicators origin Europe/Northern America/Australia and origin ‘more economically developed
countries’ (MEDCs)/‘less economically developed countries’ (LEDSs)/unknown showed an extremely
high correlation (r = 0.99). It could be presumed that people of an origin other than Austria generally
live in certain areas, for example, bigger cities due to job opportunities. We decided to keep both of
these sub-indicators as they are, and to instead apply weights (Table 1) in the next step (Figure 2).

Furthermore, the sub-indicators academic degree and matura or other higher school certificate
(r = 0.97) as well as apprenticeship and compulsory school certificate (r = 0.95), all contributing to the
composite indicator education level, were correlated on a level above the critical threshold. Since those
sub-indicators were to be integrated into one composite indicator anyway and eliminating certain
ones was not considered a good option, they were kept for further index construction, but we applied
different weightings. Finally, the sub-indicators access to health services and access to retail services
(r = 0.95) showed a correlation exceeding the critical threshold. This is most likely because health
services are often present in similar areas as retail services, for example, urban centres. As counting those
two as a single indicator would not have made sense due to their different thematic context and they
appeared to both be too significant to eliminate, they were both kept for the index construction. In the
next step of aggregation, those sub-indicators were summed up to a respective composite indicator.
This step was—to some extent—used to balance out certain inconsistencies through weighting.



Sustainability 2020, 12, 6458 7 of 21

2.5. Normalization, Aggregation and Regionalisation of Indicators

Before weighting and aggregating the sub-indicators to sub-indices (composite indicators),
the input variables needed to be normalized as they had different units of measurement and value
ranges. To render data comparable, the different datasets were normalized using a linear min–max
normalization. In a min–max normalization, the initial values are transformed to a value range between
zero (minimum of the initial values xmin) and one (maximum of the initial values xmax) [6,12,20,24,25].
We decided to determine the weights for the sub-indicators normatively based on the considerations
outlined above: When there were clear reasons to weight a sub-indicator higher or lower than the
others, we did. When this was not the case, we applied equal weights to the sub-indicators. The chosen
weights are presented in Table 1. The sub-indicators of the vulnerability indicators were aggregated
using weighted arithmetic means (Figure 2). Subsequently, the datasets were converted to TIFF-files
and normalised to an 8-bit scale range (to make use of the full “radiometric” spectrum of raster datasets)
and integrated into the Trimble eCognition software environment to carry out the regionalisation and
aggregation of composite indicators and risk components to the vulnerability and risk indices.

Exposure—represented by the permanent settlement area—was integrated into the vulnerability
domain by deducting non-settlement areas. Thus, no weighting was performed. Only areas irrelevant
to the vulnerability component were eliminated from further integration towards risk and vulnerability.
This ensured that geons were formed on the basis of the exposed area only. As a result, the vulnerability
layers for the socio-economic dimension were spatially limited to the permanent settlement area in
Austria. This task was carried out in eCognition, where the area of regionalisation was limited to the
exposed area only.

The vulnerability regions were derived from the (weighted) vulnerability indicators (Figure 2).
A multiresolution segmentation algorithm was applied [26] to delineate homogeneous regions (geons)
of vulnerability and risk. This segmentation algorithm allows the establishment of highly homogeneous
regions of any resolution from different types of data. Multiresolution segmentation enables [26] an
even growth of image objects over the analysis extent and balances regions of high and low data
variance [6,10]. The assignment of weights to each vulnerability indicator and the choice of shape values
(compactness versus smoothness) and a scale parameter can influence the size and shape of the final
homogeneous units as well as the final index value itself. In the absence of justifiable weights, we chose
to apply equal weighting to combine the composite indicators. We used the ESP2 tool to identify the
scale parameter [27], which provides an algorithm to create local variance (LV) and rate of change
(ROC) graphs automatically based on certain input data layers. Thus, based on the interpretation of the
LV and ROC graphs, a scale parameter of 12 was selected for the socio-economic vulnerability index
(flood). The shape index for two-dimensional regions is defined as the border length feature of the
object divided by four times the square root of its area. The smoother the region border, the lower the
shape index of this object. Consequently, the shape index can be generally described as representing
the smoothness of an object border, balancing out the smoothness of an object against its compactness.
Thus, the generated spatial regions can be compact or have smooth outlines [6,28]. Both the shape and
compactness criteria were set to a relatively low value of 0.1, because for the delineation of vulnerability
or risk regions, there is no need for units to be as compact and smooth as possible.

