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Abstract: The present research study explores three types of neural network approaches for forecasting
natural gas consumption in fifteen cities throughout Greece; a simple perceptron artificial neural
network (ANN), a state-of-the-art Long Short-Term Memory (LSTM), and the proposed deep neural
network (DNN). In this research paper, a DNN implementation is proposed where variables related to
social aspects are introduced as inputs. These qualitative factors along with a deeper, more complex
architecture are utilized for improving the forecasting ability of the proposed approach. A comparative
analysis is conducted between the proposed DNN, the simple ANN, and the advantageous LSTM,
with the results offering a deeper understanding the characteristics of Greek cities and the habitual
patterns of their residents. The proposed implementation shows efficacy on forecasting daily values
of energy consumption for up to four years. For the evaluation of the proposed approach, a real-life
dataset for natural gas prediction was used. A detailed discussion is provided on the performance of
the implemented approaches, the ANN and the LSTM, that are characterized as particularly accurate
and effective in the literature, and the proposed DNN with the inclusion of the qualitative variables
that govern human behavior, which outperforms them.
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1. Introduction

The consumption of natural gas has seen a substantial increase during recent years, as it presents
a reliable and economical energy and heating solution for businesses as well as households. Its wide
acceptance from large-scale infrastructures to small houses has created diverse consumption patterns,
especially during high-demand occasions. Inevitably, this has perplexed any attempt of forecasting its
demand, especially when one considers the diversity of the consumers and the finite restrictions of the
natural gas infrastructure, i.e., low accumulation ability within the grid.

Analytical modelling of such complicated systems would require substantial effort in order to
design the grid architecture and each of its consumers, apply correct heat losses throughout the pipes,
and in general, include a variety of intricate parameters into the whole system before running the
simulation computations. On the other hand, data-driven models are invariant of such parameter
tuning and can properly model a system by learning valuable patterns from its collected data. Machine
learning algorithms create models by recurrently learning from data, until they can model a process
in the best way possible. Being dependent on data alone, alternative scenarios based on different
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energy resources like fossil fuels, oil, or electricity may as well utilize these methods for their own
forecasting purposes.

State-of-the-art published studies which focus on natural gas forecasting of production,
consumption, demand, market volatility and fluctuation in prices, and income elasticity have been
surveyed and are presented in [1]. Efficient energy supply planning is essential for any country’s
socio-economic state since it is crucial, especially for building successful development plans [2]. There is
a large number of papers found in the relevant literature that tackle the problem of accurate forecasting
of natural gas consumption, mostly focusing in hourly intervals [3]. Short-term forecasting is based on
the pattern analysis of time series in order to predict accurate values of consumption or demand [4].
Artificial intelligence, machine learning, and other statistical methods are typically used in short-,
medium-, and long-term forecasts of energy demand [5]. Based on research studies from the literature,
there are notable findings that utilized artificial neural network (ANN) algorithms on forecasting
natural gas demand, and whose day-ahead predictions had high accuracy [6–15]. Multiple variants of
neural networks, especially deep neural networks, have been extensively used to tackle the problem
of short-term demand forecasting of natural gas. Deep learning was firstly used by Merkel et al. for
forecasting short-term load of natural gas [16,17], and then to be compared to traditional ANN and
linear regression models on 62 different areas with at least 10 years of data [18].

Other data-driven approaches, such as neuro-fuzzy methods or genetic algorithms, have tackled
the problem of natural gas demand [19–21]. Hybrid approaches including Wavelet Transform (WT),
Genetic Algorithm (GA), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Feed-Forward Neural
Network (FFNN) have been used by Panapakidis and Dagoumas in order to forecast natural gas
demand in the Greek natural gas grid [22]. Moreover, other soft computing techniques, like fuzzy
cognitive maps (FCMs), enhanced by evolutionary algorithms, have been applied for modeling
time series problems [23–28]. In [29], Poczeta and Papageorgiou conducted a preliminary study on
implementing FCMs with ANNs for natural gas prediction, showing for first time the capabilities
of evolutionary FCMs in this domain. Furthermore, the research team in [30] recently conducted
a study for time series analysis devoted to natural gas demand prediction in three Greek cities,
implementing an efficient ensemble forecasting approach through combining ANN, RCGAFCM,
SOGA-FCM, and hybrid FCM-ANN. In this research study, the advantageous features of intelligent
methods, through an ensemble to multivariate time series prediction, have emerged.

Many works can be found in the literature that address the accurate forecasting of natural gas
demand with a methodology that was based solely on an artificial neural network, or was used
in combination with other methods in hybrid forecasting systems; however, in the present work,
an innovative approach that includes vital social factors in deep neural network (DNN) models
was studied exclusively, contributing to the novelty of the current study. The main aim of this
study is the development of a non-linear time series model that can accurately predict future energy
demand and estimate how the introduction of important social factors can improve the accuracy of
its predictions. As a case study for the demonstration of the approach’s applicability, natural gas
energy data from various cities in Greece, which present socio-economic aspects and thus different
consumption attributes, have been implemented.

Contrary to most studies that focus on quantitative-only inputs, there are some studies that
take into consideration the impact of social or socio-economic factors with machine learning based
approaches [31]. The behavioral habits and characteristics of consumers are strong indicators in
forecasting electricity load in households [32–34]. Social factors were taken into consideration in the
prediction of total energy demand in several cases such as Spain [35], China [36], and Turkey [37,38].
The application of social components alongside meteorological and past consumption data was also
studied in district heating networks [39,40]. In all relevant studies, the results showed that the inclusion
of social parameters in the modelling can increase the model’s overall accuracy [41,42].

Our effort focuses on investigating three types of approaches. The first approach relies on a simple
Artificial Neural Network (ANN), namely a single-layer perceptron, that takes into account only
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quantitative variables. The second approach is based on the state-of-the-art recurrent neural network
(RNN), namely Long Short-Term Memory (LSTM) network, which uses single-variable time series and
can predict a variable’s value for the next point in time by “memorizing” past variations. The third
approach is the proposed Deep Neural Network (DNN) that takes as input not only quantitative,
but also qualitative variables. The DNN consists of more nodes and layers than the ANN since it needs
to process a larger and more diverse amount of inputs, both numerical and categorical, in a more
appropriate fashion. The qualitative variables that are being used in the proposed DNN approach
are social factors that fit the characteristics of the country of Greece and will be described in detail in
paragraph 2.2. For the case of natural gas demand forecasting, the consumption of energy is bound to
the behavior of the human population, which is dependent on social habits, a factor whose impact is
investigated extensively in this study.

In the present study, the aim is to build a robust forecasting model based on a proposed deep neural
network (DNN) and compare it with an artificial neural network (ANN) and a recurrent neural network
(RNN), both of which are able to accurately forecast energy demand [43]. This comparative analysis
aims to investigate whether the factors that dictate human behavior can offer crucial information
and increase the accuracy of our forecasts. The results clearly demonstrate that the proposed DNN
approach, with the inclusion of social factors, has attained better accuracies than other state of the art
intelligent models for natural gas consumption forecasting.

2. Materials and Methods

The Hellenic Gas Transmission System Operator S.A. (DESFA) (www.desfa.gr) is the operator that
manages and develops the Greek natural gas infrastructure. DESFA handles all natural gas off-takes,
deliveries, and general distribution, as well as the collection of useful data. They have provided with
the dataset that was used in this study. Details on the dataset and its features are provided below.

2.1. Dataset

The dataset contains historical data of time series from the natural gas consumption of multiple
cities all over Greece, as well as the average daily temperature of each city’s surrounding area. The data
spans from 1 March 2010, or later on for some cities, until 31 October 2018. Specifically for some
centralized larger cities of Greece such as Athens and Larissa, where the natural gas distribution system
was installed early on, there is data since 1 March 2010, as seen in Figure 1, while in some other large
cities, like Thessaloniki, also seen in Figure 1, or smaller ones, like Alexandroupoli, seen in Figure 2,
data collection started later on. The exact starting dates of data collection for each city are given later
on in Section 3.
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Figure 1. Natural gas energy consumption [MWh] for Athens, Thessaloniki, and Larissa over the years.
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Figure 2. Natural gas energy consumption [MWh] for Alexandroupoli, Drama, Karditsa, and Trikala
over the years.

As provided, the dataset contained time and dates, natural gas consumption of each city’s
distribution point, and the daily average temperature of the area in Celsius degrees. On top of the
existing data, social indicators have been added to the dataset such as a month indicator, a day indicator,
a weekday/weekend indicator, and a bank holiday indicator. The proper addition of social variables is
a key factor to the study since the aim is to see if qualitative social traits can improve the performance
of a forecasting model, and by how much compared to other methods.

2.2. Feature Engineering

A certain amount of feature engineering is required for the qualitative data to take proper form,
in order to be readable by the machine learning algorithms. This takes place during the preprocessing
phase and is conducted in the following way: Months and days are described by a name, e.g.,
September, Tuesday, etc., and need to be transformed into categorical values, e.g., 9, 2, etc., in a serial
way. Therefore, the following association is considered: January-1, February-2, etc., and Monday-1,
Tuesday-2, etc. Each of these values are then transformed into vectors with the size of the value range of
the variable. In detail, the “month” variable contains 12 different values, one for each month, therefore
the size of the vector is 1 × 12. Respectively, the “day” variable contains 7 values, one for each day,
therefore the size for this vector is 1 × 7. Consecutively, the “month” variable is transformed into 12
variables, one for each month, and the “day” variable is transformed into 7 variables, one for each
day of the week. The “bank holiday” variable denotes a public or religious holiday that affects social
behavior (businesses are closed, people are out celebrating, etc.) and is binary, therefore there is no
need for any kind of further transformation.

Time and date data are transformed into a single timedate variable which is then used as an index,
thus leading to the total amount of 22 variables that are being taken as inputs for the modeling of the
energy forecast of the proposed methodology. The desirable variable for the forecast is the natural gas
energy consumption from the specific distribution point, which is used as output. The correlation of
the consumption energy with the mean daily temperature for the city of Athens is shown in Figure 3.

The correlation plots of consumption energy and mean temperature for all the investigated cities
are given in the Appendix A, where it is obvious that not all cities have the same pattern of correlation
between the mean temperature and the consumption of natural gas. This variation in patterns is one of
the reasons that the implemented models achieve different accuracies for each different city, as will be
shown later.
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3. Methodology

Three types of neural network variants were modeled and tested for accurately forecasting natural
gas energy demand. Their implementations differ even though they all belong to the neural network
family of algorithms. Each approach has different input variables, however, the general approach
remains the same; historical data train a model that is able to produce accurate forecasts of natural
gas energy consumption. The approaches, as well as the general process flow, are described in the
following sections.

3.1. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) [44] were hypothesized as a method to imitate the human
brain and its functions while it performs cognitive tasks, or when it learns. For the mathematical
structure of such networks, nodes are used to represent the neurons, and layers are used to represent
their interactive synapses in the same fashion as it is within the brain. They received wide acceptance
ever since they were conceptualized, however, they started gaining more and more fame ever since
the computational power, especially in graphic processing units, has become cheaper and thus easily
attainable. Another important reason for their wide acceptance is the vast availability of immense
amounts of data that have been collected throughout the past years. This adoption has enhanced the
scientific progress of the ANN algorithms, which started from the single-layer perceptron [45], moved
to multi-layer perceptron [46], introduced the back-propagation algorithm [47], and led to many new
derivatives of ANNs, the most well-known being the deep neural networks that are described in the
next paragraph.

3.2. Long Short-Term Memory Networks (LSTM)

Long Short-Term Memory are also neural networks which are built upon a recurrent fashion by
introducing memory cells and their in-between connections, in order to construct a graph directed over
a sequence. In general, recurrent networks process sequences by using said memory cells in a fashion
that is different than that of the simple ANNs, and even though they are well suited for problems with
time dependency, they often face the problem of vanishing gradients, or not being able to “memorize”
large portions of data. LSTMs [48] solved this problem because of the specific cell structure they
have, which allows the network the ability to variate the amount of retained information. These cell



Sustainability 2020, 12, 6409 6 of 29

structures are called gates, and they control which information is stored in the long memory and which
is discarded, thus optimizing the memorizing process. Dynamic temporal behavior problems, i.e.,
time sequences, were suited for such approaches.

3.3. Deep Neural Networks (DNN)

Deep neural networks [49] are the basis of deep learning, one of the most influential areas of
the artificial intelligence for the past decade. Based on the ANN, the DNN is comprised by more
layers and nodes in the same sequential fashion. For very deep implementations, the problem of
“vanishing” or “exploding” gradients would not allow the network to learn properly, therefore new
techniques were introduced, such as “identity shortcut connections” as seen in Resnet [50], as well
as others, in order to solve these obstacles. The “deep” approach has been used in all derivatives of
neural networks. Deep convolutional neural networks (CNN) have been used for image classification
and object detection [51,52], and deep recurrent neural networks (RNN) have been used for word
prediction [53] and time series forecasting [54].

3.4. Process Flow

In order to accurately model the natural gas energy forecast, a specific process flow has been
designed. The steps that have been followed, are described below.

3.4.1. Preprocessing

The initial preprocessing is focused on the organization of the original unstructured data.
Same-variable columns have been aligned and set in correct time and date order, and columns that were
empty or contained plenty of NaN (Not a Number) values were removed completely. The columns
“date” and “time” were merged into a TIMEDATE column, which was consecutively used as index.
The MONTH and DAY variables were manually added and later transformed into multiple categorical
variables as described in Section 2.