Thus, by carrying out the multiresolution segmentation using the parameter values as specified
above, we delineated vulnerability and risk regions (as integrated geons) that share a commonality
regarding their underlying indicator values and a spatial constraint. Subsequently, a vulnerability
index was determined, calculating the weighted vector magnitude—the length of the vector for each
region—considering the different composite vulnerability indicators in the multidimensional indicator
space [6]. As a final step in the delineation of vulnerability regions, the outlines of the geons were
smoothed using a smoothing algorithm, namely the polynomial approximation with an exponential
kernel algorithm (with the tolerance parameter set to 3000 m) [7,8].

To conclude the climate risk assessment workflow (Figure 2), the indicator maximum five-day
precipitation amount (rx5) was used as a hazard proxy (deriving from the ÖKS15-datasets [15]).
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rx5 is the largest precipitation sum over a continuous period of five days [15]. The RCP4.5 and
RCP8.5 scenarios for the climate period representing the climate period at the end of the century
(~2100) were used. The respective rx5 indicator for the present-day conditions was generalised using
the segmentation algorithm to derive geons with normalised rx5 values to the standard scale of
0–100. The two geon datasets, hazard and socio-economic flood vulnerability (including the exposure
component), were then merged (intersect) in a first step. An additional segmentation, based on the
intersected regions, was conducted to merge regions of similar values in the different indicators towards
new homogenous regions of similar risk (see approach developed by [11]). This stepwise integration
approach preserves “strong” region borders of the hazard proxy and vulnerability regions to ease the
comprehensive analysis of the resulting maps. Finally, a risk index value was calculated using the
geometric mean, to account for zero values, e.g., for zero hazard values that also result in zero risk
values. Due to the non-availability of any socio-economic vulnerability indicator for future scenarios
on the required spatial scale level, we did not develop any future risk indices. However, the change in
the hazard proxy (rx5) was visually overlaid over the risk assessment and indicates increases/decreases
in rx5 for the given scenarios.

The final index scores were normalized to a zero to 100 range for visualisation. The results
were visualized following best practice [29] with an unclassed colour gradient with a continuous
colour scheme of orange for socio-economic vulnerability (Figure 3) and violet for risk (Figure 4).
For transparency reasons, the roughly associated histogram of the index values is presented along
with the legend on the maps [11]. Furthermore, the contributing factors (inter alia indicator values) per
geon are shown as bar charts for the three selected regions (see Figure 3).
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socio-economic vulnerability (incl. exposure) and the hazard proxy.

2.6. Mapping Hotspots and Clusters of Socio-Economic Vulnerability

High risk scores are of interest but do not necessarily represent a statistically significant hotspot [30].
Therefore, we applied the Getis-Ord Gi* statistic [31,32] to identify cold and hotspots of socio-economic
risk to floods in Austria. Using the present-day risk scores per geon as an input, the method highlights
statistically significant spatial clusters of high (i.e., hotspots) and low vulnerability index values
(i.e., cold spots) for 90% (p-value < 0.1), 95% (p-value < 0.05) and 99% (p-value < 0.01) confidence
levels. The resulting hot/cold spot map (Figure 5) shows hot and cold spots based on the different
confidence levels.