For the ANN implementation, only the daily mean temperature is considered as input, for the
LSTM, only the energy consumption is used as both input and output (past and present values
respectively), and for the DNN implementation, all the aforementioned variables are used with the
addition of vectorial representations of qualitative variables. The inputs that are used in each neural
network variant, as well as the output variable, that are being used in this study, are shown in Table 1.

Table 1. Variables that are used as output and input for each implementation of the neural network
variants. ANN: Artificial neural network; LSTM: Long Short-Term Memory; DNN: Deep neural network.

Output Inputs

Energy
Current

Day (MJ)

Daily Mean
Temperature

(◦C)

Energy 1
Previous
Day (MJ)

Energy 2
Previous

Days (MJ)

Month (Jan, Feb,
Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct,

Nov, Dec)

Day of the
Week (Mon,

Tue, Wen, Thu,
Fri, Sat, Sun)

Bank
Holiday
(Yes, No)

ANN × ×

LSTM ×

DNN × × × × × × ×

3.4.2. Data Split

The data was split in the following way: The last year, ranging from 1 November 2017 till 31
October 2018, was used as the testing period for all models, approaches, and for all cities. The starting
date of data collection for each city, as well as the ratio of training/testing portions of each dataset,
is shown in Table 2.

During the training phase, 20% of the training dataset is used as a validation set, in order to
identify whether our model tends to under- or overfit, and to be able to measure its loss and accuracy.
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Table 2. Starting dates and ratio of training/testing portions of the dataset per city.

City Start Date Ratio of Training/Testing

Agioi Theodoroi 07/06/2014 3.41
Alexandroupoli 02/02/2013 4.78

Athens 01/03/2010 7.68
Drama 07/09/2011 6.15

Karditsa 01/05/2014 3.51
Kilkis 01/03/2010 7.68
Lamia 01/02/2013 4.75
Larissa 01/03/2010 7.68
Laurio 01/03/2010 7.68

Markopoulo 01/03/2010 7.68
Serres 01/06/2013 4.42

Thessaloniki 01/03/2012 5.67
Trikala 12/09/2012 5.14
Volos 01/03/2010 7.68

Xanthi 01/03/2010 7.68

For the ANN implementation, only the numerical variables were used as input, i.e., the energy
consumption of 2 prior days and the mean temperature. For the LSTM implementation, the natural
gas energy consumption is used both as input and output, so the previous 365 values are used to find
the future trend, i.e., the energy demand. For the DNN implementation, all the variables described in
paragraph 2.2 are used as inputs, and the natural gas energy consumption is used as output, as it is
with all implementations.

3.4.3. Standardization

All data was normalized with Python’s SciKit Learn MinMaxScaler, between 0 and 1 values [55].
This way, the performance metrics are common for all cities, therefore direct comparisons can be
conducted, but more importantly because during training it allows the non-convex cost function to
converge to the global minimum faster and in a more appropriate fashion.

3.4.4. Processing

In all ANN, LSTM, and DNN approaches, we used the “ReLU” activation function, the “adam”
optimizer for the cost function, mean squared error for measuring the loss of training and validation,
and an early stopping function (EarlyStopping callback in Keras [56] with 5 epochs patience) in order
to avoid overfitting [57]. For the LSTM approach, the previous 365 energy values were used as input,
and the consumption for the next 365 days was forecasted. After the model training, all models are
being evaluated on the testing portion of the dataset. Their performance is measured based on certain
metrics that are described in the following section.

4. Evaluation metrics

The performance and robustness of each studied natural gas forecasting model is based on four of
the most common evaluation metrics. Mean square error (MSE), absolute error (MAE), mean absolute
percentage error (MAPE), and coefficient of determination (R2) are all being used in order to determine
the best performing model [5,7,43].

All the modelling, tests, and evaluations were performed with the use of Python 3.7 and the
Tensorflow 1.14, Keras 2.3, SciKit Learn 0.21, Pandas 0.25, Numpy 1.17, Matplotlib 3.1, Seaborn 0.9
libraries. The mathematical equations of these evaluation metrics are described below:

Mean Squared Error:

MSE =
1
T

∑T

t=1
(Z(t) −X(t))2, (1)
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Mean Absolute Error:
MAE =

1
T

∑T

t=1

∣∣∣Z(t) −X(t)
∣∣∣, (2)

Mean Absolute Percentage Error:

MAPE =
1
T

∑T

t=1

∣∣∣∣∣∣Z(t) −X(t)
Z(t)

∣∣∣∣∣∣, (3)

Coefficient of Correlation:

R =
T
∑T

t=1 Z(t)·X(t) −
(∑T

t=1 Z(t)
)(∑T

t=1 X(t)
)

√
T
∑T

t=1(Z(t))
2
−

(∑T
t=1 Z(t)

)2
·

√
T
∑T

t=1(X(t))2
−

(∑T
t=1 X(t)

)2
, (4)

where X(t) is the predicted value, Z(t) is the real value, t is the iteration at each point (t = 1, . . . , T),
and T is the number of testing records.

Low MSE, MAE, and MAPE values signify small error, therefore higher accuracy. On the contrary,
R2 value close to 1 is preferred, signifying better performance for the model and that the regression
curve is well fit on the data. A coefficient of determination value of 1 would signify that the regression
line fits the data perfectly; however, this could also denote overfitting on the data.

To summarize, the whole process so far can be visually represented into an algorithmic flowchart.
Starting from the data preprocessing, to the training of the algorithm and the prediction of the results,
all the consecutive steps are shown in Figure 4.
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5. Results

Athens was chosen as a reference point for searching the best fitting parameters of each method.
The outcomes of each parameter selection for the ANN, the LSTM, and the DNN architectures are
presented in paragraphs 5.1, 5.2, and 5.3. The parameters that resulted to the best performing model for
all 15 cities are presented in paragraph 5.4. For the evaluation of all tests, MSE, MAE, MAPE, and R2

were used.

5.1. Results from ANN

For the ANN implementation, an architecture of a single-layer perceptron with 8 nodes in the
hidden layer was selected, after a concise exploratory analysis. The simple ANN was selected for
benchmarking purposes. Having a simplistic model as a baseline, we can investigate the performance
improvement of the other approaches. The initial architecture, seen in Figure 5, was tested and
evaluated without any dropout function, and the performance metrics are shown in Table 3.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 29 
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Table 3. Performance metrics of the selected ANN architecture. MSE: Mean square error; MAE: Mean
absolute error; MAPE: Mean absolute percentage error; R2: Coefficient of determination.

ANN Architecture Selection

Layers Nodes MSE (MJ2) MAE (MJ2) MAPE (%) R2

1 8 7.70 × 10–3 7.01 × 10–2 16.41 0.87

Next, the effect of the dropout rate is investigated, and in order to understand how it affects the
model’s performance, four distinct percentages have been tested. The results are presented in Table 4.
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Table 4. Comparison of dropout rate in ANN.