For the vulnerability component, the vulnerability index scores together with the bar charts
(Figure 3) allow for an individual and geon-specific interpretation of contributing factors for each
region. However, to provide and establish a general typology of the geons based on their contributing
factors, we applied a multivariate clustering analysis based on the k-means algorithm [33]. The k-means
algorithm aims to separate the objects so that the differences between the objects in a cluster—across
all clusters—are minimized. A classification into five different cluster types seemed to be the most
appropriate most appropriate to reflect the vulnerability landscape of Austria (Figure 5). Accompanying
box plots provide details on both the characteristics of each cluster and each indicator used.
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3. Results

The map in Figure 3 shows that the socio-economic vulnerability regions coincide with the major
settlement characteristics. Especially striking are some parts of eastern Austria, where high levels
of vulnerability seem to be prevalent, most likely related to the rural, peripheral and agricultural
characteristics of the area. Apart from that, the urban centres represent socio-economic vulnerability
hotspots as well. For instance, locations in Vienna, Salzburg, Graz and Linz are characterized by
higher vulnerability, which seems plausible since urban centres can be social flashpoints. The areas in
the north and southeast of Austria partly reach somewhat lower vulnerability levels. The peripheral
and mountainous regions of central and western Austria tend to show lower vulnerability values.
For three selected geons, the contributing vulnerability indicators are shown in the bar charts. The three
selected regions also represent different vulnerability characteristics, with varying contributions of the
individual indicators.

In the present-day climate risk assessment (Figure 4), distinctive socio-economic risk regions
also appear. High-risk values can be observed in the northern centre of Austria (southeast of the
city of Linz), reflecting both higher values in vulnerability/exposure and hazard. The hotspots in the
east, representing high vulnerability values, are the result of a lack of early warning systems (Leitha
catchment). A few isolated hotspots also occur in the south and in northern alpine regions towards the
west (Tyrol and Vorarlberg).
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Possible future climate change scenarios have not been directly implemented into a scenario-based
risk index. Figure 6 shows recent changes in rx5 (2010–1986 to 1985–1961) in the southern parts of the
Alps and a decrease in rx5 days can be observed in inner alpine areas. However, the future scenarios
until 2100 RCP4.5 and RCP8.5 suggest an increase in rx5 days. While for RCP4.5 the increase in rx5
days is strongest in the east, in the RCP8.5 scenario the areas in central-northern Austria (northern
Salzburg and Upper Austria) show a stronger increase. When interpreting the results, it is important
to consider uncertainties in precipitation projections for the future.
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The hotspot analysis (Getis-Ord Gi*) shown in Figure 5a shows hotspots (>90% confidence) in the
pre-alpine areas of central-northern Austria (Salzburg, Upper Austria), northeastern Austria, in the
south (Gailtal) as well as in the east (Leitha catchment), where the early warning system is not yet
available. Cold spots (> 90% confidence) include eastern areas (Wiener Wald area), and the valleys in
the west (Inn valley), as well as some areas in the southeast (central Styria).

The multivariate cluster analysis resulted in five geon types (Figure 5b) that can be categorised
into three rural and two urban types. The rural geon types include the clusters rural—extra-alpine,
rural—concentration and rural—peripheral. Rural—concentration mainly encompasses areas with
high population dynamics close to regional centres. Interestingly, the clusters rural—extra-alpine
and rural—peripheral also reflect the physical morphology of Austria to a certain extent. The cluster
superurban is only present in Vienna (east), which is the only major urban agglomeration in Austria.
Its singularity compared to the other clusters is clearly reflected in the accompanying box plots in
Figure A2. The cluster urban includes other relevant urban areas in Austria.

4. Discussion

We successfully developed an indicator framework based on a literature review to assess the
current state-of-the-art and indicators used in previously conducted CRVAs. This was structured
following a combination of the IPCC AR5 risk framework and the MOVE framework [18]. In the
scope of the indicator selection process, the relevant indicators for the assessment of flood occurrence
and the associated socio-economic dimension were identified. To appropriately assess the complex
phenomenon of flood risk, well-approved methodologies in combination with novel representations
were used to construct risk and vulnerability indices. Subsequently, regionalizing areas of homogenous
vulnerability and risk levels resulted in integrated geons.
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In general, the flood risk and vulnerability maps reflect the topography, as risk and vulnerability
decrease or disappear towards the mountainous terrain of the Alps. Furthermore, flood risk and
vulnerability tend to concentrate around settlement and transport axes across the country. Urban
centres, as well as rural and agricultural areas, were shown to be at higher risk.