1 Layer/ 8 Nodes Dropout Comparison

Dropout MSE (MJ2) MAE (MJ2) MAPE (%) R2

0 7.70 × 10−3 7.01 × 10−2 16.41 0.87
0.25 8.20 × 10−3 6.94 × 10−2 30.30 0.86
0.50 9.00 × 10−3 7.41 × 10−2 52.74 0.84
0.75 1.25 × 10−2 8.66 × 10−2 73.02 0.78

The ability of forecasting the energy demand in yearly intervals was also investigated. Even
though this study is focused in one-year ahead forecasts, a timeframe of yearly depths up to four
years ahead was investigated. This investigation was conducted in order to see the magnitude of the
forecasts’ accuracy through time, and the results are presented in Table 5.

Table 5. Comparison of year-ahead forecasting in ANN.

1 Layer/ 8 Nodes Forecasting Comparison

Years ahead MSE (MJ2) MAE (MJ2) MAPE (%) R2

1 7.70 × 10−3 7.01 × 10−2 16.41 0.87
2 1.08 × 10−1 3.07 × 10−1 48.61 −1.39
3 9.28 × 10−2 2.83 × 10−1 52.46 −1.31
4 1.42 × 10−1 3.53 × 10−1 49.73 −2.57

The ANN approach is able to capture the general trend, however, it deviates significantly from
the real consumption values, something that could signify that the model cannot give better forecasts
for longer time ahead. Figure 6 shows the plots of the ANN implementation for (a) one-, (b) two-, (c)
three-, and (d) four-year ahead forecasting. The prediction of the energy demand in MWh is depicted
in blue, and the real output is depicted in red.

It is evident that the ANN model, even though it can follow the trend of the fluctuation, fails to
forecast accurately the consumption of the natural gas. Furthermore, the more the forecasting time
increases, the greater this deviation gets. Even though ANNs are powerful algorithms for forecasting,
in this particular problem, the single-layer perceptron is not enough to model the problem accurately.

5.2. Results from LSTM

An investigatory analysis was conducted also for the LSTM implementation. The number of
layers and memory units were explored in order to find the best combination, which was comprised of
one LSTM layer with 200 memory units. The architecture of this implementation is seen in Figure 7,
and its performance is shown in Table 6.
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Table 6. Performance metrics of the selected LSTM architecture.

LSTM Architecture Selection

Layers Units MSE (MJ2) MAE (MJ2) MAPE (%) R2

1 200 2.20 × 10−3 2.95 × 10−2 11.07 0.96

The dropout’s effect on the LSTM implementation was also investigated, and its effect on the
performance of the model is seen in Table 7.

Table 7. Comparison of dropout rate in LSTM.

1 Layer/ 200 Units Dropout Comparison

Dropout MSE (MJ2) MAE (MJ2) MAPE (%) R2

0 2.20 × 10−3 2.95 × 10−2 11.07 0.96
0.25 2.40 × 10−3 3.31 × 10−2 20.94 0.96
0.50 2.20 × 10−3 3.10 × 10−2 18.50 0.96
0.75 2.10 × 10−3 2.92 × 10−2 9.77 0.96

Dropout application seems to increase performance over a non-dropout approach, and in fact the
highest rate selected has given the best results.

Again, forecasts of up to four years ahead were evaluated in order to investigate how the
predictions are affected. The results are presented in Table 8.

Table 8. Comparison of year-ahead forecasting in LSTM.

1 Layer/ 8 Nodes Forecasting Comparison

Years ahead MSE (MJ2) MAE (MJ2) MAPE (%) R2

1 2.10 × 10−3 2.92 × 10−2 9.77 0.96
2 6.30 × 10−3 5.90 × 10−2 15.00 0.86
3 5.26 × 10−2 2.06 × 10−1 59.06 −0.31
4 8.73 × 10−2 2.44 × 10−1 80.87 −1.20

The plots of the LSTM setup are shown in Figure 8 for (a) one-, (b) two-, (c) three-, and (d) four-year
ahead forecasting. The prediction of the energy demand in MWh is depicted in blue, and the real
output is depicted in red.

In the case of LSTM implementation, it is clear that the forecasts for the one- and two-year ahead
demands are more accurate than that of the ANN implementation. However, it is evident that anything
beyond the two-year ahead forecast is tremendously inaccurate, resulting even in negative R2 values.
LSTMs can offer excellent accuracy for single-variable time series; however, it is evident that they are
highly susceptible to the depth of the forecasting period, as well as to the data that are required for
proper training.

5.3. Results from DNN

For the DNN implementation, a deeper, more complex network was constructed that is comprised
of 4 hidden layers with 32 nodes in each layer. The proposed architecture is structured in such way so
that it can take as input the vectorial representations of categorical values, the ones mentioned above,
the quantitative values from the current time (in each step), as well as the energy values from past
inputs. The architecture of the ANN approach is seen in Figure 9. No dropout was initially set for the
exploratory analysis, and the performance metrics for the selected setup is shown in Table 9.
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Table 9. Performance metrics of the selected DNN architecture.

DNN Architecture Selection

Layers Nodes MSE (MJ2) MAE (MJ2) MAPE (%) R2

4 32 1.70 × 10−3 2.75 × 10−2 7.53 0.97

The effect of the dropout rate is investigated once again, and the same four percentages have been
tested and evaluated, the results of which are presented in Table 10.

Table 10. Comparison of dropout rate in DNN.

4 Layer/ 32 Nodes Dropout Comparison

Dropout MSE (MJ2) MAE (MJ2) MAPE (%) R2

0 1.70 × 10−3 2.75 × 10−2 7.53 0.97
0.25 2.20 × 10−3 3.11 × 10−2 10.98 0.96
0.50 2.90 × 10−3 4.32 × 10−2 26.45 0.95
0.75 3.00 × 10−3 3.82 × 10−2 48.61 0.95

It is evident that the proposed DNN model performs better than the ANN and the LSTM. Testing
its forecasting capabilities for up to four years ahead will show its ability to generalize well and
properly model the consumption pattern. The results are presented in Table 11.

Table 11. Comparison of year-ahead forecasting in DNN.

4 Layer/ 32 Nodes Forecasting Comparison

Years ahead MSE (MJ2) MAE (MJ2) MAPE (%) R2

1 1.70 × 10−3 2.75 × 10−2 7.53 0.97
2 1.50 × 10−3 2.76 × 10−2 8.98 0.97
3 1.30 × 10−3 2.06 × 10−2 8.68 0.97
4 1.70 × 10−3 3.22 × 10−2 9.40 0.96
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At this point, it is interesting to mention that the accuracy of the predictions is hardly affected for
up to four years ahead. This is due to the yearly periodicity of the energy demand that is caused not
only by the general temperature trends, but also by the social aspects that govern human behavior
in certain periods of time. Figure 10 shows the plots of the best performing setup for the DNN
implementation for (a) one-, (b) two-, (c) three-, and (d) four-year ahead forecasting. The prediction of
the energy demand in MWh is depicted in blue, and the real output is depicted in red.
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For the proposed DNN, it is clear that its forecasting capabilities surpass by far the ANN and
the state-of-the-art LSTM models. The inclusion of qualitative social variables alongside measurable
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quantities has improved not only the accuracy of the forecasts, but also the depth of forecasting time
into the future. This is an indicator that the deeper network, alongside with behavioral knowledge,
has offered a generalized understanding of the energy consumption trend.