We were able to conduct an assessment on a fine-scale, thus, differences can already be seen within
a town on a spatial scale of 1 km2 (for the vulnerability data). The assessment was carried out on a
national scale, making a nationwide image possible. Thus, the CRVA undertaken as part of this study
can serve as a basis to identify appropriate and relevant place-based intervention measures [12] with
the aim of reducing flood risk in Austria. However, it should be noted that the risk maps present
potential scenarios and not precise predictions or probabilities [11]. To make results publicly available,
the design of a web-tool visualizing the risk and vulnerability maps and respective diagrams in an
interactive way would be helpful and is recommended to be part of future developments.

The presented approach for a CRVA for floods can be transferred to assess risk in other countries or
regions. However, the respective indicators and methodologies should always be checked and (slightly)
modified depending on the intended use. This ensures a proper assessment of the concept being
measured. In general, it is important to keep in mind that there is a scale gap between vulnerability,
exposure, and hazard data. As a national-scaled assessment of flood risk and vulnerability was the aim,
an abstraction to a 1 km2 spatial resolution can already be considered fine-scale. However, the hazard
component was included based on continuous data derived from climate change models and can serve
as a proxy only to reflect flooding conditions. Hydrologically-based probability data (e.g., future HQ30,
HQ100 etc.) would be ideal, but are currently not available for Austria.

The absence of a risk index value equating to 100 or even getting close to that might serve as proof
for the diversity of indicators. This can be seen as a positive characteristic of the conducted CRVA:
it is natural that one region does not reach the highest values for the entire set of different indicators.
Furthermore, it should be kept in mind that the use of the vector magnitude makes changes in the
larger indicator values impact the index more intensely than changes in smaller values [11].

The spatial structures and distributions of different risk levels seem to be in fair agreement with
the underlying indicator value distributions. The resulting patterns appear plausible and correspond
with topographic characteristics, population patterns, socio-economic as well as physical factors and
hazard zonings. The risk maps provide a possibility to visualise spatially explicit information and
integrate several factors related to floods. Thus, an overview of various risk factors is given in an
integrated manner. This not only enables exploration of the different factors, but also the quality
of risk can be examined by evaluating the risk units and the respective factors contributing to and
characterizing these regions.

In addition, the conducted CRVA proves the operationalization of the geon concept and related
methodology (see research question 3) for successfully regionalizing spatially explicit data into risk
and vulnerability units. Thus, innovative techniques from the field of remote sensing analysis,
combined with index construction approaches for the assessment of complex phenomena such as
risk and vulnerability, succeed in mapping risk and vulnerability on a national level, independent of
administrative boundaries, in contrast to similar studies which have been limited by administrative
boundaries [13]. Working independently of the administrative boundaries reduces unit-related biases,
such as the modifiable areal unit problem [34], as well as the related effect of ecological fallacy [12].
Furthermore, we explored options to characterise the regions more “qualitatively”, by applying a
spatially enabled clustering approach (see also research question 4). As such, similar types of regions
could be identified, which helps to generalise potential intervention measures for these specific
typologies. Besides this statistically driven approach, further opportunities—such as threshold-based
approaches, including classifications—should be explored in the future.

Apart from identifying hotspot areas, as a core objective, the derived regions of equal risk and
vulnerability can serve as a basis to develop place-specific climate change adaptation and intervention
measures to combat the impacts of floods in the future. For instance, such measures might be river



Sustainability 2020, 12, 6458 13 of 21

basin management and flood risk management plans; the empowerment of community actions;
the development of different adapted prevention; protection and preparedness actions; or generally
more informed technical, financial, and political decisions. A region can be examined and visualized
in terms of the underlying indicators. This enables the choice of the appropriate measures for each
region as adequate intervention measures may differ from one region to another. Finally, a number of
challenges and difficulties are constituted in the assessment of risk and vulnerability in combination
with the geon approach, for instance, those related to data availability [12] or scale gaps between
different data sources.

5. Conclusions

Overall, we conclude that we have proven the successful implementation of the IPCC AR5 risk
framework while expanding and clarifying the definition of vulnerability. Furthermore, we applied the
geon approach for a CRVA in Austria and significantly expanded on the scope of previous studies [6,12]
through the identification of regional typologies. A challenge remains the validation of the results,
which is, to a certain extent, questionable, if such latent potentials can be validated at all. Furthermore,
it is required to integrate such assessment approaches in a strong stakeholder dialogue to be able to
untangle and clearly “appreciate” complexity as well as uncertainties deriving from concepts, used data
and applied methods. However, this study contributes to the continuous advancement of knowledge
to successfully address climate change risks through informed and evidence-based decision-making.

Author Contributions: Conceptualization, S.K. and J.-L.L.; methodology, J.-L.L. and S.K.; data curation, J.-L.L.;
writing—original draft preparation, J.-L.L. and S.K.; writing—review and editing, S.K.; visualization, S.K. and
J.-L.L.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Austrian Climate and Energy Fund (Austrian Climate Research
Program (ACRP), project RESPECT (B670307, Klimafonds-Nr: KR16AC0K13230)). This article reflects the authors’
views and not of the funders.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the following, we provide an overview of the indicators used and their justification based
on the relevant literature. A visual overview of the exposure, hazard and vulnerability indicators is
provided in Figure A1.

For the socio-economic dimension, transport infrastructure, which includes highways, primary
roads, secondary roads and railways, was chosen as an indicator. According to Cutter et al. [35], the loss
of infrastructure may place an insurmountable financial burden, especially on smaller communities
lacking the financial resources for rebuilding (data from GIP—Graphenintegrations-Plattform). Within
the socio-economic context, the lack of transport infrastructure can mean that people cannot get to
the destinations they usually go to. This can interfere with their social or economic activities, such as
driving to work.

Another indicator of the socio-economic dimension is employment by sectors, composed of the
sub-indicators employment in primary sector, employment in secondary sector and employment in
tertiary sector. As exemplified in other studies, for example by Kienberger et al. [12], the economic
sector of the workplace can play a significant role in the level of vulnerability. We chose to distinguish
the economic sectors as it is common in geographic literature, which defines three main economic
sectors: the primary sector, which includes all facilities of initial production, namely agriculture,
forestry, fishery, hunting, mining and the extraction of stone and earth; the secondary sector, which
comprises the transformation of primary products through processing by industry, and the crafts;
and the tertiary sector, which holds all service activities in the broader sense, from public administration
over retail, wholesale, banking and insurance up to the more differentiated personal services, such as
legal advice, auditing and healthcare [36]. Therefore, we required census data with information about
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the sector in which people work with their place of residence as reference. Fekete [37] considered
employment groups as one of the variables between the socio-economic factors in the validation of the
social vulnerability index in the context of river floods in Germany. For the socio-economic dimension,
the employment status is important as some occupations may be overly impacted by hazards, especially
those that involve resource extraction [35]. For instance, floods may reduce the demand for labour in the
agricultural sector if they destroy the crops with which people work [38]. The service sector is usually
less affected [35]. The possible loss of employment after a disaster exacerbates the unemployment
numbers in a community. This contributes to a slower recovery from the hazardous event [35].

The next indicator of the socio-economic dimension is age distribution with its sub-indicators
of population under 20 years, population between 20 and 64 years and population over 64 years.
Here, population statistics census data from Statistik Austria were employed. Other studies about
flood risk and vulnerability, as for example, that carried out by Kienberger et al. [12], already made
use of an indicator of population age because different age groups show different levels of (social)
vulnerability. Children and the elderly population are usually more susceptible than the other age
groups due to the weakness of their physical and sometimes mental conditions [12]. Fekete [37]
also applied age-specific indicators for social vulnerability in the context of river floods in Germany.
Extremes of the age spectrum generally increase vulnerability because this factor affects the movement
of people out of harm′s way due to mobility restrictions [35,39]. This makes it necessary to assess
the vulnerability of these groups to provide a basis on which to develop policies to improve their
conditions. In a pre-impact recovery plan, they are also considered as a distinct group to enable
appropriate management of their requirements [12]. The elderly are especially vulnerable since they
may have mobility constraints or mobility concerns, which increases the burden of care and lack of
resilience [35]. The presence of children might delay families from evacuating until all family members
are accounted for [39]. In addition, parents may lose time and money when day care facilities are
damaged. People aged 20 to 64 years are assumed not to be characterized by higher vulnerability [35]
since they are the age group of adults, yet not elders, which is mobile without help and usually does
not face any kind of mental or physical limitations.