5.4. Comparison (Cities)

The trained models of all approaches were applied on a range of fifteen cities all around Greece
for the sake of comparison. Each city had different energy distributions during the documented
years depending on its size, population, and specific natural gas network characteristics. Testing all
implementations on different cities, offers insight on whether each model can provide accurate one-year
ahead forecasts in cities that are in different geographical locations, but also with different behavioral
patterns. The confidence interval (CI) [58] is also included in the following analysis, to demonstrate
the range of energy values, in which 95% of the predictions fall within, for each city. The performance
metrics for all cities are shown in Table 12 for the ANN, Table 13 for the LSTM, and Table 14 for the
proposed DNN.

Table 12. Comparison of cities for the ANN implementation.

ANN Cities Comparison

Cities MSE (MJ2) MAE (MJ2) MAPE (%) R2 CI

Agioi Theodoroi 4.96 × 10−2 1.70 × 10−1 58.29 0.14 [92,246–101,257]
Alexandroupoli 8.30 × 10−3 6.72 × 10−2 13.43 0.89 [80,527–88,566]

Athens 2.40 × 10−3 3.53 × 10−2 10.94 0.96 [7,710,057–9,006,556]
Drama 8.50 × 10−3 6.77 × 10−2 6.42 0.78 [736,302–764,636]

Karditsa 2.60 × 10−3 3.54 × 10−2 28.66 0.97 [234,893–293,622]
Kilkis 2.87 × 10−2 1.23 × 10−1 20.16 0.43 [1,023,806–1,088,807]
Lamia 3.96 × 10−2 1.62 × 10−1 33.76 0.20 [125,129–135,568]
Larissa 2.60 × 10−3 3.43 × 10−2 14.18 0.96 [1,329,088–1,609,373]
Laurio 1.32 × 10−2 7.59 × 10−2 86,605.00 0.74 [6,004,693–7,432,331]

Markopoulo 3.06 × 10−2 1.38 × 10−1 19.38 0.27 [250,400–264,171]
Serres 3.60 × 10−3 4.52 × 10−2 11.69 0.96 [400,111–467,284]

Thessaloniki 3.40 × 10−3 4.52 × 10−2 16.80 0.95 [6,283,167–7,449,531]
Trikala 2.40 × 10−3 2.76 × 10−2 25.62 0.97 [213,058–266,020]
Volos 3.90 × 10−3 4.92 × 10−2 11.41 0.91 [1,662,841–1,845,579]

Xanthi 2.94 × 10−2 1.33 × 10−1 36.12 0.17 [153,935–168,218]

Table 13. Comparison of cities for LSTM implementation.

LSTM Cities Comparison

Cities MSE (MJ2) MAE (MJ2) MAPE (%) R2 CI

Agioi Theodoroi 3.56 × 10−2 1.50 × 10−1 59.68 0.38 [86,688–94,424]
Alexandroupoli 4.20 × 10−3 4.60 × 10−2 8.29 0.94 [86,103–95,178]

Athens 2.10 × 10−3 2.92 × 10−2 9.77 0.96 [7,634,555–8,986,641]
Drama 1.06 × 10−2 7.82 × 10−2 9.86 0.72 [765,187–790,777]

Karditsa 8.40 × 10−3 7.61 × 10−2 72.99 0.89 [290,871–357,268]
Kilkis 1.15 × 10−2 8.17 × 10−2 10.97 0.77 [1,008,757–1,071,517]
Lamia 1.86 × 10−2 1.11 × 10−1 32.19 0.62 [157,729–167,902]
Larissa 3.30 × 10−3 4.43 × 10−2 17.39 0.95 [1,377,457–1,661,699]
Laurio 2.45 × 10−2 1.30 × 10−1 78,544.00 0.53 [8,712,884–10,054,310]

Markopoulo 8.00 × 10−3 6.79 × 10−2 9.70 0.81 [258,990–272,945]
Serres 4.00 × 10−3 4.85 × 10−2 15.78 0.96 [375,137–443,421]

Thessaloniki 3.90 × 10−3 4.79 × 10−2 19.54 0.94 [6,268,458–7,571,520]
Trikala 4.60 × 10−3 5.41 × 10−2 32.77 0.94 [256,379–318,363]
Volos 4.80 × 10−3 5.21 × 10−2 13.18 0.89 [1,480,596–1,649,836]

Xanthi 9.80 × 10−3 7.60 × 10−2 24.43 0.72 [169,605–180,582]
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Table 14. Comparison of cities for the proposed DNN approach.

DNN Cities Comparison

Cities MSE (MJ2) MAE (MJ2) MAPE (%) R2 CI

Agioi Theodoroi 2.46 × 10−2 1.19 × 10−1 38.70 0.57 [89,946–98,778]
Alexandroupoli 3.00 × 10−3 4.01 × 10−2 7.57 0.96 [80,268–88,430]

Athens 1.70 × 10−3 2.75 × 10−2 7.53 0.97 [7,571,538–8,863,422]
Drama 1.03 × 10−2 7.69 × 10−2 7.32 0.73 [729,057–757,898]

Karditsa 3.50 × 10−3 4.84 × 10−2 25.10 0.95 [230,724–290,272]
Kilkis 8.20 × 10−3 6.73 × 10−2 10.36 0.84 [984,497–1,049,268]
Lamia 1.41 × 10−2 9.71 × 10−2 21.23 0.71 [126,988–137,111]
Larissa 1.10 × 10−3 2.40 × 10−2 9.95 0.98 [1,413,437–1,698,290]
Laurio 2.03 × 10−2 1.17 × 10−1 78,518.00 0.61 [6,822,570–8,233,887]

Markopoulo 6.80 × 10−3 6.29 × 10−2 10.10 0.84 [245,857–259,800]
Serres 4.50 × 10−3 5.21 × 10−2 17.46 0.95 [396,910–466,370]

Thessaloniki 1.60 × 10−3 2.72 × 10−2 10.25 0.98 [6,289,857–7,456,553]
Trikala 4.40 × 10−3 5.04 × 10−2 22.98 0.95 [222,492–276,310]
Volos 5.10 × 10−3 5.70 × 10−2 11.73 0.89 [1,644,087–1,825,076]

Xanthi 1.02 × 10−2 7.44 × 10−2 26.04 0.71 [165,997–179,896]

For the ANN implementation, the performance of the model ranges from ~14% for Agioi Theodoroi
till ~97% for Trikala considering R2. Seven out of fourteen cities achieved an accuracy of >90%, however,
for the other seven cities, the performance of the model is disappointing.

For the LSTM implementation, the prediction accuracies are better than the ANN, ranging from
~39% for Agioi Theodoroi to ~96% for Athens, using R2 as the primary metric. Here, six cities achieved
an accuracy of >94%, with the rest achieving higher accuracy when compared to the ANN.

For the proposed DNN implementation, the performance of the model ranges from ~58% for
Agioi Theodoroi till ~99% for Larissa considering R2. For seven out of fourteen cities, the proposed
methodology achieved an accuracy of >94%, which is considered very satisfactory for prediction,
considering that the MSE of these models is also very low.

5.5. Sensitivity Analysis

A sensitivity analysis is conducted on the dataset of Athens. The selected method for the sensitivity
analysis is the Partial Dependence Plots (PDP) [59,60], where target variables (features) of the dataset
are investigated through their range of values in order to visualize their dependence to the target
outcome. The numerical variables used in the datasets, i.e., daily mean temperature, 1-day and 2-days
prior consumption energy are used as the target features and the dependence of the target outcome,
i.e., the present-day consumption energy, is shown in Figure 11.

Both for the ANN and the DNN, the mean daily temperature is inversely proportional to the daily
energy consumption, which is expected since heating needs are lower when the external temperature
is high. For the DNN, the 1-day prior consumption is directly proportional to the target outcome,
the same applying for the 2-days prior consumption as well. We notice that for the 2-days prior,
the scale is two orders of magnitude less than for the 1-day prior and one order less than the mean
daily temperature. This signifies that the model interprets a weaker relationship with this variable and
the outcome, meaning that the dependence of the target outcome from this feature is less significant
than the others.

Qualitative values cannot be included in the sensitivity analysis because they don’t span over a
range of values. Also, for the LSTM model, there can be no sensitivity analysis because only one variable
is used as time series, therefore only past values of energy consumption are used for future predictions.
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6. Discussion

Three methods, focused on tackling the problem of accurate forecasting of natural gas energy
consumption in fifteen cities all over Greece, were investigated and applied in this study. The first
method is an ANN that takes into consideration quantitative variables only, like the energy consumption
and the external daily temperature. The second method is a LSTM that takes into consideration 365
previous values of only energy consumption of each city. The third method is a DNN that takes into
consideration not only the quantitative variables used in the ANN, but also qualitative variables that
govern human behavior such as weekdays, weekends, and bank holidays. Comparison analyses were
conducted for each method in order to find the optimal architecture for each one.

All models perform adequately in most cases. The value of artificial neural networks and their
derivatives is well known, however, the purpose of this study is to increase the accuracy and the
time-depth of the forecasting capabilities. For the larger cities, high accuracies in forecasting energy
consumption is achieved. The proposed DNN implementation achieved the highest R2 for the city of
Larissa (0.9846) while the LSTM implementation for the city of Athens (0.9644) and the ANN for the city
of Trikala (0.699). For the worst-case scenario, the city of Agioi Theodoroi, has consistently obtained
the worst accuracies, with the DNN (0.5748) achieving significant higher accuracy, even though still
not so good, compared to the LSTM (0.3848) and ANN (0.1440) implementation. The dataset of Agioi
Theodoroi is the smallest compared to the rest, being one reason for achieving these low accuracies. It ca
be argued that the size of the city (<5000 habitants) is another important reason, since the consumption
trends are sparser due its low population.

For the city of Agioi Theodoroi, the DNN increased the accuracy of its forecasts by 49.362%
compared to the LSTM, and 299.195% compared to the ANN. Regarding the city of Athens, the DNN
increased the accuracy of its forecasts by 0.682% compared to the LSTM, and 1.292% compared to
the ANN. The proposed DNN increased the accuracy of the forecasts in almost all cases, however,
its main impact was on small-scale cities such as Kilkis (+94.698%), Lamia (+259.457%), Markopoulo
(+207.667%), and Xanthi (+330.273%), which have small populations, energy consumption, and less
amount of gathered data. In a previous study [43] where only the ANN and LSTM approaches were
applied on quantitative-only datasets, the LSTM approach offered the best results. The particular
problem of forecasting energy values, is time-dependent, thus allowing the LSTM approach to excel.
However, since there are other factors that affect the behavior of the consumers, and consequently the
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consumption of energy, the DNN was considered as an approach that could improve the accuracy of
the forecasts.

For the implementation of the LSTM, the application of dropout has improved performance
for the one-year-ahead forecast. By selecting 200 units in the layer of the selected implementation,
the LSTM is able to capture a measurable part of the input (365 days); however, in order to generalize
well, the model should randomly drop a percentage of the weights it has “learned”. This way it has
the ability to “memorize” large inputs, however, these inputs are generalized and do not overfit on the
past data. This conflicts with the other implementations of ANN and DNN; however, LSTM utilizes
information in a different way than the ANN and DNN. The reason why the LSTM performs better
with a high dropout rate is because it tends to overfit soon during training, and even if it could reach
high training accuracy, its validation (and therefore testing) accuracy would be weak. In this study,
there is a trend based on seasonality, and in order to have an LSTM model that is not overly simplistic
(therefore needing at least 200 units), and to train as long as possible, generalization was achieved via
high dropout [61].

For the long-term predictions, the ANN and LSTM models fail to produce accurate predictions,
resulting in negative R2 values. This can be derived from several facts. The more important is that since
the dataset is finite, the further ahead in time the prediction is, the less training data the model is left
with to “learn” from. Machine learning models are highly dependent on data, and their performance
is highly correlated to the data quality and quantity. Particularly for the ANN approach, it’s simplistic
implementation cannot capture the complexity that is required for the long-term forecasting, even if in
general ANNs are powerful. Another reason is that the scale of the energy prediction units is large
(in absolute numbers), thus the worse the prediction is, the larger is the penalty for it. Additionally,
since the forecasting timescale increases for additionally 1, 2, and 3 years, the ill-fitted models produce
large errors in predictions which are accumulated, because the forecasting time is 1, 2, and 3 times
larger, respectively. The R2 metric is based on the MSE, and is scale-dependent, while MAPE is not,
therefore it is useful for understanding the performance of the models. It is considered that R2 is still
probably the best metric for forecasts [62], however, MAPE can still be used because the percentage of
error makes sense and there are no zero values in our dataset.

In our proposed architecture, social behavior variables were added as inputs and the number of
layers and nodes in our neural network was increased, in order to investigate the effect of these additions
on the forecasting accuracy. These variables are strong indicators of social behavior and habits of the
majority of the Greek population, which can affect the energy consumption in specific days/occasions.
Overfitting was avoided by monitoring loss and accuracy throughout the training phase.