The indicator, ecosystem services—with its sub-indicators food production, disturbance regulation,
recreation, cultural as well as raw materials—is based on the concept of ecosystem services introduced
by Costanza et al. [40]. Ecosystem functions represent the habitat, biological or system properties or
processes of ecosystems. Ecosystem services refer to ‘[ . . . ] the benefits human populations derive,
directly or indirectly, from ecosystem functions’ [40,41]. Various functions and services are included
and grouped into 17 categories. Importantly, ecosystem services and functions do not necessarily
correspond one-to-one. Furthermore, a minimum level of ecosystem infrastructure needs to be present
to allow the production of the range of services described by Costanza et al. [40]. Each biome or
land-use type is assigned an average global value (on a per hectare basis) of annual ecosystem services.
Constanza et al. [41] updated the global values of ecosystem services in 2014, including updates in unit
ecosystem service values as well as land-use change estimates between 1997 and 2014. In the scope of
a weighting process at a stakeholder workshop, the most significant ecosystem services in Austria
were identified as food production, most importantly dairy farming, and the sourcing of raw materials,
mainly through forestry [12]. If the land cover relevant to certain ecosystem services is affected by floods,
these services can no longer be provided (to the full extent for a certain period). Table A1 summarizes
the ecosystem services relevant to socio-economic vulnerability and their values corresponding to the
different land-use types in Austria, retrieved from Costanza et al. [41]. Other land-use classes are not
listed either because they do not occur, are known to be negligible or due to a lack of available data.
The values from Table A1 were multiplied with the relevant land-use class values based on the latest
CLC dataset and transferred to the 1 km2 grid.
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Table A1. Ecosystem service values in 2007 USD per ha per year (left columns) and 2007 USD per m2

per year (right columns) (after [41]).

Food
Production

Disturbance
Regulation Recreation Cultural Raw

Materials

Forest (Temperate) 299 0.0299 989 0.0989 1 0.0001 181 0.0181

Grass/Rangeland 1.192 0.1192 26 0.0026 167 0.0167 54 0.0054

Wetlands
(Swamps/Floodplains) 614 0.0614 2.986 0.2986 2.211 0.2211 1.992 0.1992 539 0.0539

Lakes/Rivers 106 0.0106 2.166 0.2166

Cropland 2.323 2.323 82 0.0082 219 0.0219

Urban 5.740 0.5740

The ecosystem service of food production refers to [40] the share of gross primary production
extractable as food. Examples are the production of fish, game, crops, nuts and fruits by hunting,
gathering, subsistence farming or fishing. The ecosystem service of disturbance regulation refers to
the ‘[c] apacitance, damping and integrity of ecosystem response to environmental fluctuations’ [40].
Examples are storm protection, flood control, drought recovery and other aspects of habitat response to
environmental variability mainly controlled by vegetation. The ecosystem service of recreation refers
to the provision of opportunities for recreational activities. For instance, this includes eco-tourism,
sport fishing and other outdoor recreational activities. The cultural ecosystem service refers to the
provision of opportunities for non-commercial uses, for example, aesthetic, artistic, educational,
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spiritual or scientific values of ecosystems. The ecosystem service of raw materials represents the share
of gross primary production extractable as raw materials. It includes, for instance, the production of
lumber, fuel and fodder [40].