Furthermore, in order to show the effectiveness of the proposed DNN forecasting methodology,
a comparative analysis was conducted with a SOGA-FCM, which was applied in one year ahead of
natural gas consumption predictions concerning the same dataset of the three Greek cities (Athens,
Thessaloniki, and Larissa) in [29], and a recent soft computing technique for time series forecasting
using evolutionary fuzzy cognitive maps and their ensemble combination [30]. This comparison is
shown in Table 15, where the MSE and MAE are used as performance metrics.

Table 15. Comparison of results between machine learning and soft computing methods for three
benchmark cities.

Cities

Athens Thessaloniki Larissa

Methods MSE (MJ2) MAE (MJ2) MSE (MJ2) MAE (MJ2) MSE (MJ2) MAE (MJ2)

ANN 7.70 × 10−3 7.01 × 10−2 3.40 × 10−3 4.52 × 10−2 2.60 × 10−3 3.43 × 10−2

LSTM 2.10 × 10−3 2.92 × 10−2 3.90 × 10−3 4.79 × 10−2 3.30 × 10−3 4.43 × 10−2

Hybrid FCM 3.20 × 10−3 3.28 × 10−2 3.30 × 10−3 3.81 × 10−2 4.10 × 10−3 4.17 × 10−2

Ensemble (EB) 3.10 × 10−3 3.28 × 10−2 3.10 × 10−3 3.69 × 10−2 4.00 × 10−3 4.17 × 10−2

Proposed DNN 1.70× 10−3 2.75× 10−2 1.60× 10−3 2.72× 10−2 1.10× 10−3 2.40× 10−2
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It is evident that all methods achieve high accuracy in the predictions of the energy consumption
patterns in their relative timescales. The ensemble and hybrid methods achieve the same accuracy as
the ANN, with the LSTM performing slightly better. The proposed DNN, by utilizing inputs of social
variables into its learning patterns and having a deeper architecture, outperforms all other methods
with significant difference. The significance of this outcome lies on the fact that qualitative variables
that dictate human behavior can be learned by computational algorithms and be utilized to improve
forecasting accuracy furthermore.

The case of Greece has some sensitive aspects, since multiple dynamics in natural gas consumption
were introduced due to the financial crisis of the previous years. This instability created an additional
obstacle to the accurate forecasting of energy demand, thus increasing the need for efficient forecasting
models that can accurately offer in-depth insight on the demand trends of each city and adapt to their
different conditions. Since the proposed method offers high accuracy and long forecasting capabilities,
it can be used by any utilities and distribution operators, as a solution to upgrade operational long-term
planning, as well as to provide insight on policy making from the side of the state.

7. Conclusions

Summing up, three different forecasting approaches have been implemented in order to develop
models for predicting energy demand of natural gas. Investigative analysis took place for an ANN,
a LSTM, and the proposed DNN implementations in order to find a desired architecture for each
method. Fifteen cities all around Greece were tested, each one with a dataset of measurements that
spanned from 3 to 7 years. The investigated cities differ both in size as well as in geographical location,
amplifying as much as possible the variability of each use case examined. Despite the fact that this
study is focused on cities that are only in Greece, the proposed methodology is highly generalizable for
any other city that can provide sufficient amount of data, both measurable and behavioral.

The goal of this study was to propose an efficient neural network implementation that utilizes a
variety of quantitative and qualitative inputs, as well as a deep architecture with many layers and
nodes, to demonstrate how social factors can improve the performance of the model and increase the
accuracy of its forecasts. The proposed methodology has outperformed both the simple ANN approach
as well as the state-of-the-art LSTM approach even though both still offer good accuracy in most cases.
The inclusion of social factors in the proposed DNN approach offered consistently more generalized,
high-accuracy results. This derives from the fact that by exploring longer forecasts, the four-year
ahead forecast was achieved only with the proposed DNN implementation, while the LSTM could
only provide accurate results up to two years ahead, and the ANN was deviating systematically.

Applying a combination of multi-parametric social factors, by also taking advantage of the
memory cells structure of the LSTM implementation will be the base of the future work that will aim
to outperform the DNN implementation. Additional Fuzzy Cognitive Maps structures will be also
considered for increasing the interpretability of the models and how the inputs affect the performance.

Author Contributions: Conceptualization, A.A., E.P. and D.B.; methodology, A.A.; software, A.A.; validation,
A.A., E.P. and D.B.; formal analysis, A.A.; investigation, A.A.; resources, E.P.; data curation, A.A.; writing—original
draft preparation, A.A.; writing—review and editing, A.A., E.P., and D.B.; visualization, A.A; supervision, E.P.
and D.B.; project administration, D.B. All authors have read and agree to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2020, 12, 6409 21 of 29

Appendix A Appendix

Sustainability 2020, 12, x FOR PEER REVIEW 21 of 29 

supervision, E.P. and D.B.; project administration, D.B. All authors have read and agree to the published version 

of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix 

A
g

io
i 

T
h

eo
d

o
ro

i 

 

 

A
le

x
a

n
d

ro
u

p
o

li
 

 

 

Figure A1. Cont.



Sustainability 2020, 12, 6409 22 of 29

Sustainability 2020, 12, x FOR PEER REVIEW 22 of 29 

A
th

en
s 

 
 

D
ra

m
a
 

 

 

K
a

rd
it

sa
 

 

 

Figure A1. Cont.



Sustainability 2020, 12, 6409 23 of 29

Sustainability 2020, 12, x FOR PEER REVIEW 23 of 29 

K
il

k
is

 

 

 

L
a

m
ia

 

 

 

L
a

ri
sa

 

 

 

Figure A1. Cont.



Sustainability 2020, 12, 6409 24 of 29
Sustainability 2020, 12, x FOR PEER REVIEW 24 of 29 

L
a

u
ri

o
 

 

 

M
a

rk
o

p
o

u
lo

 

 

 

S
er

re
s 

 

 

Figure A1. Cont.



Sustainability 2020, 12, 6409 25 of 29

Sustainability 2020, 12, x FOR PEER REVIEW 25 of 29 

T
h

es
sa

lo
n

ik
i 

 

 

T
ri

k
a

la
 

 

 

V
o

lo
s 

 

 

Figure A1. Cont.



Sustainability 2020, 12, 6409 26 of 29
Sustainability 2020, 12, x FOR PEER REVIEW 26 of 29 

X
a

n
th

i 

 

 

Figure A1. Correlation of the energy demand and the mean temperature for the training set and the 

test set for all the examined cities. 

References 

1. Tamba, J.G.; Essiane, S.N.; Sapnken, E.F.; Koffi, F.D.; Nsouandélé, J.L.; Soldo, B.; Njomo, D. Forecasting 

natural gas: A literature survey. Int. J. Energy Econ. Policy 2018, 8, 216–249. 

2. Ivezić, D. Short-Term Natural Gas Consumption Forecast. FME Trans. 2006, 34, 165–169. 

3. Ghalehkhondabi, I.; Ardjmand, E.; Weckman, G.R.; Young, W.A. An overview of energy demand 

forecasting methods published in 2005–2015. Energy Syst. 2017, 8, 411–447. 