Land use has been proven to be a relevant indicator when assessing the vulnerability to floods [6,7,12].
Different land-use classes can be vulnerable in different ways and to different degrees. For instance,
the author of [8] found the land-use classes pasture, crops and woodland/forest to be especially significant
for flood vulnerability. Fekete [37] stated that urban residents are more vulnerable to river floods than
those living in rural areas. Possible reasons are, among others, the differences in population and housing
density. Thus, the fifth indicator for the socio-economic domain is land use, which is composed of
the following sub-indicators: cropland, pasture, woodland/forest, industrial/commercial and urban.
The CLC dataset from 2012, already mentioned above, was used as input data. It classifies different
land-use classes based on satellite imagery.

Another indicator used is urbanization. As mentioned above, Fekete [37] in his study about
the social vulnerability to river floods in Germany, made use of an urbanity indicator. Based on his
statements, dynamic regions underlying urbanization processes can be assumed to be more vulnerable.
Thus, this indicator measures whether an area is subject to urban growth (urbanization) since it can be
assumed that this results in a higher level of vulnerability due to an increase in population and housing
density. The indicator is fed with data from CadasterENV (CadENV). The dataset compares two
land-use datasets from 2006 and 2012 and classifies the detected changes. Of the different change classes,
the land-use change classes of new urban and forest to urban, both attributable to an urbanization
process, were used.

Early warning systems are part of a catalogue of measures that can be used to prepare for
floods. They can provide enough forewarning to prepare, warn and evacuate people and minimize
economic damage and loss of human lives by allowing for specific flood protection measures [12].
The efficiency of an early warning system not only depends on the technical aspects but also on
the level of preparedness in the community and the ability of decision-makers to make the right
choices [42]. The sub-indicators forecasting model presence on river level and forecasting model
presence on catchment level separately indicate whether there are early warning systems available for
the river of concern and the subordinate catchment. The reason for using these two sub-indictors is
that even though some river segments might not have explicit early warning systems, if there is one
for the subordinate catchment, flood warnings can still be derived from that data. The data used were
provided by the BMNT (former: Federal Ministry for Sustainability and Tourism).

Origin: Cutter et al. [35] include “race and ethnicity” in their social vulnerability index because it
imposes language and cultural barriers. These affect the access that immigrants have to some services
in the pre-disaster phase and funding in the post-disaster phase. Jones and Andrey [39] also consider
indicators like people without Canadian citizenship, people with no knowledge of English, people new
to the area as well as the number of non-white residents for assessing vulnerability for Vancouver as
these indicate limited access to aid and difficulties in understanding evacuation warnings. Fekete [37]
also includes new residents and foreigners as indicators for his social vulnerability index. Furthermore,
Cannon [38] considers the issue of migrants who do not speak the native language. There are
particularly vulnerable population groups, such as immigrants, who are more susceptible due to ethnic
issues, language problems, income-earning capacity and prejudices, which might reduce their capacity
to be able to live in safe buildings or safe areas. Additionally, legal status, language impediments
and unfamiliarity with the region influence the access to government resources [39]. Consequently,
the sub-indicators were grouped to origin Austria, origin Europe/Northern America/Australia as well
as origin MEDCs/LEDCs/unknown. The group of people originating from Austria were assumed to be
the least vulnerable as they do not face any of the outlined barriers. People from Europe, North America
and Australia were assumed not to have certain difference based on their cultural background, but to
not always have the same information and experiences as people from Austria. People from MEDCs
(more economically developed countries) or LEDCs (less economically developed countries) face
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several barriers, such as language or culture, and thus were considered the most vulnerable group.
Population data provided by Statistik Austria were used to feed all of these sub-indicators.

The education level includes the sub-indicators academic degree, “matura” or other higher school
certificate, apprenticeship and compulsory school certificate. Cutter et al. [35] included people with
high (indicating lower vulnerability) and little (indicating higher vulnerability) education in their social
vulnerability index. According to them, a low level of education reduces the ability to understand
warning information and access information in the recovery phase. Additionally, education is related
to socio-economic status because higher educational attainment generally results in higher lifetime
earnings [35]. Fekete [37] distinguishes three variables in relation to education for his vulnerability
indicators: graduates without basic education (more vulnerable), graduates with high school graduation
(more capacities) and university students (more capacities). Jones and Andrey [39] in their vulnerability
index construction, considered little formal education as an indicator for limited access to personal
resources: They assumed formal education and the propensity to seek additional information for
making informed decisions to be linked. The input data were again retrieved from census data.