4. Motlagh, O.; Grozev, G.; Papageorgiou, E.I. A Neural Approach to Electricity Demand Forecasting. In 

Artificial Neural Netw. Modelling; Shanmuganathan, S., Samarasinghe, S., Eds.; Springer International 

Publishing: Cham, Switzerland, 2016; pp. 281–306. 

5. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for 

smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. 

6. Gorucu, F.B.; Geriş, P.U.; Gumrah, F. Artificial Neural Network Modeling for Forecasting Gas 

Consumption. Energy Sources 2004, 26, 299–307. 

7. Papageorgiou, E.I.; Poczęta, K. A two-stage model for time series prediction based on fuzzy cognitive maps 

and neural networks. Neurocomputing 2017, 232, 113–121. 

8. Karimi, H.; Dastranj, J. Artificial neural network-based genetic algorithm to predict natural gas 

consumption. Energy Syst. 2014, 5, 571–581. 

9. Khotanzad, A.; Elragal, H. Natural gas load forecasting with combination of adaptive neural networks. In 

Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, 10–16 July 

1999; IEEE: Piscataway Township, NJ, USA, 2002. 

10. Khotanzad, A.; Elragal, H.; Lu, T.L. Combination of artificial neural-network forecasters for prediction of 

natural gas consumption. IEEE Trans. Neural Netw. 2000, 11, 464–473. 

11. Kizilaslan, R.; Karlik, B. Comparison neural networks models for short term forecasting of natural gas 

consumption in Istanbul. In Proceedings of the 1st International Conference on the Applications of Digital 

Information and Web Technologies, ICADIWT 2008, Ostrava, Czech Republic, 4–6 August 2008. 

12. Kizilaslan, R.; Karlik, B. Combination of neural networks forecasters for monthly natural gas consumption 

prediction. Neural Netw. World 2009, 19, 191–199. 

13. Musilek, P.; Pelikan, E.; Brabec, T.; Simunek, M. Recurrent Neural Network Based Gating for Natural Gas 

Load Prediction System. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network 

Proceedings, Vancouver, BC, Canada, 16–21 July 2006. 

14. Soldo, B. Forecasting natural gas consumption. Appl. Energy 2012, 92, 26–37. 

15. Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. 

16. Merkel, G.D.; Povinelli, R.J.; Brown, R.H. Deep neural network regression as a component of a forecast 

ensemble. In Proceedings of the International Symposium on Forecasting, Cairns, Australia, 25–28 June 

2017. 

Figure A1. Correlation of the energy demand and the mean temperature for the training set and the
test set for all the examined cities.

References

1. Tamba, J.G.; Essiane, S.N.; Sapnken, E.F.; Koffi, F.D.; Nsouandélé, J.L.; Soldo, B.; Njomo, D. Forecasting
natural gas: A literature survey. Int. J. Energy Econ. Policy 2018, 8, 216–249.
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7. Papageorgiou, E.I.; Poczęta, K. A two-stage model for time series prediction based on fuzzy cognitive maps
and neural networks. Neurocomputing 2017, 232, 113–121. [CrossRef]

8. Karimi, H.; Dastranj, J. Artificial neural network-based genetic algorithm to predict natural gas consumption.
Energy Syst. 2014, 5, 571–581. [CrossRef]

9. Khotanzad, A.; Elragal, H. Natural gas load forecasting with combination of adaptive neural networks.
In Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, 10–16 July
1999; IEEE: Piscataway Township, NJ, USA, 2002.

10. Khotanzad, A.; Elragal, H.; Lu, T.L. Combination of artificial neural-network forecasters for prediction of
natural gas consumption. IEEE Trans. Neural Netw. 2000, 11, 464–473. [CrossRef]

11. Kizilaslan, R.; Karlik, B. Comparison neural networks models for short term forecasting of natural gas
consumption in Istanbul. In Proceedings of the 1st International Conference on the Applications of Digital
Information and Web Technologies, ICADIWT 2008, Ostrava, Czech Republic, 4–6 August 2008.

12. Kizilaslan, R.; Karlik, B. Combination of neural networks forecasters for monthly natural gas consumption
prediction. Neural Netw. World 2009, 19, 191–199.

13. Musilek, P.; Pelikan, E.; Brabec, T.; Simunek, M. Recurrent Neural Network Based Gating for Natural Gas
Load Prediction System. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network
Proceedings, Vancouver, BC, Canada, 16–21 July 2006.

14. Soldo, B. Forecasting natural gas consumption. Appl. Energy 2012, 92, 26–37. [CrossRef]
15. Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220.

[CrossRef]

http://dx.doi.org/10.1007/s12667-016-0203-y
http://dx.doi.org/10.1016/j.rser.2015.04.065
http://dx.doi.org/10.1080/00908310490256626
http://dx.doi.org/10.1016/j.neucom.2016.10.072
http://dx.doi.org/10.1007/s12667-014-0128-2
http://dx.doi.org/10.1109/72.839015
http://dx.doi.org/10.1016/j.apenergy.2011.11.003
http://dx.doi.org/10.1016/j.energy.2015.03.084


Sustainability 2020, 12, 6409 27 of 29

16. Merkel, G.D.; Povinelli, R.J.; Brown, R.H. Deep neural network regression as a component of a forecast
ensemble. In Proceedings of the International Symposium on Forecasting, Cairns, Australia, 25–28 June 2017.

17. Merkel, G.D. Deep Neural Networks as Time Series Forecasters of Energy Demand. Master’s Thesis,
Marquette University, Milwaukee, WI, US, 2017. Available online: https://epublications.marquette.edu/

theses_open/434/ (accessed on 5 May 2020).
18. Merkel, G.D.; Povinelli, R.J.; Brown, R.H. Short-term load forecasting of natural gas with deep neural network

regression. Energies 2018, 11, 2008. [CrossRef]
19. Azadeh, A.; Asadzadeh, S.M.; Ghanbari, A. An adaptive network-based fuzzy inference system for short-term

natural gas demand estimation: Uncertain and complex environments. Energy Policy 2010, 38, 1529–1536.
[CrossRef]

20. Behrouznia, A.; Saberi, M.; Azadeh, A.; Asadzadeh, S.M.; Pazhoheshfar, P. An adaptive network based fuzzy
inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: The case of
South America. In Proceedings of the 2010 International Conference on Intelligent and Advanced Systems,
ICIAS 2010, Kuala Lumpur, Malaysia, 15–17 June 2010.

21. Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and
improved BP neural network. Appl. Energy 2014, 134, 102–113. [CrossRef]

22. Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the combination
of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 2017, 118, 231–245.
[CrossRef]

23. Homenda, W.; Jastrzebska, A.; Pedrycz, W. Modeling time series with fuzzy cognitive maps. In Proceedings
of the IEEE International Conference on Fuzzy Systems, Beijing, China, 6–11 July 2014.
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