Accessibility can be defined as ‘[ . . . ] the ease with which a good or service can be reached
by the resident population’ [43]. In the respective study by Statistik Austria, this was measured
by the distance (shortest travel time) along the road network, using a private car from an origin
(resident population) to the nearest facility (infrastructure). Demographic and infrastructure data
were combined with road network data for calculating the distances. Those distances to different
infrastructure facilities were then aggregated to indicators of accessibility in a principal component
analyses. This was done on a 1 km2 grid for the entire area of Austria. The reference date for data
used in the calculations is October 2014. The following five main topics were identified as relevant
to producing reasonably clear indicators of accessibility: retail sale (local supply), education, health,
security and leisure. Then, contents of the datasets were selected and consolidated to data layers, which
in turn were allocated to relevant topics. Except for security, which only comprises the data layer police
due to a lack of other data with sufficient quality, multiple data layers were allocated to each topic.
All in all, 90,248 infrastructure facilities were selected and grouped into 21 data layers belonging to five
main topics [43]. Overall, accessibility is understood to decrease vulnerability because it facilitates the
general reachability and approachability of certain services relevant to people’s socio-economic sphere
of life.

Unemployment is an indicator considered in several vulnerability indices. According to
Cannon [38], poor people have less job security after a flood and usually fewer savings to buffer them
against the event. Unemployment is also one of the variables of the socio-economic factors considered
by Fekete [37] in his vulnerability index, indicating a higher vulnerability. Unemployment means
low income, which, according to Jones and Andrey [39] results in a higher potential to be limited in
mobility, for example, because of the lack of a car. In the rebuilding phase, access to financial resources
plays a critical role in the speed of people’s recovery. For this indicator, the census data provided by
Statistik Austria also contained appropriate data.

The last indicator measures the size of companies, which has, in a number of studies [6,12,37],
been proven to be relevant to the vulnerability of a community. Businesses, in general, are especially
vulnerable to floods. This applies especially to small and young businesses, which show an even higher
level of vulnerability [44]. For example, after Hurricane Katrina, such companies were more likely
to close permanently than the average company [45]. Small companies are significant because they
are the lifeblood of many communities and are central to broader national economies [44]. Start-ups,
which are usually small, for example, are a critical factor to economic growth [46]. In a survey of
businesses after Hurricane Sandy, Collier et al. [44] found that such a natural hazard imposes a financial
challenge for many businesses, with small and young companies bearing the costs disproportionately.
For instance, especially young and small firms were insured at much lower rates. However, of all
businesses surveyed, only about two-thirds had insurance at all [44]. Additionally, 74% of companies
with property insurance, 52% of firms with business interruption insurance and 52% of those insured
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against flood reported none of their losses having been covered. Larger businesses were more likely to
receive credit after the event to be able to cope with damages [44]. To classify companies by size in
the available Statistik Austria dataset, we made use of the categorization of the Austrian Economic
Chambers (WKO 2017, n. p.), which states that there is, in general, no binding definition for the
different size categories of companies. Nevertheless, the EU recommends a classification following
four criteria, namely, the number of employees, the revenue or the balance sheet total as well as
the degree of autonomy. Ideally, all of these characteristics are available for assigning a company
to a size category. This is hardly ever the case in statistics due to a lack of data. Thus, in statistical
practice, the number of employees plays a predominant role for differentiating companies into size
categories. Micro-enterprises are those with nine or fewer employees, small companies have ten to 49
employees, medium-sized enterprises have 50 to 249 employees and large companies employ 250 or
more people [47]. This classification coincided well with the categorization Statistik Austria uses in
their census data, which made it possible to apply it one-to-one.
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